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Abstract: Estimation in the context of functional data analysis is almost always

non-parametric, since the object to be estimated lives in an infinite dimensional

space. That is the case for the functional linear model with a real response and a

process as covariables. In a recent paper Ferré and Yao state that the estimation of

the Effective Dimension Reduction (EDR) subspace via SIR has parametric order.

We show that a strong condition is needed for their statement to be true.
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1. Introduction

Functional sliced inverse regression is the generalization of slice inverse re-

gression (SIR; Li (1991)) to the infinite dimensional setting. Functional SIR was

introduced by Dauxois, Ferré and Yao (2001) and Ferré and Yao (2003). Those

papers show that root-n consistent estimators cannot be expected. Ferré and Yao

(2005) claimed a new method of estimation that is root-n consistent. We argue

that their result is not true under the conditions that they stated, but may

be so when the covariance operator Γ of the covariable X is restricted. More

specifically, root-n consistency may be achievable when Γ has an spectral de-

composition with eigenfunctions of the covariance operator Γe of E(X|Y ) or of

the orthogonal complement of Γe. The EDR subspace can then be estimated

as the span of the eigenfunctions of Γe, and therefore root-n consistency follows

from the root-n consistency of principal component analysis for functional data

(Dauxois, Pousse and Romain (1982)).

2. The Setting in Ferré and Yao (2005)

Let (X,Y ) be a random variable that takes values in L2[a, b] × R. X is

a centered stochastic process with finite fourth moment. Then the covariance

operators of X and E(X|Y ) exist and are denoted by Γ and Γe. Γ is a Hilbert-

Smith operator that is assumed to be positive definite.
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Ferré and Yao (2005) assume the usual linearity condition for sliced inverse

regression extended to functional data in the context of the model

Y = g(〈θ1,X〉, . . . , 〈θD,X〉, ǫ),

where g is a function in L2[a, b], ǫ is a centered real random variable, θ1, . . . , θD are

D independent functions in L2[a, b] and 〈, 〉 indicates the usual inner product in

L2[a, b]. They called span(θ1, . . . , θD) the Effective Dimension Reduction (EDR)

subspace. Then, under their linearity condition the EDR subspace contains the

Γ-orthonormal eigenvectors of Γ−1Γe associated with the positive eigenvalues. If

an additional coverage condition is assumed then a basis for the EDR subspace

will be the Γ-orthonormal eigenvectors of Γ−1Γe associated with the D positive

eigenvalues. Therefore the goal is to estimate the subspaces generated by those

eigenvectors. Since Γ is one-to-one and because of the coverage condition, the

dimensions of R(Γe) and R(Γ−1Γe) are both D. Here, R(S) denotes the range of

an operator S, which is the set of functions S(f) with f belonging to the domain

T (S) of the operator S.

To estimate Γe it is possible to slice the range of Y (Ferré and Yao (2003)) or

to use a kernel approximation (Ferré and Yao (2005)). Under the conditions on

the model, L2 consistency and a central limit theorem follow for the estimators

of Γe. To approximate Γ, in general, the sample covariance operator is used

and consistency and central limit theorem for the approximation of Γ follow

(Dauxois, Pousse and Romain (1982)).

In a finite-dimensional context, the estimation of the EDR space does not

pose any problem since Γ−1 is accurately estimated by the inverse of the empirical

covariance matrix of X. This is not true for functional inverse regression when, as

assumed by Ferré and Yao (2005), Γ is a Hilbert-Schmidt operator with infinite

rank: the inverse is ill-conditioned if the range of Γ is not finite dimensional.

Regularization of the Γ̂ can be used to overcome this difficulty. Estimation of Γe

is easier, since Γe has finite rank. Because of the non-continuity of the inverse of

a Hilbert-Smith operator, Ferré and Yao (2003) cannot get a root-n consistent

estimator of the EDR subspace. To overcome that difficulty Ferré and Yao (2005,

Sec. 4), made the following comment:

Under our model, Γ−1Γe has finite rank. Then, it has the same eigen

subspace associated with positive eigenvalues as Γ+
e Γ, where Γ+

e is a

generalized inverse of Γe.

They use this comment to justify estimating the EDR subspace from the spec-

tral decomposition of a root-n consistent sample version of Γ+
e Γ. However, the

conclusion – R(Γ−1Γe) = R(Γ+
e Γ) – in Ferré and Yao’s comment is not true in

the context used by them, but may hold true in a more restricted context. More
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specifically, additional structure seems necessary to equate R(Γ+
e Γ), the space

that can be estimated, with R(Γ−1Γe) the space that we wish to know. For

clarity and to study the implications of Ferré and Yao’s claim we will use

Condition A: R(Γ−1Γe) = R(Γ+
e Γ).

Condition A is equivalent to Ferré and Yao’s claim stated previously. If

Condition A were true then it would be possible to estimate the eigenvectors of

Γ−1Γe more directly by using the eigenvectors of the operator Γe. In the next

section we give justification for these claims, and provide necessary conditions

for regressions in which Condition A holds. Since FDA is a relative new area, we

do not know if Condition A is generally reasonable in practice. Further study is

needed to resolve such issues.

3. The Results

We first give counter-examples to show that Condition A is not true in the

context used by Ferré and Yao (2005), even in the finite dimensional case. Con-

sider

Γ =

(

2 1

1 4

)

and Γe =

(

2 0

0 0

)

,

then R(Γ−1Γe) = span((4,−1)′) but R(Γ+
e Γ) = span((1, 0)′) and so R(Γ−1Γe) 6=

R(Γ+
e Γ).

For the infinite dimensional case we consider L2[0, 1] and any orthonormal

basis {φi}
∞

i=1 of L2[0, 1]. We define f =
∑

∞

i=1 aiφi with ai 6= 0 and
∑

∞

i=1 a2
i

< ∞.

We define Γ as the operator in L2[0, 1] with eigenfunctions φi and corresponding

eigenvalue λi. We ask that λi > 0 for all i and
∑

∞

i=1 λ2
i

< ∞. These conditions

guarantee that Γ is a Hilbert-Smith operator and strictly positive definite. Let

h = Γ(f); by definition, h ∈ T (Γ−1). Now h /∈ span(f). In fact, suppose h = cf .

Then

h = Γ(f) =

∞
∑

i=1

λi〈f, φi〉φi = c

∞
∑

i=1

〈f, φi〉φi.

Now, since 〈f, φi〉 = ai 6= 0 for all i we have λi = c for all i, contradicting the

fact that
∑

∞

i=1 λ2
i

< ∞.

Define the operator Γe to be the identity operator in span(h) and 0 in

span(h)⊥. Here given a set B ⊂ L2[0, 1], let us denote by B⊥ its orthogonal

complement using the usual inner product in L2[a, b]. The generalized inverse of

Γe coincides with Γe. Now, R(Γ−1Γe) = span(f) and R(Γ+
e Γ) = span(h) and,

from the fact that h /∈ span(f), we get R(Γ−1Γe) 6= R(Γ+
e Γ).

The next three lemmas give implications of Condition A.

Lemma 1. If Condition A holds then R(Γe) = R(Γ−1Γe).
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Proof. The closure of the set B ⊂ L2[a, b], denoted by B̄, will be the smallest

closed set (using the topology defined through the usual inner product) containing

B. For an operator S from L2[a, b] into itself, let S∗ denote its adjoint operator,

again using the usual inner product.

Let {β1, . . . , βD} denote the D eigenfunctions, with eigenvalues nonzero, of

Γ+
e Γ. If Condition A is true then

span(β1, . . . , βD) = R(Γ−1Γe) = R(Γ+
e Γ) ⊂ R(Γ+

e ).

By definition of generalized inverse (Groetsch (1977)) we have

R(Γ+
e ) = N(Γe)

⊥ = R(Γ∗
e) = R(Γe) = R(Γe),

where we use the fact that Γe is self-adjoint and the fact that R(Γe) has dimension

D and therefore is closed. Since R(Γe) has dimension D, the result follows.

Lemma 1 shows that we can construct span(β1, . . . , βD) from the D eigen-

functions of Γe associated with nonzero eigenvalues. From Daxouis, Pousse and

Romain (1982), the eigenvectors of the approximate Γn
e converge to the eigenvec-

tors of Γe at the root-n rate (Γn
e and Γe have finite rank D and therefore they are

compact operators). Therefore we can approximate span(β1, . . . , βD) at the same

rate. Let us note that the D eigenfunctions of Γe need not be Γ-orthonormals.

Lemma 2. Under Condition A we have R(ΓΓe) ⊂ R(Γe).

Proof. Since Γ is one to one, R(Γ) = L2[a, b]. On the other hand, by hypothesis,

R(Γe) ⊂ T (Γ−1). From the definition of the inverse of an operator (Groetsch

(1977)) we have that ΓΓ−1 = Id in T (Γ−1), where Id indicates the identity

operator. Now, let us take v ∈ R(ΓΓe). Then v = ΓΓew for some w ∈ L2[a, b],

and therefore Γ−1v = Γew = Γ−1Γeh for some h ∈ L2[a, b] (this last equality

follows from Lemma 1). Since Γ−1 is one to one (in its domain) we get v =

Γeh ∈ R(Γe).

In mathematical terms, R(ΓΓe) ⊂ R(Γe) implies that R(Γe) is an invariant

subspace of the operator Γ (see Conway (1990, p.39)). That, in turn, implies that

Γ has a spectral decomposition with eigenfunctions that live in R(Γe) or its or-

thogonal complement, as indicated by the following lemma, the finite dimensional

form of which was stated by Cook, Li and Chiaromonte (2006).

Lemma 3. Suppose Condition A is true. Then Γ has a spectral decomposition

with eigenfunctions on R(Γe) or R(Γe)
⊥.

Proof. Let v be an eigenvector of Γ associated to the eigenvalue λ > 0. Since

R(Γe) is closed (for being finite dimensional), v = u + w with u ∈ R(Γe) and

w ∈ R(Γe)
⊥. Since from Lemma 2, Γu ∈ R(Γe) and Γw ∈ R(Γe)

⊥ we have
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that u and w are also eigenvectors of Γ if both u and w are different from zero.

Otherwise v belongs to R(Γe) or R(Γe)
⊥.

Now, let {vi}
∞

i=1 be a spectral decomposition of Γ. We can assure that there

is a enumerable quantity of them since Γ is compact in L2[0, 1]. From what

we said above vi = ui + wi with ui and wi eigenvectors in R(Γe) and R(Γe)
⊥,

respectively. Now, we consider {ui : ui 6= 0} and {wi : wi 6= 0}. Clearly they

form a spectral decomposition of Γ with eigenfunctions on R(Γe) or R(Γe)
⊥.
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