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Abstract: The isotonic regression problem with a smoothness penalty is considered.

The shape-restricted smooth estimator was characterized as a solution to a set of

recurrence relations by Tantiyaswasdikul and Woodroofe (1994). Using a related
Green’s function, the estimator can be represented as a kernel regression estima-

tor. Under regularity conditions on the underlying regression function, asymptotic

normality of the estimator is established for a large range of choices of the tuning

parameter.
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1. Introduction

There are many regression problems for which the underlying function is

known to be monotone, for example, dose-response experiments in biology and

the modeling of disease incidences as function of the toxicity level, etc. Industry

examples like the effect of temperature on the strength of steel are also available.

The least squares estimator for this problem is widely known, and described

by Robertson, Wright and Dykstra (1987). Unfortunately, this estimator lacks

smoothness, and its non-normal asymptotic behavior complicates its use. We re-

fer to Wright (1981) for the derivation, and Groeneboom and Wellner (2001) for

its distribution. Accordingly, there has been recent interest in combining smooth-

ness and monotonicity. Friedman and Tibshirani (1984), Mukherjee (1988) and

Mammen (1991) were early contributors, and Ramsey (1998) is a recent method

to counter the problem. Hall and Huang (2001) provide a recent review with ref-

erences. Here we follow the approach of Tantiyaswasdikul and Woodroofe (1994)

(referred as TW henceforth), who proposed a penalized least square estimator.

In Section 2, we review the derivations of TW and give several properties.

Section 3 contains the main results of this paper. The estimator of TW can be

described as an approximate solution to a differential equation with boundary

values. It is shown that their estimator can be approximated by a kernel estima-

tor, using the Green’s function for a closely related boundary value problem as
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a kernel. Many asymptotic properties of the estimator follows as consequences.

Section 4 contains simulation results and an example. There is some precedence

for the use of Green’s functions to approximate splines in the absence of shape

restriction: Rice and Rosenblatt (1983), Silverman (1984), Messer (1991) and

Nychka (1995) notable among them. These ideas are modified to allow for shape

restrictions.

2. The Smoothing Spline

Consider a regression problem,

Yi = φ(ti,n) + ǫi, i = 1, . . . , n, (1a)

where ti,n are pre-specified design points on [0, 1] with 0 < t1,n < · · · < tn,n < 1,

and φ is a non-decreasing function. Here we can restrict ourselves to the unit

interval, without loss of generality. We suppose that the ǫi are mean zero in-

dependent and identically distributed random errors, with a moment-generating

function finite on some neighborhood of 0. From now on, we denote ti,n as ti
only, to avoid notational complications.

Let ω be the uniform distribution on t1, . . . , tn, and let g be a piecewise

constant function for which g(tk) = Yk for k = 1, . . . , n. To combine smooth-

ness with shape restrictions in a weighted manner, TW chooses to minimize a

penalized least-squares criterion of the form

ψ(f) =

∫ 1

0
(g − f)2dω + α

∫ 1

0
f ′(t)2dt.

2.1. Characterization of the estimator

Let H be the set of absolutely continuous functions h for which h′ ∈ L2[0, 1].

Let H+ = {h ∈ H : h′ ≥ 0 a.e.}, the set of non-decreasing h ∈ H. Let F (x) =
∫ x
0 f(t)dω(t), and G(x) =

∫ x
0 g(t)dω(t). Further, the positive part of any real x

is denoted as x+ = x1x≥0.

Theorem 1. Necessary and sufficient conditions for f ∈ H+ to minimize ψ on

H+ are that F (1) = G(1) and,

αf ′ = (F −G)+ a.e. (1)

TW used this characterization to derive an algorithm to compute the esti-

mate. Let, F0 = G0 = 0 and for k = 1, . . . , n,

fk = f(tk), Fk =
1

n
(f1 + · · · + fk), Gk =

1

n
(Y1 + · · · + Yk).
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Then the condition (1) reduces to

αf ′(t) = (Fk −Gk)+ for tk ≤ t < tk+1, (2)

and also Fn = Gn by virtue of the first condition in the theorem. Consequently,

f is a continuous non-decreasing piecewise linear function with

fk = fk−1 +
1

α
(Fk−1 −Gk−1)+(tk − tk−1) (3)

for k = 1, . . . , n. Relation (3) determines f1, . . . , fn for a given f0, and f0 is

determined from the condition Fn = Gn (with the aid of Property A below).

Several properties of the estimator are needed, as follows.

For c ∈ R, let f0(α, c) = c, and define

fk(α, c) = fk−1(α, c) +
1

α
(Fk−1(α, c) −Gk−1)+(tk − tk−1),

Fk(α, c) =
1

n
(f1(α, c) + f2(α, c) + · · · + fk(α, c)).

We need to solve the equation ‘Fn(α, c) = Gn’ for real c. We denote the solutions

as cα, f̂k(α) = fk(α, cα) and F̌k(α) = Fk(α, cα), respectively. The following

lemma ensures that a unique solution exists. The proof can be found in the

Appendix.

Lemma 1. The following properties can be derived from (3).

Property A: For fixed α, fk(α, c) is strictly increasing in c, is continuous in c,

and goes to −∞ and ∞ as c goes to −∞ and ∞. Consequently, so

does Fk(α, c). Therefore, Fn(α, c) = Gn has a unique solution cα.

Moreover,

min
1≤k≤n

nGk

k
≤ cα ≤ Gn.

Property B: For each c ∈ R, both fk(α, c) and Fk(α, c) are non-increasing in α.

Property C: cα is non-decreasing in α.

Property A enables us to set up a bisection search algorithm to compute the

final estimate in an iterative procedure. The next lemma investigates the shape

of the solution. We denote the LSE by ~f . We recall that it is the left hand

slope of the greatest convex minorant (we call it G̃ with knot values G̃k), of the

cumulative sum diagram G. The proofs are outlined in the Appendix.

Lemma 2. The estimator satisfies the following.

Property D: F̌k(α) is non-decreasing in α.
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Property E: For all k = 1, . . . , n and all α, we have, F̌k(α) ≥ G̃k.

Property F: For all α and t between 0 and 1, ~f(t1) ≤ f̂(α, t) ≤ ~f(tn).

Property G: For ti = i/n, (F̌ (α, t)−G̃(t))− = Op(
1
n) uniformly in α and t, where

x− = x1x≤0.

Finally, we refer to the main result of Pal and Woodroofe (2004), which

shows that the cumulative sum diagram G and its greatest convex minorant G̃

are close. Under the assumption that the true regression function f is strictly

increasing with derivative bounded away from 0, it is then clear that

max
1≤k≤n

|G̃k −Gk| = OP

(

( log n

n

)
2

3

)

.

3. Asymptotic Properties of the Estimator

The main result is presented in this section. The dependence on n becomes

important, and there is a slight change in the notation. Henceforth, c = cα
is that value of c identified in Property A, f̂ is the resulting estimator, and

F̂ (t) =
∫ t
0 f̂(s)ds.

3.1. Green’s function

Since (3) does not yield a closed form representation of the estimator, it

seems impossible to compute or approximate its bias and variance theoretically.

However, we can proceed by replacing that difference equation by an analogous

differential equation that fortunately has a closed form solution.

Consider the differential equation,

αF ′′(t) = F (t) −H(t), 0 ≤ t ≤ 1, (4)

with boundary conditions F (0) = 0 and F (1) = A. We assume that H is abso-

lutely continuous with derivative h. Letting β = 1/
√
α, the homogeneous equa-

tion (αF ′′ − F ) = 0 has solutions e±βt, and the corresponding Green’s Function

is

Kα(t, s) =
1

2
βe−β|t−s| for 0 ≤ t ≤ 1.

To solve the differential equation with boundary conditions, let,

F0(t) =

∫ 1

0
Kα(t, s)H(s)ds 0 ≤ t ≤ 1.

Then, αF ′′
0 = F0 −H. To satisfy the boundary conditions, let,

F (t) = c0(β)e−βt + c1(β)e−β(1−t) + F0(t).
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The values of c0(β) and c1(β) can be evaluated from the boundary conditions as

c0(β) =
F0(1) −A− F0(0)e

β

eβ − e−β
,

c1(β) =
(A− F0(1))e

β + F0(0)

eβ − e−β
,

from which it follows that |c0(β)| + |c1(β)| ≤ 6‖H‖ + 4A for β ≥ 1, where
‖H‖ = sup0≤t≤1 |H(t)|. It is quite important that this is the unique solution to
(4) with the given boundary conditions.
Define, for all l ∈ L1, Kαl(t) =

∫ 1
0 Kα(t, s)l(s)ds.

Lemma 3. In case ti = i/n, ‖F̂ − F̌‖ = OP (1/n).

Proof. For any 0 ≤ x ≤ 1 and n, let k = ⌊nx⌋. Then,
∣

∣

∣
F̂ (x) − F̌ (x)

∣

∣

∣
=

∣

∣

∣

∫ x

0
f̂(t)dω(t)−

∫ x

0
f̂(t)dt

∣

∣

∣

=
∣

∣

∣

k
∑

i=1

f̂(
i

n
)
1

n
− 1

n

k−1
∑

i=1

f̂(
i

n
)− 1

2n
f̂(
k

n
)− 1

2
(x− k

n
)(f̂(

k

n
)+f̂(x))

∣

∣

∣

≤ 1

2n
sup |f̂ |.

Moreover, sup |f̂ | ≤ |~f(tn)| + |~f(t1)| = Op(1), since the LSE ~f is a stochastically
bounded estimator. Hence, the lemma follows.
From now on, we consider uniformly spaced points only.
The next proposition allows us to represent F̂ as the sum of a convolution of Kα

(defined in Section 3.1) with the greatest convex minorant G̃ and a remainder
term that is of smaller order.

Proposition 1. Under the assumptions stated in Section 2,

F̂ (t) = KαG̃(t) + KαR(t) + c0(β)e−βt + c1(β)eβ(t−1),

where both c0 and c1 are stochastically bounded functions of β, and ‖R‖ =
OP (n−2/3(log n)2/3).

Proof. Property G implies that ‖(F̌ − G̃) − (F̌ − G̃)+‖ ≤ Op(1/n). Combining
that with (3), we get

‖αF̂ ′′ − (F̂ − G̃)‖ = ‖(F̌ −G)+ − (F̂ − G̃)‖
= ‖(F̌ −G)+ − (F̌ − G̃) − (F̂ − F̌ )‖

≤ ‖(F̌ −G)+ − (F̌ − G̃)+‖ + ‖(F̂ − F̌ )‖ +Op(
1

n
)

≤ ‖G̃−G‖ +Op(
1

n
)

= OP (n−
2

3 (log n)
2

3 ).
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Let, R = (F̂ − G̃) − αF̂ ′′. Then, ‖R‖ = OP (n−2/3(log n)2/3) and F̂ satisfies

αF̂ ′′ − F̂ = −G̃−R = −H (say). Hence, using the uniqueness of the solution of

Section 3.1,

F̂ (t) =

∫ 1

0
Kα(t, s)H(s)ds + c0(β)e−βt + c1(β)eβ(t−1)

=

∫ 1

0
Kα(t, s)G̃(s)ds+

∫ 1

0
Kα(t, s)R(s)ds + c0(β)e−βt + c1(β)eβ(t−1),

where c0 and c1 are defined as in Section 3.1 with A = Gn. By Marshall’s

Lemma, ‖G̃−F‖ ≤ ‖G−F‖ → 0, since F is a convex function. (Refer to Robert-

son, Wright and Dykstra (1987, p.329) for a statement of Marshall’s Lemma.)

Therefore, ‖G̃‖ is bounded. So, H is bounded in n and t and boundedness of

c0(β) and c1(β) follows. The second term of the above representation is of order

n−2/3(log n)2/3, since |
∫ 1
0 Kα(t, s)R(s)ds| ≤ ‖R‖

∫ 1
0 Kα(t, s)ds. The proposition

follows.

To get the analogous representation for f̂ , we need to define a few variables

and functions related to the true regression function φ, which give us the bias

and random components of the estimator. The cumulative regression functions

are also required in this context. We define,

φk = φ(tk), Φ(x) =

∫ x

0
φ(t)dω(t), Φ(x) =

∫ x

0
φ(t)dt.

The next function has to be defined through a characterizing differential equation

analogous to (4).

Proposition 2. Suppose that the true regression function φ is twice continuously

differentiable. Then there is a function τα which minimizes

∫ 1

0
(τ − φ)2dt+ α

∫ 1

0
{τ ′}2dt

among all functions, and also satisfies the approximation τα(t) = φ(t)+αφ′′(t)+

o(α).

Proof. We consider the minimization problem as a problem in the Calculus of

Variations. Euler’s equation gives the differential equation ατ ′′ = τ − φ. Using

the same Green’s function technique as in Section 3.1, τα(t) = Kαφ(t) satisfies

the equation. However Kαφ(t) = φ(t) + αφ′′(t) + o(α) (It is a special case of

Equation (6.4) in Theorem 2.2 of Nychka (1995)). The proposition follows.

Now we can derive the crucial representation of the estimator obtained in

Section 2.
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Theorem 2. The regression estimator f̂ can be written

f̂(t) = τα(t) +
β

2n

n
∑

i=1

e−β|t−ti|ǫi +OP (n−
2

3 log n)β + e−βt(1−t)OP (β),

uniformly in α and in t ∈ (0, 1).

Proof. The Lebesgue integral F̂ can be written as in Proposition 1. Differenti-

ating pointwise we get,

f̂(t) =

∫ 1

0

∂

∂t
Kα(t, s)G̃(s)ds+

∫ 1

0

∂

∂t
Kα(t, s)R(s)ds−βe−βtc0(β)+βe−β(1−t)c1(β)

= τα(t) +

∫ 1

0

∂

∂t
Kα(t, s)[G(s) − Φ(s)]ds+ V1(t) + V2(t),

where,

V1(t) =

∫ 1

0

∂

∂t
Kα(t, s)(G̃(s) +R(s) − Φ(s) −G(s) + Φ(s))ds,

V2(t) = −βe−βtc0(β) + βe−β(1−t)c1(β) − 1

2
βe−β(1−t)Φ(1) = e−βt(1−t)OP (β).

However,

|V1(t)| ≤
1

2
‖G̃−G+R−Φ + Φ‖

∫ 1

0
β2e−β|t−s|ds ≤ β

[

‖G̃−G+R‖+‖Φ − Φ‖
]

.

Since ‖Φ−Φ‖ = o(1/n), and both ‖G̃−G‖ and ‖R‖ are Op(n
−2/3(log n)2/3), we

find |V1(t)| = OP (n−2/3(log n)2/3)β. Finally,

∫ 1

0

∂

∂t
Kα(t, s)[G(s) − Φ(s)]ds

= −
∫ 1

0

∂

∂s
Kα(t, s)[G(s) − Φ(s)]ds

= −Kα(t, 1)[G(1) − Φ(1)] +

∫ 1

0
Kα(t, s)[dG(s) − dΦ(s)]

= − β

2n
e−β(1−t)

n
∑

i=1

ǫi +
β

2n

n
∑

i=1

e−β|t−ti|ǫi

= OP (
βe−β(1−t)

√
n

) +
β

2n

n
∑

i=1

e−β|t− i

n
|ǫi.

That completes the detail of the representation.
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Remark. Theorem 2 implies that the constrained estimator is approximately a

kernel regression estimator obtained by employing the Laplace kernel function.

Here, The tuning parameter α plays a role similar to the bandwidth h. The

asymptotic mean τα has a bias that we seek to make negligible. We need α to

be reasonably small to ensure that. On the other hand, we do not want to let β

grow too rapidly as that will inflate the random component. As a balance, we

take α to be in an admissible range.

Corollary 1. Let α satisfy αn2/3 → ∞ but αn2/5 → 0. Suppose also that the

true regression function φ is twice continuously differentiable with bounded second

derivative. Then for t ∈ (0, 1),

√

n

β
[f̂(t) − φ(t)] ⇒ N [0,

σ2

4
]. (5)

However, if αn2/5 → K ≥ 0, then
√

n/β[f̂(t) − φ(t)] ⇒ N [K5/4φ′′(t), σ2/4].

Proof. Define Uα(t) = β/2n
∑n

i=1 e
−β|t−(i/n)|ǫi. For a fixed t, this is a sequence

of sums of a triangular array. We invoke the Lindeberg-Lévy Central Limit

Theorem to verify that,

√

n

β
Uα(t) ⇒ N [0,

σ2

4

∫ ∞

−∞
e−2|u|du] = N [0,

σ2

4
].

Lindeberg’s condition is easily satisfied since the ǫi’s have finite moment gener-

ating function.

Moreover, from Proposition 2,

√

n

β
[τα(t) − φ(t)] =

√

n

β
[αφ′′(t) + o(α)] = K5/4φ′′(t) + o(1).

The remainder terms V1 and V2 are oP (1) for the admissible range of α and the

corollary follows.

Remark. The case α = 0 guides us back to the LSE, which has a non-normal

asymptotic distribution. The choice α = n−2/3 yields the slowest rate of conver-

gence (it is also at the boundary) in the limit, that of the MLE. Then, β is of

the same order as the number of jump points of the MLE. A comparison to the

Theorem 2.2 of Nychka (1995) yields an approximately similar bias and a vari-

ance twice that of the unconstrained spline. However, the asymptotic normality

is an important feature here. The conditions on the magnitude of α are more

stringent than Nychka’s, a price paid for the penalization.
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4. Simulation Results and Applications

Before applying the technique to data, we investigate the estimator’s per-

formance in simulations, especially for small sample size. Different underlying

regression functions are considered : exponential (convex); sinusoidal (in its con-

cave range); and polynomials 3x2 − 2x3 (flat ends and inflexion) and x2 − x

(violates the shape-restriction). Errors are generated from N(0,.01), Student’s

t (with 4 degrees of freedom and scaled down by .1) and Beta (with parame-

ters 3,2 and centralized). The TW estimators are compared with the LSE and

the unconstrained smoothing splines (with optimal smoothing), graphically and

numerically.

4.1. Optimal choice of α

As shown in Proposition 2, the estimator has a bias αf ′′(t). Though negli-

gible for large n, it has to be accounted for in small sample. To counter that, we

follow the technique used in the selection of bandwidth in kernel estimation to

find the optimal values of α. Now

MSE(x) =
βσ2

4n
+ α2f ′′(x)2 ⇒ IMSE =

βσ2

4n
+ α2

∫ 1

0
f ′′(x)2dx.

So, the optimum value of α is,

α = [
16n

∫ 1
0 f

′′(x)2dx

σ2
]−

2

5 .

Unfortunately, it depends on both σ2 and the underlying regression function f .

Now, σ2 can be consistently estimated, as observed by Meyer and Woodroofe

(2000). However, since our method yields piecewise linear functions, it is unable

to estimate f ′′. To plug in an estimate of
∫ 1
0 f

′′(x)2dx, one can think of using a

kernel substitute. However, we prefer the easier route of pretending the regression

function to be quadratic over the range [0, 1]. Under the model f(t) = a+bt+ct2

we estimate ĉ using simple linear regression, and observe that
∫ 1
0 f

′′(x)2dx = 4c2.

Finally, we select our estimated smoothing parameter as

α̂ = [
64nĉ2

σ̂2
]−

2

5 .

Table 1 compares the Monte Carlo estimates of the IMSE of the smooth esti-

mators with data-driven α, alongside that of the optimal α, the LSE, and the

linear smoothing spline with the smoothing parameter taken as its optimal value.

We also provide the Monte Carlo standard error to give an idea of how much

variation the different estimates have across simulations. (We have 1,000 MC
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simulations for all of them.) It appears that the Monte Carlo standard error of

the IMSE of the estimators does not depend on the mean function, but depends

on the distribution of the errors.

Table 1. The Monte Carlo estimates of finite-sample IMSE obtained using
Riemann sum approximation for the integral, for sample size n = 100 and
number of replications M = 1, 000 for all combinations of error and mean
function. The upper figure is the estimate and the lower is one standard
deviation.

Mean Error TW TW LSE unconstrained
function distribution optimal adaptive (PAVA) spline(optimal)

N(0, 0.01) 0.0102 0.0227 0.0234 0.0113

± 0.0051 ± 0.0067 ± 0.0077 ± 0.0073

ex 0.1t4 0.0168 0.0314 0.0413 0.0187

± 0.0098 ± 0.0114 ± 0.0239 ± 0.0145

β(3, 2) − 0.6 0.0296 0.0450 0.0721 0.0352
± 0.0176 ± 0.0232 ± 0.0295 ± 0.0233

N(0, 0.01) 0.0087 0.0131 0.0194 0.0112

± 0.0054 ± 0.0071 ± 0.0075 ± 0.0074

sin(πx/2) 0.1t4 0.0151 0.0192 0.0343 0.0194

± 0.0099 ± 0.0116 ± 0.0183 ± 0.0175

β(3, 2) − 0.6 0.0260 0.0285 0.0644 0.0347
± 0.0173 ± 0.0214 ± 0.0319 ± 0.0231

N(0, 0.01) 0.0097 0.0186 0.0207 0.0127

± 0.0052 ± 0.0065 ± 0.0077 ± 0.0074

3x2 − 2x3 0.1t4 0.0168 0.0229 0.0362 0.0220

± 0.0115 ± 0.0186 ± 0.0239 ± 0.0158

β(3, 2) − 0.6 0.0277 0.0303 0.0653 0.0387
± 0.0189 ± 0.0256 ± 0.0323 ± 0.0248

N(0, 0.01) 0.0371 0.0421 0.0394 0.0061

±0.0050 ± 0.0068 ± 0.0074 ± 0.0072

x2 − x 0.1t4 0.0396 0.0482 0.0435 0.0103

± 0.0115 ± 0.0202 ± 0.0231 ± 0.0172

β(3, 2) − 0.6 0.0443 0.0531 0.0542 0.0173
± 0.0186 ± 0.0276 ± 0.0314 ± 0.0250

The sample size taken is n = 100. Clearly, the optimal smoothing would

have worked substantially better than the LSE, and even the data-driven adap-

tive smoothing has a remarkable effect on the overall IMSE. As expected, the

TW estimator fails in comparison to the unconstrained spline when the shape

restriction is violated. When the true function is monotone, the TW estimator

performs a little better than the unconstrained spline. The reason lies in the fact

that the constraint preempts the estimator to have too many ups and downs,
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and therefore restricts it to have too much variation. The unconstrained spline

does not share this property. This fact will also be corroborated by the graphical

plots shown later.
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Figure 1. The plot of the smooth estimators alongwith the LSE over [0, 1]

for one sample of size 100. The bold dotted line is the true function, whereas

the dashed, dotted and solid lines represent the LSE, the optimally smooth

estimator and the unconstrained smooth estimator. The regression functions

and the α values are sin(πx/2), 3x2 − 2x3, 2x2 − x, ex, and 0.0044, 0.0053,

0.0027 and 0.0043 respectively. The errors are generated from the Normal

(left panels) and the Beta (right panels). The IMSE for the TW(optimal)

estimator, the LSE and the unconstrained splines for the four plots are

[0.0059, 0.0200, 0.0080], [0.0134, 0.0548, 0.0227], [0.0329, 0.0359, 0.0244]

and [0.0534, 0.0853, 0.0655] respectively.

4.2 Graphical comparisons

Figure 1 shows us the relative performance of the estimators for different

regression functions and error distributions. The sample size is 100, but the

signal-to-noise ratio is diminished to a scale of 0.2 to discern the plots through

a cursory glance. Clearly, the smooth estimator alleviates the spiking problem,

and reduces the roughness of the LSE. A function violating the shape-constraints,

(x2 − x) over [0, 1], is included for comparison. The optimal values of α and the

IMSE for these individual curves are also mentioned. We compare the mean

square error of the estimators at t0 = 0.25, 0.5, 0.75, for sample sizes from 100

through 1,000. Figure 2 includes a few of these MSE curves for some of the mean

function-point of estimation-error distribution combinations. It appears that the

optimally smooth isotonic estimator always outperforms the LSE, and so does
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the adaptive smooth estimator in most cases. Though they have a bias that

the LSE doesn’t have, the variance is much lower. However, for points close to

the ends and a skew error, the adaptive smooth estimator fares worse than the

LSE, perhaps because the adaptive α is not close to the optimal α. If the shape

restriction is violated, the unconstrained spline works much better than the TW

estimators. However, if the assumption holds, there is little to choose between

them in Figure 2.
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0.015
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Figure 2. The pointwise mean square error of the smooth estimators along-
with the LSE for n = 1, . . . , 1, 000. The MSE for the LSE is the dotted line,
whereas the dash-dotted, solid and the dashed lines represent the MSE for
TW estimators with optimal smoothing, data-estimated optimal smoothing,
and the unconstrained spline, respectively. The chosen mean function-error
distribution-point of interest combinations are [ex, N(0, 0.01), .25], [sin(πx/2),
0.1t4, 0.5], [3x2 − 2x3, β(3, 2) − 0.6, 0.75] and [x2 − x,N(0, .01), 0.5], respec-
tively. As the first three plots show, there is no difference between the con-
strained and the unconstrained smoothing splines when the shape restriction
is present.

4.3. Analysis of ASA cars data

As an illustration of our method we use part of the “cars” data from the

1983 ASA Data Exposition. These data are available at the StatLib Internet

site (http://lib.stat.cmu.edu/datasets/cars.data) at Carnegie Mellon University.

Here, the covariate X is the engine output of a car model, in horsepower, and

the response Y is its fuel efficiency, to be studied as function of the engine out-

put. Several methods of constrained as well as unconstrained smoothing have
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been applied to the data in Mammen, Marron, Turlach and Wand (2001). Since,

logically, more powerful engines require more fuel, a decreasing smooth function

should be fitted to the observations. In Figure 3, we fit a non-smooth stan-

dard isotonic estimator (LSE) alongside the smooth isotonic estimator and an

unconstrained smoothing spline, using the data itself to design the bandwidth

according to the method described above.
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Figure 3. Scatterplot of the fuel efficiency as a function of engine output. The

PAVA estimator is the solid line, and the dashed line is the smooth estimator

with optimally chosen smoothing parameter. The dotted line indicates a

smoothing spline without the shape-restriction.
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Appendix

Proof of Lemma 2.

Property A: The final inequality of Property A is a restatement of Lemma 4 in

TW. The rest of it is clear.

Property B: For any α < β, f0(α, c) = c = f0(β, c). Suppose, inductively,

that fj(α, c) ≥ fj(β, c) for j = 0, 1, . . . , k − 1 for some k. Then
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Fk−1(α, c) ≥ Fk−1(β, c), and consequently,

fk(α, c) = fk−1(α, c) +
1

α
(Fk−1(α, c) −Gk−1)+(tk − tk−1)

≥ fk−1(β, c) +
1

β
(Fk−1(β, c) −Gk−1)+(tk − tk−1)

= fk(β, c).

The result follows.

Property C: If α < β, then Fn(α, cβ) ≥ Fn(β, cβ) = Gn, and therefore, cα ≤ cβ .

Proof of Lemma 2:

Property D: Let α < β. Clearly, F̌1(α) = cα/n ≤ cβ/n = F̌1(β) and F̌n(α) =

F̌n(β) = Gn. Suppose, F̌j(α) > F̌j(β) for some j between 2 and n−1,

and let k be the smallest such j. Then f̂k(α) > f̂k(β). Therefore,

f̂k+1(α) = f̂k(α) +
1

α
(F̌k(α) −Gk)+(tk+1 − tk)

> f̂k(β) +
1

β
(F̌k(β) −Gk)+(tk+1 − tk)

= f̂k+1(β)

and F̌k+1(α) > F̌k+1(β). Proceeding like this, we get, F̌n(α) >

F̌n(β), a contradiction to our assertion.

Property E: Clearly, F̌1(α) = cα/n ≥ min1≤k≤nGk/k = G̃1, and F̌n(α) = Gn =

G̃n. As above, suppose, F̌j(α) < G̃j for some j between 2 and n−1,

and let k be the smallest such j. Then, as G̃k ≤ Gk for all k,

f̂k+1(α) = f̂k(α) +
1

α
(F̌k(α) −Gk)+(tk+1 − tk)

= f̂k(α)

= n[F̌k(α) − F̌k−1(α)]

< n[G̃k − G̃k−1]

≤ n[G̃k+1 − G̃k] (as G̃ is convex).

Therefore, F̌k+1(α) = F̌k(α) + f̂k+1(α)/n < G̃k+1. Consequently,

f̂k+2(α) = f̂k+1(α) = f̂k(α) ≤ n[G̃k+1 − G̃k] ≤ n[G̃k+2 − G̃k+1]

(as above) and F̌k+2(α) < G̃k+2. Proceeding in the same way, we

conclude that F̌n(α) < G̃n, a contradiction.

Property F: Clearly, for all t and α, f̂(α, t) ≥ cα ≥ ~f(t1), establishing the first

inequality. The other inequality follows by symmetry.
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Property G: The following lemma shows that the MLE itself is stochastically

bounded.

Lemma 4. Both ~f(t1) and ~f(tn) are bounded w.p. 1.

Proof.

~f(t1) = min
i≥1

Y1+. . .+Yi

i
≥ f(t1)+min

i≥1

ǫ1+. . .+ǫi
i

≥ f(0+)+min
i≥1

ǫ1+. . .+ǫi
i

.

We know that, (ǫ1 + . . . + ǫn)/n → 0 w.p.1, using the Strong Law of Large

Numbers. Hence, mini≥1(ǫ1 + . . . + ǫi)/i > −∞ w.p. 1. Consequently, ~f(t1) >

−∞ w.p. 1. Using symmetry with respect to the mean function, we get, ~f(tn) <

∞ w.p. 1. The lemma follows.

Now, for tk ≤ t < tk+1, F̌ (α, t) = F̌k(α), and G̃(t) lies between G̃k and G̃k+1.

Hence, |G̃(t) − G̃k| ≤ |G̃k − G̃k+1|. However, |G̃k − G̃k+1| = ~f(tk)(tk+1 − tk) =
~f(tk)/n, and hence is Op(1/n) uniformly in t, by Lemma 4. The property follows

by using Property E and observing that the previous bound is also uniform in α.
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