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Abstract: A covariate is not a confounder if it is not a risk factor to disease, or if it

has the same distribution in the exposed and unexposed populations. Standardiza-

tion for a confounder can reduce confounding bias, but that for a non-confounder

cannot. A question argued by many authors asks whether or not standardization of

a non-confounder can improve the precision of estimation. This paper discusses the

hypothetical or potential proportion of individuals in the exposed population who

would have developed the disease had they not been exposed. It is shown that the

precision of estimation of the hypothetical proportion cannot usually be improved

by using standardization for a non-confounder, no matter how one re-categorizes

the non-confounder.
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1. Introduction

Causal effect of exposure on the rate of a disease in the exposed pop-

ulation can be measured by comparing the proportion of diseased individu-

als in the exposed population with the hypothetical or potential proportion

of diseased individuals in the exposed population without exposure, the so-

called potential-outcomes model (Neyman (1923), Rubin (1974), Holland (1986),

Wickramaratne and Holford (1987) and Greenland, Robins and Pearl (1999)).

Following the notation of Holland (1989), let E be an exposure with values e

and ē representing presence and absence, respectively, let D denote an observed

binary outcome with values 1 and 0 denoting presence and absence of a disease,

respectively, and let De and Dē be the outcomes under E = e and E = ē, re-

spectively. For an individual, we can observe only one outcome of De and Dē,

but the other is unobservable, hypothetical or potential. For example, consider

smoking as exposure and lung cancer as outcome. We can observe only the

outcome De for a smoker, and only the outcome Dē for a nonsmoker. So the
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model is called a potential-outcome model. The hypothetical or potential pro-

portion P (Dē = 1|E = e) represents the proportion of individuals in the exposed

population who would have developed the disease even if they had not been

exposed. Epidemiological studies focus on the exposure effect on the rate of a

disease in the exposed population, and the effect can be assessed by comparing

P (De = 1|E = e) with P (Dē = 1|E = e). For example, P (Dē = 1|E = e)

represents the proportion of diseased individuals if any person in the smoking

population had never smoked. Then the causal effect of smoking on lung cancer

in the smoking population can be assessed by comparing P (De = 1|E = e) with

P (Dē = 1|E = e). When the hypothetical proportion is estimated by choosing

an unexposed or control population, confounding bias may arise from differences

in risk between the exposed and unexposed populations that would exist even if

exposure were entirely absent from both populations. To eliminate confounding

bias, the populations may be stratified into subpopulations by using covariates,

called confounders, and then the proportion of diseased individuals in the un-

exposed population is standardized or adjusted for the covariates by taking the

exposed population as the standard population. Two necessary criteria for as-

sessing a confounder were proposed by Miettinen and Cook (1981): if a covariate

is a confounder, then

(a) it must be predictive of risk in the unexposed population, and

(b) it must have different distributions between the exposed and unexposed pop-

ulations.

Adjustment for a confounder can reduce confounding bias, but that for a non-

confounder cannot (Wickramaratne and Holford (1987), Greenland, Robins and

Pearl (1999), Geng, Guo, Lau and Fung (2001) and Geng, Guo and Fung (2002)).

An important question, argued by many authors, is whether or not adjustment for

a non-confounder can improve the precision of estimation. Mantel and Haenszel

(1959), Mantel (1989) and Gail (1986) pointed out that adjusting for covariates

related to disease can improve the precision of estimation for regression analysis

even if they have the same distribution between the exposed and unexposed pop-

ulations. In the response to Mantel (1989), Wickramaratne and Holford (1989)

illustrated that adjusting for a covariate decreases the precision of estimates for a

linear logistic model, using hypothetical data for which the covariate is related to

the response, but nearly unrelated to exposure status. Breslow and Day (1980)

also addressed how stratification by non-confounders can increase the variability

of the estimates of relative risk without eliminating any bias.

In this paper we discuss the hypothetical or potential proportion of individ-

uals in the exposed population who would have developed the disease had they

not been exposed. We prove that the precision of estimation of the hypothetical
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proportion cannot be improved by using standardization for a non-confounder,

no matter how one re-categorizes the non-confounder.

In Section 2, we introduce the potential-outcome model, confounding bias

and exposure effects. Section 3 defines the crude estimate and the standardized

estimate of the hypothetical proportion. In Section 4, we show expectations and

variances of these estimates and prove that standardization for non-confounders

decreases the precision of estimation. We give a discussion in Section 5, and all

proofs are given in Appendix.

2. Confounding Bias, Confounder and Standardization

Consider the proportions of diseased in the exposed and the unexposed popu-

lations. If the exposed population is comparable with the unexposed population,

that is, P (Dē = 1|E = e) = P (Dē = 1|E = ē), nonconfounding bias, then the

average causal effect can be estimated by using a prima facie causal effect such

as P (De = 1|E = e) − P (Dē = 1|E = ē), an estimable quantity, and on first

view appears to be the average causal effect (Holland (1989)). For example, the

causal effect of smoking on lung cancer could be assessed by comparing the pro-

portions of lung cancer in the smoking and nonsmoking populations were there

no confounding bias.

When there is confounding bias, we try to stratify the populations by some

covariates, called confounders, and then standardize the proportion of diseased

for these covariates. For example, age is usually a confounder in epidemiological

studies, where age is a risk factor and has different distributions between the

exposed and unexposed populations. Let C be a covariate with possible values

1, . . . ,K. This C is not an intermediate variable in a causal pathway from expo-

sure to disease. It may also be considered as a composite covariate consisting of

several covariates. Let P (De = 1|E = e,C = k) and P (Dē = 1|E = ē, C = k) be

the proportions of diseased in the exposed and unexposed subpopulations of C =

k, respectively. Similarly, P (Dē = 1|E = e,C = k) is the hypothetical proportion

in the exposed subpopulation of C = k. According to the internal standardization

in epidemiology (Miettinen (1972), Kleinbaum, Kupper and Morgenstern (1982)

and Rothman and Greenland (1998)), the standardized proportion P∆(Dē =

1|E = ē) obtained by adjusting the distribution of C in the unexposed popu-

lation to that in the exposed population is

P∆(Dē = 1|E = ē) =

K
∑

k=1

P (Dē = 1|E = ē, C = k)P (C = k|E = e). (1)

Let A⊥⊥B|C denote conditional independence between A and B given C (Dawid

(1979)). If P (Dē = 1|E = e,C = k) = P (Dē = 1|E = ē, C = k) for all
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k (i.e., Dē⊥⊥E|C), we say that there is no confounding in the subpopulations,

termed subpopulation nonconfounding (Wickramaratne and Holford (1987)). In

this case, it can be shown that the hypothetical proportion P (Dē = 1|E = e)

equals the standardized proportion P∆(Dē = 1|E = ē).

Under the assumption of the subpopulation nonconfounding, Wickramaratne

and Holford (1987) showed that a sufficient condition for nonconfounding is

(ā) Dē⊥⊥C|E = ē or

(b̄) C⊥⊥E.

If C satisfies the condition (ā) or (b̄), then we have from (1) that P∆(Dē = 1|E =

ē) = P (Dē = 1|E = ē). This implies that confounding bias cannot be reduced

by standardization for a factor C that satisfies (ā) or (b̄): the confounding bias

P (Dē = 1|E = e) − P∆(Dē = 1|E = ē) obtained by adjusting for C equals the

confounding bias P (Dē = 1|E = e) − P (Dē = 1|E = ē) without the adjustment.

Note that conditions (ā) and (b̄) are just the converse of Miettinen and Cook’s

criteria (a) and (b), respectively, and thus (a) and (b) can be used as necessary

conditions for a confounder.

3. Estimates of Hypothetical Proportion

We have seen that standardization of a non-confounder cannot reduce con-

founding bias, also see Wickramaratne and Holford (1987), Greenland, Robins

and Pearl (1999), Geng et al. (2001) and Geng, Guo and Fung (2002). In this

section, we discuss whether standardization of a non-confounder can improve the

precision of estimation of the hypothetical proportion. Let nijk denote the ob-

served frequency for D = i, E = j and C = k, and let n+jk and n+j+ denote

the marginal frequencies obtained by summing over the index corresponding to

’+’. Assume that nijk for all i, j and k follow a multinomial distribution with

parameters P (D = i, E = j, C = k). In epidemiological studies, such as follow-up

studies, sample sizes of exposed and unexposed individuals, n+e+ and n+ē+, are

fixed by design. Thus we assume n+e+ ≥ 1 and n+ē+ ≥ 1 are fixed by design.

Given marginal frequencies n+ē+ and n+e+, then {niēk for all i and k} and {niek

for all i and k} are independent and have multinomial distributions with param-

eters {P (D = i, C = k|E = ē) for all i and k} and {P (D = i, C = k|E = e) for

all i and k}, respectively. For simplicity, define pjk = P (D = 1|E = j, C = k),

qk|j = P (C = k|E = j) and rj = P (D = 1|E = j) for j = e and ē. Let the

parameter of interes θ be the hypothetical proportion of diseased in the exposed

population, P (Dē = 1|E = e).

Let Ω = {ω1, . . . , ωs} for s ≥ 2 be a partition of C’s levels {1, . . . ,K}. Define

nijω =
∑

k∈ω nijk, pēω = P (D = 1|E = ē, C ∈ ω) and qω|ē =
∑

k∈ω qk|ē. The
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standardized estimate θ̂Ω based on the stratification Ω is

θ̂Ω =
∑

ω∈Ω

p̂ēω q̂ω|e,

where p̂ēω = n1ēω/n+ēω and q̂ω|e = n+eω/n+e+. In particular, for Ω = {[1, . . . ,

K]}, we pool all levels of C together and obtain the crude or marginal estimate of

the hypothetical proportion θ, θ̃ = n1ē+/n+ē+; for Ω = {[1], . . . , [K]}, we obtain

the standardized estimate of the hypothetical proportion θ, θ̂ =
∑

k p̂ēkq̂k|e, where

p̂ēk = n1ēk/n+ēk and q̂k|e = n+ek/n+e+. Since n+ēk appears in the denominator,

we define levels of C such that n+ēk ≥ 1 for all k.

Let Ω1 and Ω2 denote two stratifications. We say that stratification Ω1 is

cruder than stratification Ω2, denoted as Ω1 � Ω2, if for any ω2 ∈ Ω2, there

exists an ω1 ∈ Ω1 such that ω1 ⊇ ω2. When C is a composite factor with several

covariates, a stratification defined by a covariate set A is cruder than that by a

covariate set B if A is a subset of B. For example, consider the covariates sex and

age (e.g., grouped by every 10 years) for the example of lung cancer and smoking.

Let Ω1, Ω2 and Ω3 be stratifications defined by B = {sex, age}, A = {age}, and

by every 20 years, respectively. Then Ω1 is the finest stratification and Ω3 is the

crudest. θ̂Ω1
is the standardized estimate obtained by adjusting for both sex and

age, θ̂Ω2
is one obtained by adjusting for age groups of every 10 years, and θ̂Ω3

is one obtained by adjusting for age groups of every 20 years.

4. Expectation and Variances of Estimates

Under the assumption that n+e+ and n+ē+ are fixed and n+ēk ≥ 1 for any

k, we show that if C satisfies the condition (ā) or (b̄), the standardization for C

cannot reduce the bias of estimation, and it cannot usually improve the precision

of estimation, no matter how to one recategorizes C.

Theorem 1. If a factor C satisfies one of conditions (ā) and (b̄), then the stan-

dardized estimate of the hypothetical proportion based on any stratification has

the same expectation as the crude estimate, that is, E(θ̂Ω) = E(θ̃) for all possible

stratifications Ω. Under the assumption of subpopulation nonconfounding, the

standardized estimate θ̂Ω and the crude estimate θ̃ are unbiased.

Theorem 2. If the condition (ā) holds, then Var (θ̂Ω1
) ≤ Var (θ̂Ω2

) for any

Ω1 � Ω2.

Suppose that Dē⊥⊥C|E = ē and C is a composite factor consisting of several

covariates C1, . . . , Cm. Note that Dē⊥⊥C|E = ē implies Dē⊥⊥Ci|E = ē for each

i, but the converse is not true. It can be seen from Theorem 2 that the precision
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of standardized estimates can be improved by omitting any non-confounder Ci

in C.

Theorem 3. If condition (b̄) holds (i.e., C⊥⊥E), then the crude estimate θ̃ has

a smaller variance than the standardized estimate θ̂ if n+ē+ ≥ n+e+.

The condition n+ē+ ≥ n+e+ in Theorem 3 is sensible. To show this, we give

some examples in Table 1, for each of which we have C⊥⊥E, n+ē+ < n+e+ and

K = 2, but Var (θ̃) > Var (θ̂), even for quite large n+e+ and n+ē+.

Table 1. Some examples for K = 2, n+e+ > n+ē+, C⊥⊥E, but Var (θ̃) > Var (θ̂).

n+e+ n+ē+ q1|e = q1|ē q2|e = q2|ē pē1 pē2 Var (θ̂) Var (θ̃)

20 8 0.2 0.8 0.4 0.06 1.3893× 10−2 1.3952× 10−2

30 10 0.1 0.9 0.07 0.01 1.5626× 10−3 1.5744× 10−3

80 70 0.6 0.4 0.4 0.05 2.7440× 10−3 2.7486× 10−3

150 80 0.32 0.68 0.01 0.09 7.5297× 10−4 7.5316× 10−4

180 150 0.8 0.2 0.25 0.05 1.1051× 10−3 1.1060× 10−3

1,000 700 0.6 0.4 0.04 0.09 8.0538× 10−5 8.0571× 10−5

2,000 1,700 0.4 0.6 0.09 0.04 3.3165× 10−5 3.3176× 10−5

Theorem 3 implies that when the frequency of unexposed individuals is larger

than that of exposed individuals, pooling all levels together improves (at least
does not reduce) the precision of estimation if C satisfies condition (b̄). Further

more, the crudest estimate θ̃ has the smallest variance among all standardized

estimates θ̂Ω since C⊥⊥E still holds after pooling levels of C. Unlike Theorem
2, however, Theorem 3 cannot ensure that a cruder stratification has a smaller

variance than a finer stratification, that is, it cannot ensure that Var (θ̂Ω1
) ≤

Var (θ̂Ω2
) for any Ω1 � Ω2. Since C⊥⊥E still holds after pooling some levels of C

together, the following result can be obtained immediately from Theorem 3.

Corollary 1. Suppose that n+ēω ≥ n+eω for all ω ∈ Ω1. If (b̄) holds, then

Var (θ̂Ω1
) ≤ Var (θ̂Ω2

) for any Ω1 � Ω2.

The relative precision (RP ) of the crude estimate θ̃ to the standardized

estimate θ̂ is defined as

RP (θ̃ to θ̂) =
[Var (θ̃)]−1

[Var (θ̂)]−1
=

Var (θ̂)

Var (θ̃)
.

If the case in which n+ēk is zero is ignored, then we have from Stephan (1945)

that to terms of order n−1
+ē+,

E(
1

n+ēk

) ≈
1

n+ē+qk|ē
,
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see also Cochran (1977, p.135). Substituting this into the equation (A.4) in the

proof of Theorem 2, we can obtain the following result from C⊥⊥E.

Corollary 2. If both Dē⊥⊥C|E = ē and C⊥⊥E hold, then the relative precision

RP (θ̃ to θ̂) is approximately 1 + (K − 1)/n+e+.

If both (ā) and (b̄) hold, from the definition of RP and Corollary 2, we can

obtain the more general RP of θ̂Ω1
to θ̂Ω2

as

RP (θ̂Ω1
to θ̂Ω2

) ≈
n+e+ + K2 − 1

n+e+ + K1 − 1
,

where Ki denotes the number of levels of Ωi.

5. Discussion

In this paper, we showed that standardization for non-confounders never re-

duces confounding bias, and it cannot usually improve the precision of estimation

of the hypothetical proportion. These results are useful for design of epidemio-

logical studies and data analysis. For a randomized design, the condition (b̄) is

satisfied, and thus standardization of the hypothetical proportion for covariates

is unnecessary to reduce confounding bias and to improve the precision of esti-

mate provided that the frequency of exposed individuals is not larger than that

of unexposed individuals. In design of an observational study, a covariate C may

be omitted without inducing bias or loss of precision if there is evidence from

other studies which supports condition (ā) or {(b̄) and n+ē+ ≥ n+e+ }. In data

analysis, we may omit C for simplification if there is evidence for condition (ā)

or {(b̄) and n+ē+ ≥ n+e+ } from observed data.

The studies considered in this paper are those with the numbers of exposed

and unexposed individuals fixed. For the case-control studies in which the num-

bers of diseased and non-diseased individuals are fixed, it is impossible to use

randomized treatment assignment, and thus subpopulation nonconfounding is

dubious in most cases, see Holland and Rubin (1988). On the other hand, there

is no information on the proportions P (De = 1|E = e) and P (Dē = 1|E = ē),

and no estimate of the hypothetical proportion P (Dē = 1|E = e) in case-control

studies.

We have only discussed standardized estimates of the hypothetical propor-

tion with adjustment for discrete covariates. Robinson and Jewell (1991) dis-

cussed adjustment for continuous covariates in logistic regression models, and

they showed asymptotically that adjustment for a continuous covariate C will

lose the precision of estimates of parameters in logistic regression models if (i)

D⊥⊥C|E or (ii) C⊥⊥E|D. Note that condition (i) implies (ā), that condition (ii)

is different to (b̄), and that our results are exact but not asymptotic. Comparison

between estimates of the risk ratio remains to be discussed.
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Appendix

Proofs of Theorems and Corollary 1.

We first give the following lemmas which will be used in proofs of theorems.

Lemma 1. When a set ω of C’s levels is partitioned into subsets ω′ and ω′′,

(n+e+ − 1)q2
ω′|e + qω′|e

n+ēω′

+
(n+e+ − 1)q2

ω′′|e + qω′′|e

n+ēω′′

≥
(n+e+ − 1)(qω′|e + qω′′|e)

2 + (qω′|e + qω′′|e)

n+ēω′ + n+ēω′′

.

Proof. Moving the right hand side of the inequality to the left, we can get

n+ēω′′(n+ēω′ + n+ēω′′)[(n+e+ − 1)q2
ω′|e + qω′|e]

n+ēω′n+ēω′′(n+ēω′ + n+ēω′′)

+
n+ēω′(n+ēω′ + n+ēω′′)[(n+e+ − 1)q2

ω′′|e + qω′′|e]

n+ēω′n+ēω′′(n+ēω′ + n+ēω′′)

−
n+ēω′n+ēω′′ [(n+e+ − 1)(qω′|e + qω′′|e)

2 + (qω′|e + qω′′|e)]

n+ēω′n+ēω′′(n+ēω′ + n+ēω′′)
.

For the formula above, the denominators are the same, and the numerators are

rewritten as

n+ēω′′(n+ēω′ + n+ēω′′)[(n+e+ − 1)q2
ω′|e + qω′|e]

+n+ēω′(n+ēω′ + n+ēω′′)[(n+e+ − 1)q2
ω′′|e + qω′′|e]

−n+ēω′n+ēω′′ [(n+e+ − 1)(qω′|e + qω′′|e)
2 + (qω′|e + qω′′|e)]

= (n+e+ − 1)n2
+ēω′′q2

ω′|e + (n+e+ − 1)n2
+ēω′q2

ω′′|e + n2
+ēω′′qω′|e + n2

+ēω′qω′′|e

−2(n+e+ − 1)n+ēω′n+ēω′′qω′|eqω′′|e

≥ 2(n+e+ − 1)n+ēω′n+ēω′′qω′|eqω′′|e + n2
+ēω′′qω′|e + n2

+ēω′qω′′|e

−2(n+e+ − 1)n+ēω′n+ēω′′qω′|eqω′′|e

= n2
+ēω′′qω′|e + n2

+ēω′qω′′|e ≥ 0.

The lemma follows.



ESTIMATES OF THE POTENTIAL PROPORTION AND STANDARDIZATION 1651

Lemma 2. If a1 ≥ · · · ≥ an, b1 ≤ · · · ≤ bn, and p1 + · · · + pn = 1, where pi > 0

for i = 1, 2, . . . , n, then we have

(

n
∑

i=1

piai

)(

n
∑

i=1

pibi

)

≥
n

∑

i=1

piaibi.

Proof. Consider the p’s as a probability measure on {1, . . . , n} and let random

variables A and B take measure a1, . . . , ak and b1, . . . , bk.

Clearly Cov (A,B) ≤ 0, and the Lemma follows.

Lemma 3. Suppose X has a binomial distribution with parameters n > 0 and

0 < p < 1. Then

E
( 1

X

∣

∣

∣

∣

0 ≤ X ≤ m
)

≥
1

np + 1 − p
. (A.1)

Proof. First we prove (A.1) for m = n. Let X ′ be binomial variable with

parameters n − 1 and p. From Lemma 2,

E(X ′ + 1)E
[ 1

(X ′ + 1)2

]

≥ E
( 1

X ′ + 1

)

.

Dividing by E(X ′ + 1) = (n − 1)p + 1, the above inequality can be expressed as

n−1
∑

k=0

1

(k + 1)2

(

n − 1

k

)

pk(1 − p)n−1−k ≥

∑n−1
k=0

1
k+1

(

n−1
k

)

pk(1 − p)n−1−k

np + 1 − p
.

After the above summation over k from 0 to n − 1 is changed to that from 1 to

n, we have

n
∑

k=1

1

k2

(

n − 1

k − 1

)

pk−1(1 − p)n−k ≥

∑n
k=1

1
k

(

n−1
k−1

)

pk−1(1 − p)n−k

np + 1 − p
.

Multiplying both sides by np and noting that
∑n

k=1

(

n
k

)

pk(1−p)n−k = 1−(1−p)n,

we get
∑n

k=1
1
k

(

n
k

)

pk(1 − p)n−k

1 − (1 − p)n
≥

1

np + 1 − p
.

Thus we have proved (A.1) when m = n.

Next, let Xm and Xn denote [X|0 < X ≤ m] and [X|0 ≤ X ≤ n], respec-

tively, where m < n. From (A.1), we need only show E(1/Xm) ≥ E(1/Xn).

Since P (Xm = k) = P (Xn = k)/P (Xn ≤ m) for 0 < k ≤ m, we have

E

(

1

Xm

)

− E

(

1

Xn

)

=

m
∑

k=1

1

k
P (Xm = k) −

n
∑

k=1

1

k
P (Xn = k)
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=
m

∑

k=1

1

k

P (Xn = k)

P (Xn ≤ m)
−

m
∑

k=1

1

k
P (Xn = k) −

n
∑

k=m+1

1

k
P (Xn = k)

=

m
∑

k=1

P (Xn = k)

k

P (Xn > m)

P (Xn ≤ m)
−

n
∑

k=m+1

1

k
P (Xn = k)

≥

m
∑

k=1

P (Xn = k)

m

P (Xn > m)

P (Xn ≤ m)
−

n
∑

k=m+1

1

m
P (Xn = k) = 0.

Thus we have proved (A.1).

Proof of Theorem 1. Given n+e+ and n+ē+, q̂ω|e and p̂ēω are conditionally

independent. Thus we get that for any Ω,

E(θ̂Ω) =
∑

ω∈Ω

E(q̂ω|ep̂ēω) =
∑

ω∈Ω

E(q̂ω|e)E(p̂ēω).

For the first factor, it is obvious that E(q̂ω|e) = qω|e. For the second factor, we

have

E(p̂ēω) = E

(

n1ēω

n+ēω

)

= E

[

E

(

n1ēω

n+ēω

|n+ēω

)]

= E

[

E(n1ēω|n+ēω)

n+ēω

]

= E

(

n+ēωpēω

n+ēω

)

= E(pēω) = pēω.

If the condition (ā) Dē⊥⊥C|E = ē holds, we have E(θ̂Ω) =
∑

ω∈Ω qω|epēω =
∑

ω qω|erē = rē. If the condition (b̄) C⊥⊥E holds, we have E(θ̂Ω) =
∑

ω qω|epēω =
∑

ω qω|ēpēω = rē. Thus in both cases, E(θ̂Ω) = E(θ̃) = rē, where θ̃ is a special θ̃Ω

for Ω = {[1, . . . ,K]}. Further, under the assumption of subpopulation noncon-

founding, we have that rē =
∑

k qk|epēk =
∑

k qk|eP (Dē = 1|E = e,C = k) = θ.

Proof of Theorem 2. Because Dē⊥⊥C|E = ē, we have that pēω = rē and we

write p = pēω = rē. Also for simplicity, we take X = (n+ēωk
, n+eωk

, k = 1, . . . , s),

and qk = qωk|e, k = 1, . . . , s. Thus we obtain

Var (θ̂Ω) = Var
(

s
∑

k=1

n1ēωk

n+ēωk

n+eωk

n+e+

)

= Var

[

E
(

s
∑

k=1

n1ēωk

n+ēωk

n+eωk

n+e+
|X

)

]

+ E

[

Var
(

s
∑

k=1

n1ēωk

n+ēωk

n+eωk

n+e+
|X

)

]

= Var
(

s
∑

k=1

n+eωk

n+e+
p
)

+ E

[ s
∑

k=1

(n+eωk

n+e+

)2 p(1 − p)

n+ēωk

]
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= Var (p) +
s

∑

k=1

[

n+e+q2
k + qk(1 − qk)

n+e+
p(1 − p)E

( 1

n+ēωk

)

]

= 0 +
p(1 − p)

n+e+

s
∑

k=1

[

((n+e+ − 1)q2
k + qk)E

( 1

n+ēωk

)

]

. (A.2)

To prove Theorem 2, we need only show that if a set ωk is further partitioned

into two sets ω′ and ω′′, and thus qωk|j = qω′|j + qω′′|j for j = e and ē, then we

have

[(n+e+ − 1)q2
ω′|e + qω′|e]E

(

1

n+ēω′

)

+ [(n+e+ − 1)q2
ω′′|e + qω′′|e]E

(

1

n+ēω′′

)

≥ [(n+e+ − 1)(qω′|e + qω′′|e)
2 + (qω′|e + qω′′|e)]E

(

1

n+ēωk

)

.

From Lemma 1, we get

(n+e+ − 1)q2
ω′|e + qω′|e

n+ēω′

+
(n+e+ − 1)q2

ω′′|e + qω′′|e

n+ēω′′

≥
(n+e+ − 1)(qω′|e + qω′′|e)

2 + (qω′|e + qω′′|e)

n+ēω′ + n+ēω′′

,

and thus we have proved Theorem 2.

Proof of Theorem 3. For simplicity, take pk = pēk for all k, and X =

(n+ēk, n+ek, k = 1, · · · ,K). By C⊥⊥E, we can write qk = qk|ē = qk|e for all

k. Thus we have

Var (θ̂) = Var
(

K
∑

k=1

n1ēk

n+ēk

n+ek

n+e+

)

= Var

[

E
(

K
∑

k=1

n1ēk

n+ēk

n+ek

n+e+
|X

)

]

+ E

[

Var
(

K
∑

k=1

n1ēk

n+ēk

n+ek

n+e+
|X

)

]

= Var
(

K
∑

k=1

n+ek

n+e+
pk

)

+
K

∑

k=1

[

n+e+q2
k+qk(1 − qk)

n+e+
pk(1 − pk)E

( 1

n+ēk

)

]

.

The first term can be expressed as

Var
(

K
∑

k=1

n+ek

n+e+
pk

)

=
K

∑

k=1

Var
( n+ek

n+e+
pk

)

+
∑

k 6=l

Cov
( n+ek

n+e+
pk,

n+el

n+e+
pl

)

=
1

n+e+

[ K
∑

k=1

p2
kqk(1 − qk) −

∑

k 6=l

qkqlpkpl

]

≥ 0.
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For θ̃, we have

Var (θ̃) =
rē(1 − rē)

n+ē+
=

∑K
k=1 pkqk(1 −

∑K
k=1 pkqk)

n+ē+

=
1

n+ē+

[ K
∑

k=1

p2
kqk(1 − qk) −

∑

k 6=l

qkqlpkpl

]

+
1

n+ē+

K
∑

k=1

qkpk(1 − pk).

Comparing the above equations of Var (θ̂) and Var (θ̃), the first item of Var (θ̂)

is larger than the first item of Var (θ̃) for n+ē+ ≥ n+e+. Thus we need only show

that for all k,

n+e+q2
k + qk(1 − qk)

n+e+
pk(1 − pk)E

(

1

n+ēk

)

≥
qkpk(1 − pk)

n+ē+
.

Dividing both sides by qkpk(1 − pk), this amounts to

n+e+qk + 1 − qk

n+e+
E

(

1

n+ēk

)

≥
1

n+ē+
.

From (A.1) and n+ē+ ≥ n+e+, we have

n+e+qk + 1 − qk

n+e+
E

(

1

n+ēk

)

≥
n+ē+qk + 1 − qk

n+ē+
E

(

1

n+ēk

)

≥
n+ē+qk + 1 − qk

n+ē+

1

n+ē+qk + 1 − qk

=
1

n+ē+
.

Thus, we proved that Var (θ̂) ≥ Var (θ̃) when n+ē+ ≥ n+e+.

Proof of Corollary 1. Since Ω1 � Ω2, for any ωk ∈ Ω1 there exist ωk1, . . . , ωknk

∈ Ω2 such that ωk = ∪nk

j=1ωkj. We write

θ̂Ω1
=

K
∑

k=1

n1ēωk

n+ēωk

n+eωk

n+e+
,

θ̂Ω2
=

K
∑

k=1

nk
∑

j=1

n1ēωkj

n+ēωkj

n+eωkj

n+e+
=

K
∑

k=1

n+eωk

n+e+

nk
∑

j=1

n1ēωkj

n+ēωkj

n+eωkj

n+eωk

.

According to Theorem 3, we have

Var (θ̂Ω1
) = Var [E(θ̂Ω1

| X)]+E[Var (θ̂Ω1
| X)]

=Var
(

K
∑

k=1

n+eωk

n+e+
pk

)

+E

[ K
∑

k=1

(n+eωk

n+e+

)2
Var

(n1ēωk

n+ēωk

∣

∣

∣

∣

X
)

]
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≤Var
(

K
∑

k=1

n+eωk

n+e+
pk

)

+E

[ K
∑

k=1

(n+eωk

n+e+

)2
Var

(

nk
∑

j=1

n1ēωkj

n+ēωkj

n+eωkj

n+eωk

∣

∣

∣

∣

X
)

]

=Var [E(θ̂Ω2
| X)]+E[Var (θ̂Ω2

| X)] = Var (θ̂Ω2
),

where X and pk have the same definitions as those in the proof of Theorem 3.

Thus we have proved Corollary 1.
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