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Abstract: The research described herein is motivated by a study of the relationship

between agricultural meteorology and three major yields of crops in a province

of China. To build a regression model for this data set with multivariate response

and high-dimensional covariates, three issues are of particular interest: reducing the

dimension of the covariates, avoiding the collinearity between the components of the

covariates, and capturing the nonlinearity structure. To deal with these problems,

we propose a method of nonparametric response transformation to build a single-

index type model, and use partial least squares to reduce the dimension of covariates

and to overcome the problem of collinearity. Our method is an alternative approach

to sliced inverse regression when the underlying model is single-index type. To select

the transformations, a new criterion based on maximizing the covariance matrix

is recommended. The selected transformations are estimated by splines; here B-

splines are used for general cases and I-splines with a penalty function are suggested

when the transformations are monotonic. A modified BIC selection principle is

proposed to determine the dimensionality of the space of spline transformations.

The consistency of the estimators is proved and easily implemented algorithms are

provided. Application to the agricultural data set is carried out.
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1. Introduction

This paper is motivated by research regarding an agricultural, meteorological

disaster in Ji-Lin, a northeastern province of China. Researchers have tried to

explore the relationship between meterological conditions and the yields of three

crops: soybean, rice, and maize. Ma (1996) reported the yields of 33 years, 1958

to 1990, with 17 measurements of climate change for the different growth periods

of crops, including temperature, rain quantity and hours of sunshine. Compared

with the sample size, the dimension of the covariates is high. Ma (1996) used

an ordinary multivariate linear least squares regression model (OLS) to analyze

this data set. However, the multiple correlation coefficients between each of the
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components of Y and X are only 0.48, 0.47 and 0.33. One suspects nonlinear-

ity and this is supported by our data analysis in Section 6. Furthermore, Li
(1999) revealed high collinearity between the components of the covariates. For

example, average temperature is highly and positively correlated with sunshine,

and sunshine in this region is quite negatively correlated with rain. The covari-

ance matrix of the covariates is nearly singular, with a smallest eigenvalue of
only 0.001. In this paper, we tackle three issues: nonlinearity, collinearity and

dimensionality when we estimate a regression function.

In a more general setting, we consider the regression of a q-dimensional

response Y = (Y1, . . . , Yq)
T on p-dimensional predictors X = (X1, . . . ,Xp)

T .
Many recent dimension reduction methods can handle both nonlinearity and

high-dimensionality of the data. For instance, single-index models are popularly

used when q = 1. In these models the response Y is independent of X when a

linear combination of X, say βT
1 X, is given, denoted by Y ⊥⊥X|βT

1 X. Projection
pursuit regression (PPR) proposed by Friedman and Stuetzle (1981) can be used

to estimate β by minimizing the least squared distance between Y and h(βT X)

over all projection directions β and all functions h(·). The optimal function
h(·) is the conditional expectation E(Y |βT

1 X), which can also be estimated by

any nonparametric smoothing method, splines for example. This method has

been investigated by many authors, examples are Huber (1985), Hall (1989) and

Zhu and Fang (1992).
Li and Duan (1989) brought in the notion of inverse regression, later devel-

oped by Li (1991) into the method of sliced inverse regression (SIR). Instead

of studying the relationship between Y and functions of X, Li (1991) consid-

ered maximizing the correlation between the projected covariates βT X and a
transformed response h(Y ), over all β and h(·) the class of square integrable

functions with respect to the distribution of X. The optimal h(·) is the in-

verse regression function of Y , E(XT β|Y ), and the projection direction β can be

determined through an eigen-decomposition of the matrix Cov (E(X |Y )). Gen-
erally, Cov (U ,V T ) stands for the covariance matrix between U = (U1, . . . , Ul)

T

and V = (V1, . . . , Vm)T ; when U = V , we write Cov (U ) = Cov (U ,UT ). For

identifying β, or more generally the central dimension-reduction subspace (Cook

(1998)), Cook and Weisberg (1994) used second moments to develop sliced av-
erage variance estimation (SAVE). Under some more conditions, SAVE can also

determine the central space. Cook and Li (2002) studied dimension reduction

for the conditional mean in regression, Yin and Cook (2002, 2003, 2004) pro-

posed methods using higher moments. A relevant method is principal Hessian
directions (pHd) (Li (1992)). Another related method is alternating conditional

expectation (ACE), developed by Breiman and Friedman (1985), when we want

to simultaneously search a transformation of Y and the transformations of com-

ponents of the covariates X. The iterative algorithm for ACE uses the notion
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of inverse regression. It can also be used to handle time series models where the

transformations are involved in the covariates, see Xia, Li, Tong and Zhu (2000).

However, when the central dimension reduction space that is spanned by B is our

target, the iterative algorithm is not necessary because we do not transform X.

Doksum (1987) also investigated estimation for the transformation model where

an unknown increasing transformation of the response follows a linear model with

p covariates.

For the multivariate response case, that is, when q > 1, Li, Aragon, Shed-

den and Agnan (2003) searched for the most predictable variate of Y , which

is a convex combination of Yi, i = 1, . . . , q, and then reduced the dimension

of X. Cook and Setodji (2003) used a multivariate version of ordinary least

squares, Yin and Bura (2006) extended the covariance-based method developed

by Yin and Cook (2002) for univariate response to multivariate data. Yin and

Zhu (2004) introduced the notion of dual central space to reduce both the di-

mension of X and of Y . Another relevant work is Bura and Cook (2001).

In this article, we focus on modelling multivariate responses against one pro-

jected covariate βT X. Clearly, the first problem is how to transform the multi-

variate response Y . Unlike Li, Aragon, Shedden and Agnan (2003), we consider

a two-step algorithm to build up the model. The idea is as follows. We first

transform every component of Y and then we apply partial least squares (PLS)

regression to tackle the collinearity problem, see below for species. Since se-

lecting the transformation does not involve the coefficients β, PLS can then be

employed to build a linear model between H(Y ) = (h1(y1), . . . , hq(yq))
T and X

with conditional mean E(H(Y )|X) = α + βT X.

Since the transformations hi’s are nonparametric functions, smoothing meth-

ods should be used to estimate these functions. Here we adopt splines for ease

of computational burden. In the general case, the B-splines are used. When the

transformations are monotonic, I-splines with penalty are recommended. The

consistency of the spline estimators will be proved; the proof of consistency and

convergence rate of spline estimators is somewhat different from the existing

approaches because of the use of a different criterion for selecting them.

The paper is organized as follows: In Section 2, we suggest a criterion to

search for transformation of the responses. The methodology of PLS after trans-

formation is also described in Section 3. In Section 4, we propose a simple al-

gorithm for obtaining B-splines approximations. When the transformations are

monotonic, we propose instead to use I-splines with a penalty function. Although

we cannot have an algorithm as simple as that for B-splines, use of I-splines with

our proposed penalty can ease the computational burden. For selecting the num-

ber of knots, we suggest a BIC type algorithm in Section 5. In Section 6, some

simulations for I-spline transformations are carried out, and application to our
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data set is carried out using B-splines. In Section 7 we discuss a possible ex-
tension of our approach to modelling with large dimensional covariates. The

technical proofs are given in the Appendix.

2. PLS Regression after Transformation

The basic idea of PLS with multiple transformed response (referred as TPLS

hereafter) is as follows. Suppose that transformations of the Yi’s, H(Y ) =
(h1(Y1), . . . , hq(Yq))

T , have already been obtained. Our target is to model H(Y )
against X = (X1, . . . ,Xp)

T as

H(Y ) = r0 + t1r1 + · · · + tmrm + F m, (2.1)

where r0 is the intercept, t1, . . . , tm are linear combinations βT
i X, i = 1, . . . ,m,

and F m are the residuals. The components ti are selected by the following

procedure, see Tenehaus (1998) for example.
Denote the first component t1 by βT

1 X. This t1 maximizes the covariance
of wT H(Y ) and XT β over all w, β with ||w|| = 1, ||β|| = 1, that is,

Cov (wT
1 H(Y ),βT

1 X) = max
w,β

Cov (wT H(Y ),βT X). (2.2)

Here β1 and w1 are, respectively, the eigenvectors associated with the

largest eigenvalues of the matrices
[
Cov (X ,H(Y )T )

]
×

[
Cov (H(Y ),XT )

]
and[

Cov (H(Y ),XT )
]
×

[
Cov (X,H(Y )T )

]
. In other words, we take the first pair

of canonical variables (wT
1 H(Y ),βT

1 X) for determining the direction of β1, with
||β1|| = 1. Regressing H(Y ) and X on t1, linearly, we obtain

H(Y ) = r0 + t1r1 + F 1 and X = p0 + t1p1 + G1, (2.3)

where r0 and p0 are intercepts, r1 has the same dimension as does H(Y ), and p1

that of X. Recall that t1r1 is similar to an ordinary least squares approximation
to H(Y ) and, when q = 1, H(Y ) = t1r1 + F 1 is almost equivalent to the

transformation of the response of He and Shen (1997). The case q ≥ 1 is a
generalized version studied by Fung, He, Liu, and Shi (2002). To extract the
information of G1 contained in F 1 to the regression part, we further consider the

least squares regression of the two residuals F 1 and G1 on a second component,
as in the following algorithm. The second pair of canonical variables F 1 and
t2 = βT

2 G1 are obtained by maximizing the covariance Cov (wT
2 F 1,β

T G1) over
all w2 and β, that satisfy ‖β‖ = ‖w‖ = 1, w⊥⊥w1. Regressing F 1 and G1 on t2,

we then derive that F 1 = t2r2 + F 2 and G1 = t2p2 + G2 where F 2 and G2 are
the residuals. This yields

H(Y ) = r0 + t1r1 + t2r2 + F 2 and X = p0 + t1p
T
1 + t2p

T
2 + G2. (2.4)
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Performing this procedure m times, say until the predetermined accuracy is
achieved in terms of a selection criterion based on generalized cross-validation
(GCV) (see Györfi, Kohler, Krzyźak and Walk (2002)), we reach (2.1).

Note that all the ti’s are linear combinations of the components of X. Using
the iterative equation (2.4), we have th = βT

h

∏h−1
j=1 (Ip −βjp

T
j )X , where

∏
is the

product operator and Ip is the p× p identity matrix. This t1r1 + · · ·+ tmrm can
be rewritten as βT X, with

H(Y ) = α + βT X + F m. (2.5)

This can be viewed as a transformed single-index model when the response is
multi-dimensional.

Once the sample {(xi,yi), i = 1, . . . , n} is available, some data-driven algo-
rithm should be used to determine the number, m, of components. Generalized
cross validation (GCV) has been widely adopted, see Tenehaus (1998, p.2) or
the SAS software, Version 6.11. Thus, let (x−i,y−i) be of size n − 1 with the
ith observation (xi,yi) removed from {(xi,yi), i = 1, . . . , n}. Further, let Ĥ i(·)
and β̂m,i be, respectively, the estimators of H and βm, based on (x−i,y−i) with

m components, and Ĥ(·) and β̂m be, respectively, the estimators of H and
βm based on the whole data set. Define PRESSm = (1/n)

∑n
i=1(Ĥm(yi) −

β̂
T

m,ixi)
T (Ĥm(yi)− β̂

T

m,ixi) and SSm = (1/n)
∑n

i=1(Ĥ(yi)− β̂
T

m,ixi)
T (Ĥ(yi)−

β̂
T

m,ixi), with

GCVm = 1 − PRESSm

SSm
. (2.6)

We choose m from 1 to p until GCVm ≥ 1 − 0.952 = 0.0975.

3. Selection of Transformations

Consider q = 1. Clearly, by SIR or the method of He and Shen (1997),
the transformation H is only related to X in the direction β0. This is similar to
TPLS with one component when the transformation is obtained by least squares.
However, SIR or He and Shen’s method cannot be extended to search for H when
the transformed response vector H(Y ) is related to more than one component
βT

i X, i = 1, . . . ,m. This then causes the difficulty that the PLS algorithm cannot
be used to obtain more than one component. Actually, all existing methods
including inverse regression and ACE suffer from this difficulty. To overcome
the problem, one can search for a transformation H(Y ) that is related to all
covariables Xi of X = (X1, . . . ,Xp)

T and having highest correlation in some
sense, allowing the algorithm in Section 2 to be performed without difficulty.
Based on this consideration, we define a criterion to maximize the square of
the covariance between H(Y ) and all of covariables Xi of X = (X1, . . . ,Xp)

T
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over a class of smooth functions. When q > 1, for Y = (Y1, . . . , Yq)
T , we

need to search for q transformations to form a transformation vector H(Y ) =
(h1(Y1), . . . , hq(Yq))

T for smooth functions hi, i = 1, . . . , q. We use the sum of
covariances between hi and Xl, 1 ≤ i ≤ q, 1 ≤ l ≤ p, to measure the correlation
between H(·) and X. H0(·) = (h1,0(·), . . . , hq,0(·))T is defined as the maximizer
of

C(H) =

q∑

i=1

p∑

l=1

[
Cov (hi(Yi),Xl)

]2
=

q∑

i=1

[
Cov (hi(Yi),X

T )
][

Cov (X, hi(Yi))
]

(3.1)
over all H(·) ∈ Hq := H×H · · · ×H, where H is the class of continuous squared
integrable functions whose variance is one.

We clarify two points. First note that, because Hq is a product space,
the maximizer H0 of C(H) over Hq is the vector of transformations H0(·) =
(h1,0(·), . . . , hq,0(·))T , each being the maximizer hi,0(·) of the covariance between
hi(Yi) and X over H. In other words, the maximization for this sum is equivalent
to the maximization of each term in the sum. For notational convenience, we
use the sum as the criterion. Second, we standardize hi(Yi) because the use of a
non-standardized version artificially inflates C(H). In contrast, X should not be
standardized since we want to deal with possible collinearity in X by the partial
least squares method.

Unlike SIR, the maximizer H(·) does not have a closed form. To ease the
computational burden, we define a spline estimator that has a closed parametric
form and is easy to implement.

4. Estimation of The Transformations

4.1. B-splines transformation

Let θi = (θi,0, θi,1, . . . , θi,J+1)
T , π(yi) = (B0(yi), . . . , BJ+1(yi))

T , be a vec-
tor of B-splines basis functions, and H(Y ) = (h1(y1), . . . , hq(yq)) with the ith
element hi(yi) = π(yi)

T θi an unknown projection vector. The B-splines approx-
imation “linearizes” the smooth function H(Y ) in (3.1) by π(yi)

T θi for every
component. We assume that the range of Y is contained in the q-dimensional
cube [a, b]q. In practice, a and b can be, respectively, the minimum and the
maximum of the data. See Schumaker (1981, p.124) for more details about B-
splines approximation. For each i with 1 ≤ i ≤ q, given a partition a = r0 <
r1 < r2 < r3 < · · · < rJ < rJ+1 = b, we write Bi(y) = S3((y − ri)J/(b − a))
(i = 0, . . . , J + 1), where

S3(z) = 0, |z| ≥ 2; S3(z) =
|z|3
2

− z2 +
2

3
, |z| ≤ 1;

S3(z) =
−|z|3

6
+ z2 − 2|z| + 4

3
, 1 < |z| < 2.
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Throughout this article, we write the (j/J)th quantile of the observed response as
rj, j = 1, . . . , J . Denote by Hbs = {h(·) : θ ∈ RJ+2} the space of all splines func-
tions on [a, b], the first order derivatives of which are Lipschitz. It is well known
that, as J goes to infinity, any function h ∈ H can be uniformly approximated
by its projection in the B-splines space Hbs (Schumaker (1981)). Obviously, any
function H(·) ∈ Hq can be uniformly approximated by its projection in the prod-
uct of the B-splines H(·) ∈ Hq

bs, H
q
bs := Hbs×Hbs · · ·×Hbs, whose members have

variance one. Thus we can derive the convergence of

max
H∈Hq

bs

Cbs(H) := max
H∈Hq

bs

q∑

i=1

p∑

l=1

[
Cov (hi(Yi),Xl)

]2
(4.1)

to maxH∈Hq C(H), see (3.1).
When a data set {(x1,y1), . . . , (xn,yn)} is available, for any H ∈ Hq

bs the
estimator of Cbs(H) can be defined as the sum of the sample covariances

Ĉbs(H) =

q∑

i=1

p∑

l=1

[Ĉov (hi(Yi),Xl)]
2, (4.2)

where Ĉov (hi(Yi),Xl) stands for the sample covariance between {hi(yi1), . . . ,

hi(yin)} and {xl1, . . . , xln}. The estimated B-spline θ̂
T
(π1(·), . . . ,πq(·)) is de-

fined as a maximizer of Ĉbs(H) over H ∈ Hq
bs. This estimator has a closed form

as shown in the following theorem.

Theorem 1. Assume that the covariances between the components of π(·) and

of X are finite. Then, hi(·) = θ̂
T
i π(·), i = 1, . . . , q, where

θ̂i =
η̂T

i [Ĉov (π(yi))]
1

2

[|η̂T
i Ĉov (π(yi))η̂i|]

1

2

and η̂i is the eigenvector that is associated with the largest eigenvalue of the
matrix (Cov (π(Yi),π(Yi)

T ))−1
[
Cov (π(Yi),X

T )
[[

Cov (X,π(Yi)
T )

]
.

The following theorem states the convergence of the criterion and the esti-
mator.

Theorem 2. Assume that J9/4(pq)3/2 = o(
√

n) and the fourth moments of X

is finite. Then

max
H∈Hq

bs

Ĉbs(H) − max
H∈Hq

bs

Cbs(H) = Op

(J
9

4 (pq)
3

2

√
n

)
(4.3)

and, when the maximizer of Cbs(H) is unique, the maximizer of Ĉbs(H) is
convergent in probability to that of Cbs(H) when (J9/4(pq)3/2)/

√
n → 0 as n →

∞. Then the B-splines estimator is convergent to the maximizer of C(H).
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Remark 1. The convergence rate seems not to be optimal. However, in this
article, the criterion of selecting splines transformation is different from others
in the literature even when q = 1. This is also applied to the I-splines trans-
formation in the next subsection. Hence, the existing results cannot be directly
used to prove an optimal convergence rate. The optimal convergence rate of the
splines estimators deserves a further study.

4.2. Monotonic I-splines Transformation

In some circumstances the transformation can be monotonic, see Cook and
Weisberg (1994) for an example. In this case, we should restrict our attention to
monotonic spline transformations for better approximation. Here, we introduce
monotonic I-splines (Xia et al. (2000)) with a penalty function. The algorithm
we suggest is a modification of that used in Ramsay (1988). Consider the pop-
ulation version first; when we have a data set, the corresponding formulae can
be replaced by the sample version. Consider the I-splines of order 2 based on
the knots mesh {rj} with a = r0 < r1 < · · · < rJ < rJ+1 = b. For any i with
1 ≤ i ≤ q, the basis function π(yi) = (B0, . . . , BJ+1)

T is defined through Bk as

B1(yi) =
(yi − r0)

2

(r1 − r0)2
I(r0 ≤ yi ≤ r1) + I(yi > r1),

Bk(yi) =
(yi − rk−2)

2

(rk−1 − rk−2)(rk − rk−2)
I(rk−2 ≤ yi ≤ rk−1)

+
[
1 − (yi − rk)

2

(rk − rk−1)(rk − rk−2)

]
I(rk−1 ≤ yi ≤ rk) + I(yi ≥ rk),

BJ+1(yi) =
(yi − rJ−1)

2

(rJ − rJ−1)2
I(rJ−1 ≤ yi ≤ rJ).

Let B0(yi) ≡ 1 and hi(yi) = θT
i π(yi). First we consider the transformation for

each component yi, 1 ≤ i ≤ q. Because we want a monotonic transformation, we
should consider the maximizer subject to monotonicity on hi. Monotonicity can
be ensured by θi,j ≥ 0 for all j ≥ 1 (see Ramsay (1988) for details). If we consider
the algorithm with this constraint, then solving for θi is not as simple as it was
with B-splines. However, the maximization problem is a quadratic problem and
can be solved without much difficulty. Note that such a transformation may not
be strictly monotonic because some optimal values of the components of θ may
be zero. It is clear that we can restrict the first derivative to be bounded away
from 0. To achieve this, the following criterion with a penalty function can be
used. For each i with 1 ≤ i ≤ q, let

Cαs,i(hi) :=
[
Cov (hi(Yi),X

T )
][

Cov (X , hi(Yi))
]
− α

J+1∑

j=0

log{1 + θi,j}.
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The criterion is defined as

Cαs(H) =

q∑

i=1

Cαs,i(hi), (4.4)

and the (J + 2) × q matrix θ = (θ1, . . . ,θq) is the maximizer of Cαs(H) over
all θ = (θ1, . . . ,θq) with ||θi|| = 1, i = 1, . . . , q. Each θi is the maximizer
of the corresponding Cαs,i(hi). Once we have data {(x1,y1), . . . , (xn,yn)}, the
estimators of Cαs,i(hi) and Cαs(H) are separately defined by

Ĉαs,i(hi) :=
[
Ĉov (hi(Yi),X

T )
][

Ĉov (X , hi(Yi))
]
− α

J+1∑

j=0

log{1 + θi,j},

Ĉαs(H) =

q∑

i=1

Ĉαs,i(hi). (4.5)

The estimator θ̂ = (θ̂1, . . . , θ̂q) is the maximizer of Ĉαs(H) over all θ = (θ1, . . . ,θq).

Clearly, each θ̂i is the maximizer of the corresponding Ĉαs,i(hi).
Adding the penalty function can ease the computational burden of the quadratic

problem. We have the following result in this direction.
For each i, note that

d Cαs,i(H(Y ))

d θi
= 2

[
Ĉov (π(Yi),X

T )
][

Ĉov (X ,π(Yi)
T )

]
θi − α

1

1 + θi
,

where 1/(1 + θi) = (1/(1 + θi,0), . . . , 1/(1 + θi,J+1))
T . From this, setting to 0,

we can derive the solution of θi. Specifically, for any i = 1, . . . , q, let Ai =[
Ĉov (π(Yi),X

T )
][

Ĉov (X ,π(Yi)
T )

]
and alm be the elements of Ai. For each l

with 0 ≤ l ≤ J + 1, θi,l is the solution of the following equation:

allθi,l(1 + θi,l) +

[∑

k 6=l

alkθi,k

]
(1 + θi,l) −

α

2
= 0,

where all > 0. Note that the solution of every component θi,l is related to all
other components θi,k, 0 ≤ k ≤ J + 1. We obtain the final solutions by an
iterative algorithm based on the above framework. The following theorem states
the convergence of the algorithm.

Theorem 3. Suppose that all marginal density functions of Xl, l = 1, . . . , p,
are bounded and positive on [a, b]. Choosing α < 2(λmin(AiAi))

1/2, the above
algorithm converges in probability, where λmin(AiAi) is the smallest eigenvalue
of the matrix AiAi.

Similar to Theorem 2, we can also obtain the convergence of maxH∈Hq

bs
Ĉαs(H)

to maxH∈Hq

bs
Cαs(H). The result is as follows.
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Theorem 4. Assume that J9/4(pq)3/2 = o(
√

n) and the fourth moments of X is

finite. Then

max
H∈Hq

bs

Ĉαs(H) − max
H∈Hq

bs

Cαs(H) = Op

(J
9

4 (pq)
3

2√
n

)
, (4.6)

and the maximizer of Ĉαs(H) is convergent in probability to that of Cαs(H)

when (J9/4(pq)3/2)/
√

n → 0, as n → ∞, if the maximizer of Cαs(H) is unique.

5. The Determination of Knots

To perform the above transformations, one must decide on the number of

knots J . Because J should depend on the sample size n, we will write J = kn.

As a large number of knots will cause under-smoothing, the choice of kn can

naturally be regarded as a model selection problem. We write the transformed

response θ̂
T
π(·) as Ĥkn

(·) to show its dependence on kn. Let BICm(kn,H) be

the value of a modified Bayesian Information Criterion (BIC)(Schwarz (1978))

when we use PLS with the transformation H(·), i.e.,

BICm(kn,H) = log(σ̂2(kn)) + (kn + p + q + 1)
max{log n, 3}

n
, (5.1)

where σ̂2(kn) is the sum of the squares of the residuals F m(xj,yj) that are ob-

tained in (2.1). We choose kn to be any integer such that BICm(kn,H) is mini-

mized. In some sense we have compromised between 2, used in AIC, and log n,

used in BIC, to ensure consistency. The rationale is to balance fidelity to data

with the complexity of the model. The value 3 is a small sample adjustment and

reflects our experience with small to modest data sets. Other model selection cri-

terion could be used. For example, the modified Akaike type information criteria

proposed by Fujikoshi and Satoh (1997) is an alternative. McQuarrie and Trai

(1998) provides a comprehensive discussion. As He and Shen (1997) pointed

out, no single method is the best for all problems, and further research is clearly

needed to understand the pros and cons of various possible knot selection rules.

However, that issue is beyond the scope of the present work.

6. Simulations and An Application

6.1. Simulations for I-splines transformation

In this subsection, we illustrate the performance of I-splines transformation

through simulation.
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The model is of a 4-dimensional response. For i = 1, . . . , n,

y1,i =
∏

x,i

+σǫ1i,

y2,i = (Πx,i + σǫ2i)
3,

y3,i = arctan(
∏

x,i

+σǫ3i),

y4,i = e
Q

x,i +σǫ4i . (6.1)

Here
∏

x,i =
∏10

j=1 xij , with xi = (x1,i, . . . , x10,i)
T drawn from normal N(0, I10),

ǫi = (ǫ1,i, . . . , ǫ4,i)
T being standard normal N(0, I4). Moreover, xi is to be in-

dependent of ǫi. Clearly, this model does not have a single-index, we use it to

examine the performance of our modelling. To examine the impact of variance σ2

on the estimation, we choose σ = 0.5, 1, 2, 4, and take the sample size at 100. In

Figure 1, we plot the fitted model βT
mX against Y , and the estimated transform

H(Y ) componentwise with σ = 0.5, where m = 2 is selected by GCV in (2.6).

From Figure 1, we can see that even when the model is not single-indexed, the

fit is still encouraging.
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Figure 1. For the model at (6.1), the SE are scatter plots between the I-spline

transformed responses H(Y ) on the vertical axis and the corresponding Y

on the horizontal axis.
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We also conducted a comparison between PLS and TPLS. The sample size

was 100. To give the squared multiple correlation coefficients between the trans-

formed response (TPLS) and the related fitted response and those between the

response (PLS) and the related fitted response, we used 100 replicates.
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Figure 2. For the model at (6.1), the Yi(TPLS) plots give the squared

multiple correlation coefficients between the I-spline transformed responses

H(Y ) and their corresponding fitted responses against the number of com-

ponents from 1 to 10; the Yi(PLS) plots give the mean of 100 simulated

squared multiple correlation coefficients between Y and the fitted responses

against the number of components.

From Figure 2, we can clearly see the necessity of using transformation to

establish a linear model. Because the underlying model does not have an index

parameter, a simple one-component model without transformed respones can

only make the multivariate correlation coefficients around 0.2, and when trans-

formations are applied these values are around 0.6. When two components are

included, TPLS achieves coefficients are around 0.8, but PLS does not work.

6.2. Crop Yields and Agricultural Meteorology

6.2.1. Data Description

We return to the example discussed in the introduction. Due to the devel-

opment of agricultural techniques and the use of fertilizers, crop yields do not

rely only on the meteorological conditions. We consider using ‘residual’ yields,
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obtained from first fitting with meteorology conditions as the covariates. Let

Y = (Y s, Y r, Y m) be the ‘residual’ yields of soybean, rice, and maize. X =

(X1, . . . ,X17)
T is a set of measurements of climate changes to be specified below.

The data from 1958 to 1990 were collected by the Institute of Meteorology in Ji-

Lin Province. Here j = 1 is for the 1958 data and j = 33 for the 1990 data, a sam-

ple size of n = 33. For each 1 ≤ j ≤ 33, measurements xij were collected accord-

ing to the growth periods of the crops. For each year, in the period from the 11th

of May to the 20th of June, X1,j(t5−6),X2,j(lt5−6),X3,j(r4−6) and X4,j (s5−6)

are, respectively, the average temperature of daytime, the lowest temperature of

daytime, the rain quantity (note: this variable is the rain quantity from the 11th

of April to the 20th of June; see Ma (1996) about this), and the hours of sun-

shine. Similar measurements, in the period from the 1st of July to the 10th of

August are, respectively, X5,j(t7 − 8),X6,j(lt7 − 8),X7,j(r7 − 8),X8,j(s7 − 8);

and the period from the 11th of August to the 10th of September, give us

X9,j(t8− 9)X10,j(lt8− 9),X11,j(r8− 9),X12,j(s8− 9). The measurements during

the major growth period of rice from the 1st of May to the 30th of September

are X13,j(t5 − 9),X14,j(r5 − 9),X15,j(s5 − 9). Two other measurements are also

obtained; X16,j(Lastr9− 10), the rain quantity from the 1st of September to the

31st of October in the previous year; X17,j (r All), the rain quantity in the full

year.

6.2.2. Modelling and Analysis Based on TPLS

We consider modelling by TPLS here. The B-splines are used for this exam-

ple because the “residual” yields do not show monotonicity when plotted against

the covariates. Figure 3 also verifies this finding. The number of knots is five,

determined by the modified BIC in Section 5. The components are also selected

by the aforementioned GCV. The number is selected as three. When one compo-

nent in TPLS is included, the approach is an extension of He and Shen’s (1997)

approach. The models with one and three components are reported as follows.

ĥ(yj) = t1,jr1 (I) with one latent variable

ĥ(yj) = t1,jr1 + t2,jr2 + t3,jr3 (II) with three latent variables,

where for each j, t1,j , t2,j, t3,j are also the latent variables.

The plot of βT
3 X against Y is presented in Figure 3, which also includes the

fitted curve of transformed Y , H(·). The fit is satisfactory.
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soybean rice maize
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Figure 3. For the data set application, these plots give the scatter plots

between the B-spline transformed responses H(Y ) on the vertical axis and

the corresponding Y on the horizontal axis.

To show the performance of TPLS, we compute the multiple correlation

coefficients R between h(Y ) and X. Table 1 reports the values of R in all cases

and the values of R for OLS.

Table 1. The multiple correlation coefficients for OLS and TPLS.

Soybean Rice Maize

R R R

Model (I) 0.59 0.72 0.67

Model (II) 0.78 0.82 0.78

OLS 0.48 0.47 0.33

From the results of Table 1, we see that a transformation produces multiple

correlation coefficients that are much larger than those of OLS. PLS is also useful

for building a linear model with the transformed responses. The three-component

TPLS outperforms the one component TPLS that is an extension of He and

Shen’s approach to multivariate response data. This indicates that TPLS with a

proper number of components can extract more information than a simple least

squares linear modelling with transformed response.

7. Further Discussion

PLS can handle problems with high-dimensional response and covariates.

Then it is of interest to study the case where the dimensions of both the response

and covariates are large. Looking at the condition of Theorem 2 and Theorem 4,
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J9/4(pq)3/2 = o(
√

n), when the dimensions p and q tend to infinity at some proper

rates, we still have the convergence of maxH∈Hq

bs
Ĉbs(H) to maxH∈Hq C(H) of

(3.1). Therefore, our approach may be extended to handle the cases with high-

dimensional covariates. This deserves further study.
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Appendix

Proof of Theorem 1. For h′ ∈ Hbs, we take a corresponding squared integrable

function h such that h′(·) = h(·)/
√

Var (h). Hence for any h′
i, we have

Ĉov (h′
i(Yi),Xl) =

Ĉov (hi(Yi),Xl)√
Var (hi(Yi))

=
θT

i Ĉov (π(Yi),Xl)√
θT

i Ĉov (π(Yi))θi

.

Let

ηT
i =

θT
i Ĉov (π(Yi))

1

2

√
θT

i Ĉov (π(Yi))θ̂i

.

We have

max
H∈Hbs

p∑

l=1

[Ĉov (hi(Yi),Xl)]
2

= max
||θi||=1

θT
i Ĉov (π(Yi),X

T )Ĉov (X ,π(Yi))θi

θT
i Ĉov (π(Yi))θi

= max
||ηi||=1

ηT
i (Ĉov (π(Yi)))

− 1

2 Ĉov (π(Yi),X
T )Ĉov (X,π(Yi)

T )(Ĉov (π(Yi)))
− 1

2 ηi.

(A.1)

The maximum of (A.1) is the largest eigenvalue of the matrix (Ĉov (π(Yi)))
−1

Ĉov (π(Yi),X
T )Ĉov (X ,π(Yi)). Therefore, the corresponding eigenvector η̂i is
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the maximizer. From this, we can easily obtain that

θ̂
T
i =

η̂T
i Ĉov (π(Yi))

− 1

2

√
η̂T

i (Ĉov (π(Yi)))−1η̂i

.

Proof of Theorem 2. It suffices to prove that

max
H∈Hq

bs

|Ĉbs(H) − Cbs(H)| = Op(
(J

9

4 (pq)
3

2 )√
n

).

Rewrite Cbs(H) as
∑q

i=1 θT
i

[
Cov (πi(Yi),X

T )Cov (X ,πT
i (Yi))

]
θi, where

Cov (πi(Y ),XT )Cov (X,πi(Y )T )

=
( p∑

l=1

Cov (Bik(Yi),Xl)Cov(Bik1
(Yi),Xl)

)
0≤k,k1≤J+1

is a (J + 2) × (J + 2) matrix, and similarly for Ĉbs(H). Hence,

max
H∈Hq

bs

|Ĉbs(H) − Cbs(H)|

≤ (J + 2)2pq max
i,k,k1,l

|Ĉov (Bik(Yi),Xl)Ĉov (Bik1
(Yi),Xl)

−Cov (Bik(Yi),Xl)Cov(Bik1
(Yi),Xl)|.

Note that (4.3) is implied by

max
i,k,l

|Ĉov (Bik(Yi),Xl) − Cov (Bik(Yi),Xl)| = Op(J
1

4

√
pq

n
). (A.2)

We now prove (A.2). First, take

Ĉov (Bik(Yi),Xl)) − Cov (Bik(Yi),Xl))

=
1

n

n∑

j=1

(
Bik(yij)xlj

)
− E

(
Bik(yij)xl

)

+
1

n

n∑

j=1

(
Bik(yij)

) 1

n

n∑

j=1

(
xlj

)
− E

(
Bik(yij)

)
E

(
xl

)

= In1,ilk + In2,ilk. (A.3)

For any 1 ≤ i ≤ q, 0 ≤ k ≤ J + 1, 1 ≤ l ≤ p, and any b > 0, by the Markov

Inequality,

max
i,l,k

P{|In1,ilk| > b} ≤ max
i,l,k

E
(
Bik(Yi)Xl

)2

nb2
.
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Note that Bik(Yj) ≤ cI(tk ,tk+1)(Yj) and then E
(
Bik(Yj)

)
≤ c/J . By the condition

that maxl E(X l)4 < ∞, we can obtain that

max
i,l,k

E
(
Bi,k(Yi)Xl

)2 ≤
√

c4E(I(tk ,tk+1)(Yj))
√

E(X l)4 ≤ C√
J

.

Choosing b = o(J1/4
√

pq/n), we find

P{max
i,l,k

|In1,ilk| > b} ≤
∑

i,l,k

max
i,l,k

P{|In1,ilk| > b} ≤ C(
√

Jpq)

nb2
= o(1).

Similarly, we can derive that

max
i,k

| 1
n

n∑

j=1

(
Bik(Yj)

)
− E

(
Bik(Yi)

)
| = Op(

q√
n

)

max
l

| 1
n

n∑

j=1

(
xlj

)
− E

(
Xl

)
| = Op(

√
p

n
).

A similar argument can be applied to prove the convergence of In2,ilk. By

A.2 and A.3 the proof is finished.

Proof of Theorem 3. Let θ
(l)
i result from the kth step of the iterative algorithm.

Hence,

2Ai

(
θ

(l+1)
i − θ

(l)
i

)
= α

( 1

1 + θ
(l)
i

− 1

1 + θ
(l−1)
i

)
= αc

(k)
i

(
θ

(l)
i − θ

(l−1)
i

)
,

and then

(
θ

(l+1)
i − θ

(l)
i

)
=

α

2
A−1

i

( 1

1 + θ
(l)
i

− 1

1 + θ
(l−1)
i

)
=

α

2
A−1

i c
(k)
i

(
θ

(l)
i − θ

(l−1)
i

)
,

where c
(k)
i = 1/[(1 + θ

(l)
i )(1 + θ

(l−1)
i )]. Note that all components of c

(k)
i are

smaller than or equal to 1. Because Ai is positive definite matrix, so is A−1
i .

The largest eigenvalue λmax((AiAi)
−1) = 1/λmin(AiAi) ≤ C < ∞. Also note

that for any non-negative symmetric matrix B and unitary vector B1, ‖BB1‖ =

BT
1 BBB1 ≤ B1max(BB), where B1max stands for the largest eigenvalue of the

matrix BB. Therefore, it is easy to see that

‖θ(l+1)
i − θ

(l)
i ‖ ≤ α

2(λmin(AiAi)))
1

2

‖θ(l)
i − θ

(−1)
i ‖.

When α is chosen to be smaller than 2(λmin(AiAi))
1/2, the algorithm converges.
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Proof Theorem 4. Using an argument that is similar to the one used for

proving Theorem 2, we only need to prove that, in probability,

max
H∈Hq

bs

∣∣Ĉαs(H) − Cαs(H)
∣∣ = O

(J
9

4 (pq)
3

2

√
n

)
. (A.4)

Note that

Ĉαs,i(H) − Cαs,i(H)

=
[
Ĉov (hi(Yi),X

T )
][

Ĉov (X , hi(Yi))
]
−

[
Cov (hi(Yi),X

T )
][

Cov (X , hi(Yi))
]
.

The argument that was used for proving Theorem 2 applied and one obtains the

bound of (A.4). The details are omited.
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