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Abstract: It is well known that unrecognized heterogeneity among patients, such as

is conferred by genetic subtype, can undermine the power of a randomized trial, de-

signed under the assumption of homogeneity, to detect a truly beneficial treatment.

We consider the conditional power approach to allow for recovery of power under

unexplained heterogeneity. While Proschan and Hunsberger (1995) confined the

application of conditional power design to normally distributed observations, we

consider more general and difficult settings in which the data are in the framework

of continuous time and are subject to censoring. In particular, we derive a procedure

appropriate for the analysis of the weighted log rank test under the assumption of

a proportional hazards frailty model. The proposed method is illustrated through

application to a brain tumor trial.
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1. Introduction

It is well known that unrecognized heterogeneity among patients, such as

is conferred by genetic subtype, can undermine the power of a randomized trial

to detect a truly beneficial treatment (Betensky, Louis and Cairncross (2002),

Li, Betensky, Louis and Cairncross (2002)). One mechanism through which ge-

netic subtype might affect study power is that of precision. This operates if a

treatment is equally effective in all genetic subtypes, but genetic subtype is itself

predictive of survival and not associated with treatment. The North American

and European Intergroup trials comparing chemotherapy plus radiotherapy ver-

sus radiotherapy alone for patients with anaplastic oligodendroglioma, a type of

malignant brain tumor, were designed prior to the discovery of at least three clin-

ically distinct genetic subtypes among patients with the histological diagnosis of

this disease (Ino, Betensky, Zlatescu, Sasaki, Macdonald, Stemmer-Rachamimov,

Ramsay, Cairncross and Louis (2001)). Patients with allelic loss of chromosome

1p have long survival times. In contrast, patients with chromosome 1p intact

and no mutation of the TP53 gene have short survival times. Patients with chro-

mosome 1p intact and a TP53 mutation follow an intermediate course. As these
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genetic subtypes were revealed, the investigators questioned whether the effect of

chemotherapy versus radiotherapy would be attenuated due to failure to adjust

for the “precision variable” of genetic subtype.

This scenario illustrates that until all of the genetic underpinings of disease

are discovered, clinical trials will likely suffer from insufficient power due to the

as yet unrecognized heterogeneity of disease. One partial solution to this problem

is to collect specimens from all study participants for retrospective analysis once

the genetics of the disease are understood. Although this will lead to added

precision in the analyses, there may not be enough subjects of certain genetic

subtypes for adequately powered analyses. Further, this discovery is unlikely to

occur contemporaneously with the completion of the clinical trial. Also, in many

diseases, unknown environmental influences likewise contribute to heterogeneity

and there is even less direction in the search for these influences.

Another solution is to design clinical trials in recognition of this problem.

In the absence of genetic information to explain subject heterogeneity, a new

treatment can be proven effective only if its average effect among all patients ex-

ceeds the average effect of the standard treatment. Typically, the marginalized

hazard function for new treatment will not be proportional to the marginalized

hazard for the standard treatment. This is true, for example, if the hazard

function for the new treatment, conditional on an unobserved individual frailty,

is proportional to that for the standard treatment. Another complicating fea-

ture is that pilot data may not be reflective of population-based data due to

inadvertent selection biases (Betensky, Cairncross and Louis (2003)). For these

reasons, a trial design based on comparing average treatment effects via the log

rank test, with parameters estimated from pilot data, is likely to be underpow-

ered (Betensky, Louis and Cairncross (2002)). To recover this lost power in the

absence of genetic information, we consider a conditional power design in the

setting of the weighted log rank test.

Proschan and Hunsberger (1995) proposed a two-stage design that uses in-

formation about the significance of the treatment effect after the first stage to

determine the number of additional subjects required, and the critical value to

use after the second stage. In contrast to most adaptive designs, this procedure

uses the first stage to estimate the treatment effect, rather than the nuisance pa-

rameters. Without proper control, the actual type I error rate can be more than

double the originally planned rate. Proschan and Hunsberger (1995) described

how to control this error rate.

While Proschan and Hunsberger (1995) confined their application to nor-

mally distributed observations, adaptive designs have recently aroused much re-

search interest for censored observations. For example, Schaefer and Mueller

(2001) and Shen and Cai (2003) have considered sample size re-estimation for
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multiple-stage designs with censored outcomes. However, virtually no work has

been done to accommodate heterogeneities detected at the interim time points.

This paper derives a procedure appropriate for the analysis of the weighted log

rank test under the assumption of a proportional hazards frailty model, where

the frailties are introduced to model unobserved heterogeneities. We consider

separately two cases of potential practical interest in the setting of survival data:

extension of follow-up time without additional subject accrual, and extension of

follow-up time in conjunction with additional accrual. The approach selected

in practice will depend on the relative costs of additional follow-up time versus

additional subjects. It will depend also on the relative amounts of additional

information expected through each means of extension. That is, if the treat-

ment comparison at the end of the first stage is not significant, but there is little

additional information expected within any amount of additional follow-up, ad-

ditional subjects will be required. Although our investigations of these designs

were motivated by the need to recover power in the presence of unrecognized

heterogeneity within a proportional hazards frailty model, many of our results

hold more generally for any analysis based on the log rank test.

In Section 2 we present notation and describe the frailty models for unrec-

ognized heterogeneity. In Section 3, we derive the conditional power for the

weighted log rank test, with allowance for added follow-up time after the first

stage of the study. In Section 4, we describe the details of the conditional power

procedure for added follow-up time. We investigate the unconditional power of

the conditional power procedure in Section 5. In Section 6, we derive the con-

ditional power for the weighted log rank test, with allowance for both added

follow-up and added subjects after the first stage of the study. We describe the

details of this conditional power procedure in Section 7. We discuss application

of the procedures to the frailty model in Section 8, and we apply the procedure

to a brain tumor study in Section 9. Section 10 contains a discussion of these

designs.

2. Frailty Proportional Hazards Model

Suppose each of n subjects, who may enter the study in a ‘staggered entry’

fashion, is randomly assigned to treatment 1 with probability a1 and to treat-

ment 2 with probability a2, leading to n1 subjects receiving treatment 1 and n2

subjects receiving treatment 2. Let Z be the treatment indicator, with Z = 0

for subjects who are assigned treatment 1 and Z = 1 for treatment 2. Associ-

ated with each subject is a survival time (measured from study entry), Ti, and

a censoring time, Ci, distributed according to G, such that G(c) = P (C > c).

Only Xi = min(Ti, Ci) is observed, along with an indicator, δi, for whether death

occurred: δi = 1 if Ti ≤ Ci and δi = 0 if Ti > Ci. Also associated with each
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subject is an unobserved frailty, bi, where bi ∼ F (b; θ) and θ parameterizes the

frailty distribution, F . The frailty captures the unexplained heterogeneity among

subjects (e.g., Oakes (1989)).

We assume that conditional on the unobserved frailty, b, the survival time,

T , follows a proportional hazards model

P (t ≤ T < t + dt|T ≥ t, Z, b) = λ0(t) exp(βZ + b)dt. (1)

Here, β measures the main effect for treatment. We also assume that this condi-

tional proportional hazards model is valid throughout the study period; similar

proportionality assumptions have been made in other conditional power liter-

atures (see, e.g., Betensky (1998)). In general, the unconditional treatment-

specific hazard functions induced from (1) do not follow a proportional hazards

model (Betensky, Louis and Cairncross (2002)). An exception is the positive

stable frailty model, which preserves the marginal proportionality (Hougaard

(1986)).

Under (1), the marginal cumulative hazard function for the Z = 1 group is

Λ(t|β) = − log(P{Λβ(t)}) and the hazard function is

λ(t|β) = − d

dt
log(P{Λβ(t)}) = λ0(t) exp(β)

−P ′{Λβ(t)}
P{Λβ(t)} ,

where Λβ(t) = Λ0(t) exp(β), Λ0(t) =
∫ t
0 λ0(s)ds, and P (s) =

∫

e−s exp(b)dF (b; θ)

is the Laplace transform for the random variable exp(b). The marginal cumu-

lative hazard function and hazard function for the Z = 0 group are denoted by

Λ(t|0) and λ(t|0), respectively. Assuming differentiability of λ(t|β) with respect

to β in a neighborhood of 0, a Taylor series expansion yields

λ(t|β)
.
= λ(t|0) + β

∂

∂β

∣

∣

∣

∣

β=0

λ(t|β).

While in our motivating brain tumor example we considered the case of

three genetic subtypes, in reality we expect subjects’ complete genetic profiles to

confer continua of risk. Thus, we consider the frailty to be a continuous random

variable. When the frailty, b, follows certain common distributions, closed-form

expressions for the Laplace transform function P (s) are available:

1. normal frailty: P (s) =
∫∞
−∞ exp(−se

√
θx)φ(x)dx;

2. log gamma frailty: P (s) = (1 + θs)−1/θ;

3. inverse Gaussian frailty (Hougaard (1984)) : P (s) = exp{−θ[(1+2θs)1/2−1]};
4. positive stable (Hougaard (1986)): P (s) = exp(−sθ).

In each of these, θ > 0 is the variance of the frailty. When the frailty follows

one of these distributions, λ(t|β) increases with β for fixed t.
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3. Weighted Log Rank Test and Conditional Power for Adding Follow-

up

In this section, we compute the conditional power for the weighted log rank

test. Many components of these results, and those of Sections 4-7, are completely

general and are not confined to any specific model, such as the frailty models of

Section 2. In Sections 8 and 9 we discuss application of this procedure to data

that follow the frailty models of Section 2.

The log rank test can be written in the following general form:

L(t) =

∫ t

0
K(u)

dN̄1(u)

Ȳ1(u)
−
∫ t

0
K(u)

dN̄2(u)

Ȳ2(u)
, (2)

where, for k = 1, 2, the total number of subjects at risk in each treatment group

at time t is Ȳk(t) =
∑n

i=1 Yi(t)I(Zi = k−1), the total number of observed failures

in each treatment group by t is N̄k(t) =
∑n

i=1 Ni(t)I(Zi = k − 1), and

K(s) = w(s)

(

n1 + n2

n1n2

) 1

2 Ȳ1Ȳ2

Ȳ1 + Ȳ2
,

where w(s) is a predicatable weight function. Commonly used weight functions

can be found in Fleming and Harrington (1991, p.257). In particular, w(s) ≡ 1

corresponds to the simple log rank test.

Under a sequence of local alternatives for β that converges to zero at the

appropriate rate as the sample size increases to infinity, the log rank statistic has

asymptotically a finite mean and variance. In particular, we have the following

asymptotic result.

Proposition 1. Assume that for each k = 1, 2, there exists a function πk and a

constant ak such that

sup
t≥0

∣

∣

∣

∣

Ȳk(t)

nk
− πk(t)

∣

∣

∣

∣

p→ 0, (3)

nk

n
→ ak. (4)

Assume further that, under a sequence of local alternatives converging to null at

the rate of n−1/2, say, βn = [(n1 + n2)/(n1n2)]
1/2β0,

sup
t>0

∣

∣

∣

∣

Λ(t|βn) − Λ(t|0)
∣

∣

∣

∣

→ 0. (5)

Then, as n → ∞, on any finite interval, [0, τ ], where τ < τ0 = sup{t > 0 :

π1(t)π2(t) > 0}, the weighted log rank test L(·) converges weakly to a tight Gaus-

sian process L∞(·), which takes form L∞(t) = µ(t) + B{v(t)}, where B{t} is a
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standard Brownian motion, drift µ(t) =
∫ t
0 κ(u)γ(u)dΛ(u|β0), and variance func-

tion v(t) =
∫ t
0 [(a1π1(u) + a2π2(u))/(π1(u)π2(u))]κ2(u)dΛ(u|β0). Here κ(t) is the

probabilistic limit of {(n1 +n2)/(n1n2)}1/2K(t), and γ(t) is the probabilistic limit

of {(n1n2)/(n1 + n2)}1/2 {[λ(t|β0)/λ(t|0)] − 1}.
This proposition is a direct application of Theorem 7.4.1 in Fleming and

Harrington (1991, p.269) after verifying that their conditions (4.5)-(4.8) hold on
any finite interval [0, τ ]. From this proposition, it follows that L∞(t) has mean
µ(t), variance v(t), and covariance Cov{L∞(t), L∞(s)} = v{min(s, t)}. Some
algebra shows that

κ(u) =
w(u)π1(u)π2(u)

a1π1(u) + a2π2(u)
,

and, hence,

v(t) =

∫ t

0
w2(u)

π1(u)π2(u)

a1π1(u) + a2π2(u)
dΛ(u|0) =

∫ t

0
w(u)κ(u)dΛ(u|0).

Note that when β > 0, γ(u) > 0 since λ(t|β) > λ(t|0) under the frailty model.
This implies that µ(t) increases with t when β > 0. This, of course, is not the
case for all applications of the weighted log rank test, but is particular to the
frailty model (1).

At a pre-determined time t1 (e.g., interim analysis time), the normalized
test statistic is given by lt1 = L(t1)/v̂

1/2(t1), where v̂(·) is obtained from v(·)
by replacing θ with θ̂. It follows from Proposition 1 that CPβ0

(t, zα|lt1), the
conditional probability that the normalized test statistic at time t, L(t)/v̂1/2(t),
will exceed zα, given the value of the statistic at time t1 and given that βn =
(n1 + n2/n1n2)

1/2β0 is

CPβ0
(t, zα|lt1) = P

(

L(t)

v̂
1

2 (t)
> zα

∣

∣

∣

∣

L(t1)

v̂
1

2 (t1)
= lt1 , β0

)

.
= P

(

L∞(t)

v
1

2 (t)
> zα

∣

∣

∣

∣

L∞(t1)

v
1

2 (t1)
= lt1 , β0

)

= P

(

L∞(t) − L∞(t1) + L∞(t1)

v
1

2 (t)
> zα

∣

∣

∣

∣

L∞(t1)

v
1

2 (t1)
= lt1 , β0

)

= P

(

L∞(t) − L∞(t1) > zαv
1

2 (t) − lt1v
1

2 (t1)

∣

∣

∣

∣

β0

)

= P

(

L∞(t) − L∞(t1) − {µ(t) − µ(t1)}
{v(t) − v(t1)}

1

2

>
zαv

1

2 (t) − lt1v
1

2 (t1) − {µ(t) − µ(t1)}
{v(t) − v(t1)}

1

2

∣

∣

∣

∣

β0

)

.
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The
.
= above stems from the weak convergence of L(·) to L∞(·) and the last

two equalities follow from the independent increment property for a Brownian

motion. Hence,

CPβ0
(t, zα|lt1)

.
= 1 − Φ

(

zαv
1

2 (t) − lt1v
1

2 (t1) − [µ(t) − µ(t1)]

[v(t) − v(t1)]
1

2

)

, (6)

where Φ(·) is the cdf for a standard normal distribution.

4. Designed Extension via Conditional Power: Adding Follow-up

In this section, we propose an extension of the two-stage design of Proschan
and Hunsberger (1995) to the weighted log rank test, with possible extension of

follow-up time. The key idea behind this methodology is based on the data of the

first stage, to determine the type I error level to use at the second stage, and then

apply a logrank test at this level to events occurring in the second stage, while

maintaining the overall type I error at a prescribed level (say, 0.05). Specifically,

at the time of the interim analysis, t1, we calculate the additional follow-up time,
t−t1, and the critical value, zα, such that the conditional power, CPβ0

(t, zα|lt1) =

1 − δ. The type I error rate for this design is
∫∞
−∞ CP0(t, zα|lt1)φ(lt1)dlt1 where

φ(·) is the standard normal density.

If t is chosen without regard to controlling the overall type I error rate, it

can far exceed the nominal α level. To see this, consider choosing t to maximize

the null conditional power

CP0(t, zα|lt1)=P0

(

L(t)
√

v(t)
> zα

∣

∣

∣

∣

L(t1)
√

v(t1)
= lt1

)

=1−Φ

(

zα

√

v(t)−lt1
√

v(t1)
√

v(t) − v(t1)

)

.

When lt1 > zα, t = t1 is the maximizer, with CP0 = 1. Otherwise CP0(t, zα|lt1) =

1 − Φ((zα

√
1 + R − lt1)/

√
R), where R = v(t)/v(t1) − 1 is the additional in-

formation (expected events) when the study is extended to time t, expressed

as multiples of the information available at interim t1. Denote by Rmax =
v(∞)/v(t1) − 1 the maximum additional information that could be added. Fol-

lowing Proschan and Hunsberger (1995), we obtain the maximum type I error

rate

αmax =

∫ 0

−∞

[

1 − Φ

(

zα

√
1 + Rmax − lt1√

Rmax

)

]

φ(lt1)dlt1

+

∫ zα√
1+Rmax

0

[

1 − Φ

(

zα

√
1 + Rmax − lt1√

Rmax

)

]

φ(lt1)dlt1

+

∫ zα

zα√
1+Rmax

[

1 − Φ

(

√

z2
α − l2t1

)

]

φ(lt1)dlt1 +

∫ ∞

zα

φ(lt1)dlt1 . (7)
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When Rmax = ∞, (7) reduces to (A1) of Proschan and Hunsberger (1995).

For significance level α = 0.05 with zα = 1.645, Table 1 lists the maximum type

I error, for a range of Rmax.

Table 1. Maximum type I error.

Rmax 0.0 0.05 0.1 0.5 1 2 5 10 ∞
αmax 0.050 0.059 0.063 0.075 0.082 0.089 0.097 0.102 0.115

This inflation of the type I error can be avoided by using a larger critical

value k > zα (at stages 1 and 2) and not continuing the study unless the p-

value at time t1 is less than some number p∗, where p∗ ≤ 0.5. In this case,

αmax =
∫∞
−∞ A0(lt1)φ(lt1) dlt1 , where

A0(lt1) =



































0 if lt1 < zp∗

1 − Φ
(

k
√

1+Rmax−lt1√
Rmax

)

if zp∗ ≤ lt1 < max(zp∗ ,
k√

1+Rmax
)

1 − Φ
(√

k2 − l2t1

)

if max(zp∗ ,
k√

1+Rmax
) ≤ lt1 < k

1 if lt1 ≥ k.

For a given Rmax = v(∞)/v(t1)−1, we choose p∗ and k such that
∫∞
−∞ A0(z1)φ(z1)

dz1 = α. This conditional error function contains both “circular” and “linear”

components (Proschan and Hunsberger (1995)). Table 2 lists the values of k

corresponding to different choices of p∗ and Rmax for α = 0.05. As expected, k

increases with respect to both p∗ and Rmax.

Table 2. Adjusted critical value, k, as a function of p∗ and Rmax.

p∗

Rmax 0.1 0.15 0.20 0.25 0.30 0.40 0.50

0.1 1.745 1.754 1.756 1.756 1.756 1.756 1.756

0.5 1.772 1.812 1.829 1.838 1.843 1.847 1.848

1.0 1.773 1.820 1.846 1.862 1.872 1.884 1.889

2.0 1.773 1.821 1.851 1.872 1.888 1.908 1.920
5.0 1.773 1.821 1.852 1.875 1.894 1.921 1.941

10.0 1.773 1.821 1.852 1.875 1.894 1.924 1.947

∞ 1.773 1.821 1.852 1.875 1.894 1.925 1.951

This maximal error function is one example of an increasing function with

range [0, 1], A(lt1), that satisfies the type I error requirement,
∫∞
−∞ A(lt1)φ(lt1)dlt1
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= α. The general conditional power procedure proposed by Proschan and Huns-

berger (1995) can be defined with respect to any such function, A(lt1). For

example, one advantage to a linear conditional error function is that if extension

of the trial is unnecessary, the test at the end is the same as it would be for a

fixed sample test. Now we consider the choice of t based on any such function.

Setting CP0(t, c(t)|lt1) = A(lt1) and solving for c(t) yields

c(t) =

√

v(t1)lt1 +
√

v(t) − v(t1)zA
√

v(t)
=

lt1 +
√

RzA√
1 + R

, (8)

where zA = zA(lt1 ) and R = v(t)/v(t1)− 1. Note that however we choose t, if the

critical point c is chosen to satisfy (8), then we have an α-level procedure. In

particular, we may choose t such that the conditional power under the alternative

is large, e.g., (CPβ(t, c|z1) = 1−δ.) Plugging (8) in the expression for CPβ(t, c|z1)

yields

CPβ(t, c|z1) = 1 − Φ

(

zA − µ(t) − µ(t1)
√

v(t) − v(t1)

)

= 1 − δ.

Therefore, it is possible to achieve conditional power 1−δ at time t if there exists

a value t such that

zA + zδ =
µ(t) − µ(t1)
√

v(t) − v(t1)
. (9)

As noted in Section 2, a solution does exist in the context of proportional hazards

frailty models with many common frailty distributions, as in these cases µ(t) is

increasing in t.

5. Comparison to Single Stage Test

Although the two-stage procedure is designed to achieve a certain level of

conditional power, in many applications unconditional power is important as

well. We conducted a simulation study to investigate the unconditional power

properties of this design. Specifically, we assumed the proportional hazards log

gamma frailty model (1) for n = 100 subjects, assigned with equal probability to

each treatment, with λ0(t) = 1, β = 0.8, and with frailty distributed according

to a log gamma, Gaussian, or inverse Gaussian distribution with variance θ = 0.3

or 0.8. We examined Rmax = 0.50, 1.5, 5.0, conditional power threshold 1 − δ =

0.5, 0.8, and we took p∗ = 0.15. For each parameter configuration and Rmax, we

calculated the time of the first analysis, t1, to satisfy v(∞)/v(t1)−1 = Rmax, and

the time for the final analysis, t, to achieve conditional power 1 − δ. Presented

in Tables 3 and 4 are the type I error rates for this two-stage procedure and
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the unconditional power at times t1 and t, estimated based on 5,000 repetitions.

Also given in Table 4 is the proportional increase in follow-up time required to

achieve the given conditional power. For comparison, all of these quantities are

also given in Table 4 when the no-frailty model is used for analysis. We note,

though, among the scenarios we have examined, the additional gains in power by

including the frailty over the no-frailty model seemed to be limited.

Table 3 illustrates that the type I error is preserved under misspecification of

the frailty distribution. It is not surprising that there is increased power under the

two-stage design, as seen in Table 4, under correct specification of the log gamma

frailty distribution. What is of interest is the varying costs, in terms of additional

follow-up time, of the increased power. When the power of the fixed sample test

is high, as it is at θ = 0.3 and Rmax = 0.5, the follow-up time is increased by less

than 5% to achieve the specified conditional power thresholds. In contrast, when

the power of the fixed sample test is low, as it is at θ = 0.8 and Rmax = 5.0, a 50%

increase in follow-up time accompanies an increase in power from 30% to 50%.

Also of note is the limitation of this procedure; by adding follow-up time without

adding subjects, the unconditional power may be bounded well below one. The

results in Table 4 suggest that the assumption of the log gamma frailty model is

robust to misspecification, as the unconditional power remains high even when

the frailty is truly normal or inverse Gaussian. However, the omission of the

frailty from the model leads to a small, but consistent, decrease in unconditional

power.

Table 3. Type I error rates under possible frailty misspecification as log
gamma.

true frailty distribution

θ Rmax 1 − δ† log gamma normal inverse Gaussian

0.3 0.5 0.50 0.050 0.051 0.053

0.80 0.051 0.057 0.049

1.5 0.50 0.049 0.051 0.045

0.80 0.053 0.047 0.047

5.0 0.50 0.046 0.045 0.036

0.80 0.045 0.038 0.041

0.8 0.5 0.50 0.048 0.045 0.051

0.80 0.048 0.052 0.056

1.5 0.50 0.049 0.049 0.047

0.80 0.044 0.050 0.051

5.0 0.50 0.046 0.045 0.040

0.80 0.043 0.045 0.042

† Conditional power threshold for the two-stage procedure.
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Table 4. Simulated unconditional power of conditional power procedure.

log gamma frailty analysis no frailty analysis
true model θ Rmax 1 − δ† power at t1 power at t t−t1

t1
power at t1 power at t t−t1

t1

log 0.3 0.5 0.5 0.837 0.873 0.011 0.817 0.858 0.023
gamma 0.8 0.835 0.894 0.039 0.829 0.893 0.112

1.5 0.5 0.736 0.790 0.037 0.709 0.773 0.053
0.8 0.727 0.818 0.112 0.711 0.801 0.201

5.0 0.5 0.435 0.521 0.216 0.432 0.518 0.238
0.8 0.454 0.577 0.577 0.427 0.563 0.720

0.8 0.5 0.5 0.647 0.698 0.010 0.628 0.695 0.051
0.8 0.649 0.726 0.029 0.628 0.735 0.237

1.5 0.5 0.584 0.649 0.038 0.566 0.638 0.082
0.8 0.591 0.695 0.103 0.566 0.679 0.290

5.0 0.5 0.398 0.480 0.177 0.354 0.444 0.263
0.8 0.377 0.504 0.467 0.359 0.498 0.773

normal 0.3 0.5 0.5 0.858 0.893 0.009 0.848 0.886 0.018
0.8 0.864 0.913 0.032 0.842 0.902 0.098

1.5 0.5 0.762 0.814 0.032 0.754 0.805 0.049
0.8 0.756 0.836 0.103 0.740 0.832 0.166

5.0 0.5 0.470 0.555 0.210 0.452 0.538 0.235
0.8 0.452 0.586 0.568 0.468 0.604 0.682

0.8 0.5 0.5 0.718 0.768 0.008 0.711 0.762 0.036
0.8 0.736 0.799 0.024 0.711 0.802 0.183

1.5 0.5 0.664 0.719 0.029 0.634 0.700 0.067
0.8 0.650 0.744 0.088 0.616 0.733 0.247

5.0 0.5 0.460 0.546 0.167 0.440 0.527 0.242
0.8 0.451 0.585 0.446 0.435 0.568 0.742

inverse 0.3 0.5 0.5 0.735 0.794 0.018 0.705 0.772 0.037
Gaussian 0.8 0.727 0.820 0.063 0.706 0.805 0.184

1.5 0.5 0.582 0.651 0.059 0.541 0.620 0.088
0.8 0.556 0.678 0.182 0.542 0.662 0.294

5.0 0.5 0.285 0.369 0.262 0.279 0.362 0.296
0.8 0.293 0.424 0.659 0.276 0.414 0.884

0.8 0.5 0.5 0.738 0.787 0.007 0.684 0.745 0.044
0.8 0.735 0.799 0.023 0.696 0.797 0.192

1.5 0.5 0.622 0.686 0.034 0.568 0.642 0.079
0.8 0.617 0.714 0.098 0.572 0.688 0.271

5.0 0.5 0.356 0.440 0.184 0.335 0.423 0.269
0.8 0.359 0.494 0.485 0.362 0.492 0.775

† Conditional power threshold for the two-stage procedure.

6. Weighted Log Rank Test and Conditional Power for Adding Follow-

up and Subjects

We now consider the situation in which additional subjects may be added
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after the first stage of the trial. Formally, suppose that after the interim time

point t1, n′ new subjects are enrolled, possibly in a staggered entry fashion, with

n′
1 and n′

2 patients assigned to treatments 1 and 2, respectively, and with the

same randomization probabilities as from stage 1, a1 and a2. For k = 1, 2, let

Ȳ ′
k(t) =

∑n+n′

i=n+1 Yi(t)I(Zi = k − 1) denote the total number of subjects at risk

at calendar time t + t1 among the newly added patients within each treatment

arm , and N̄ ′
k(t) =

∑n+n′

i=n+1 Ni(t)I(Zi = k− 1), the total number of subjects who

have failed by calendar time t + t1 among the newly added patients, within each

treatment arm.

The weighted log rank test, with t2 units of additional follow-up time beyond

the interim time point t1 (t1 + t2 < τ0) and n′ subjects added after the interim

time t1, can be expressed as

L̃t1(t2) =

∫ t1+t2

0
K̃(u)

dN̄1(u) + I(u ≤ t2)dN̄ ′
1(u)

Ȳ1(u) + I(u ≤ t2)Ȳ1
′
(u)

−
∫ t1+t2

0
K̃(u)

dN̄2(u) + I(u ≤ t2)dN̄ ′
2(u)

Ȳ2(u) + I(u ≤ t2)Ȳ2
′
(u)

, (10)

with normalizing predictable process

K̃(u) = w(u)

{

n1 + n′
1I(u ≤ t2) + n2 + n′

2I(u ≤ t2)

[n1 + n′
1I(u ≤ t2)][n2 + n′

2I(u ≤ t2)]

} 1

2

× (Ȳ1 + Ȳ1
′
I(u ≤ t2))(Ȳ2 + Ȳ2

′
I(u ≤ t2))

Ȳ1 + Ȳ1
′
I(u ≤ t2) + Ȳ2 + Ȳ2

′
I(u ≤ t2))

.

Note that when t2 = 0 or n′ = 0, the modified log rank test (10) reduces to the

original test (2).

To calculate the conditional power of this test, the asymptotic distribution

of (L̃t1(0), L̃t1(t2)) = (L(t1), L̃t1(t2)) is required. For notational simplicity, let

κ̃(u) denote the probabilistic limit of

[

(n1 + n′
1I(u ≤ t2) + n2 + n′

2I(u ≤ t2))

[n1 + n′
1I(u ≤ t2)][n2 + n′

2I(u ≤ t2)]

]
1

2

K̃(u), (11)

and let γ̃(u) denote the probabilistic limit of

{

(n1 + n′
1I(u ≤ t2))(n2 + n′

2I(u ≤ t2))

(n1 + n′
1I(u ≤ t2) + n2 + n′

2I(u ≤ t2)

} 1

2
{

λ(u|β)

λ(u|0) − 1

}

. (12)

Further, define µ̃(t) =
∫ t
0 κ̃(u)γ̃(u)dΛ(u).

Using Martingale theory, we prove the following Proposition in the Appendix.
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Proposition 2. In addition to the assumptions of Proposition 1, assume further

that for each k = 1, 2,

sup
t≥0

∣

∣

∣

∣

Ȳ ′
k(t)

n′
k

− π′
k(t)

∣

∣

∣

∣

p→ 0 (13)

and there exists a positive constant r such that
n′

k

nk
→ r. (14)

Then as n → ∞, under the local alternatives,

(L(t1), L̃t1(t2))
D→ (L∞

1 , L∞
2 ),

where (L∞
1 , L∞

2 ) ∼ N(µ,Σ), µ = (µ(t1), µ̃(t1 + t2))
′,

Σ =

(

v(t1)
∫ t1
0 (1 + rI(u ≤ t2))

− 1

2 dv(u)
∫ t1
0 (1 + rI(u ≤ t2))

− 1

2 dv(u) ṽ(t1 + t2)

)

,

and ṽ(·) is given in the Appendix.

Under assumptions (13) and (14), γ̃(u) = γ(u) and

κ̃(u) =
w(u)

∏2
k=1{πk(u) + π′

k(u)rI(u ≤ t2)}
{1 + rI(u ≤ t2)}

∑2
k=1 ak{πk(u) + π′

k(u)rI(u ≤ t2)}
. (15)

We note that the scientific interpretation of the weighted log rank test

changes also over time. With a change in the censoring distribution over the

course of the interim analyses, the weighting used to compare the hazards changes.

Therefore, under the proportional hazards frailty model, the test statistics are

changing functionals of the underlying distribution function (of time to event and

time to censoring).

7. Designed Extension Via Conditional Power: Adding Follow-up and

Subjects

Assuming further that r = n′/n and recalling that v(s) =
∫ s
0 [(w2(u)π1(u)

π2(u))/(a1π1(u) + a2π2(u))] du, it follows from Proposition 2 that

Cov(L̃t1(t2), L̃(t1)) ≈
{ 1√

r+1
v(t1) if t2 > t1

1√
r+1

v(t2) −
[

v(t2) − v(t1)
]

if 0 ≤ t2 ≤ t1.
(16)

Therefore, when the conditional power function is a function of both additional
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follow-up, t2 and proportion of original subjects to be added, r, it follows that

CP0(t2, r, zα|lt1) = P0

(

L̃t1(t2)
√

ṽ(t1 + t2)
> zα

∣

∣

∣

∣

L(t1)
√

v(t1)
= lt1

)

≈ 1 − Φ

(

zα

√

ṽ(t1 + t2) − ρ lt1
√

v(t1)
√

ṽ(t1 + t2) − ρ2v(t1)

)

,

where ρ = 1 − (1 − (1 + r)−1/2)min{1, v(t2)/v(t1)}.
When lt1 > zα, CP0(t2, r, zα|lt1) attains the maximum value 1 at r = 1

and t2 = 0. Otherwise CP0(t2, r, zα|lt1)
.
= 1 − Φ((λzα − ρlt1)/

√

λ2 − ρ2) where
λ =

√

ṽ(t1 + t2)/v(t1). Note that 1 ≤ λ < [v(∞)/v(t1)]
1/2 and 0 < ρ ≤ 1.

Write f(λ, ρ) = (λzα −ρlt1)/
√

λ2 − ρ2. When lt1 ≤ 0, it follows that ∂f/∂λ < 0,

∂f/∂ρ > 0, and f(λ, ρ) decreases to zα when λ = 1 (i.e., t2 = 0) and ρ → 0
(r → ∞). When 0 < lt1 < zα, simple algebra shows that for any fixed ρ,

f(λ, ρ) is minimized at λ = zαρ/lt1 with minimum
√

z2
α − l2t1 . Similarly, for any

fixed λ, f(λ, ρ) is minimized at ρ = lt1λ/zα with the same minimum
√

z2
α − l2t1 .

Therefore the minimum of f(λ, ρ) is
√

z2
α − l2t1 and is achieved by any (λ, ρ)

satisfying λ/ρ = zα/lt1 . It follows that when 0 < lt1 < zα, CP0(t2, r, zα|lt1) at-

tains the maximum 1−Φ(
√

z2
α − l2t1) at any (t2, r) such that

√

ṽ(t1 + t2)/v(t1) =

(zα/lt1)(1− (1− (1 + r)−1/2)min{1, v(t2)/v(t1)}). Therefore, the maximum type
I error for weighted log rank test that adds both follow-up and subjects is
αmax = α + exp(−z2

α/2)/4, as in Proschan and Hunsberger (1995) simple sce-

nario of testing normal means. Also, when using a larger critical value k > zα

and not continuing the study for lt1 < zp∗ for some p∗ ≤ 0.5, the maximum type
I error is αmax =

∫∞
−∞ Acir(z1)φ(z1) dz1, where Acir(·) is as defined in equation

(2) of Proschan and Hunsberger (1995).
This maximal error function is one example of a function, A(lt1). The condi-

tional power procedure is most generally defined with respect to any such func-
tion, A(lt1). Now we consider the choice of t2 and r based on any such function.
Setting CP0(t2, r, c|lt1) = A(lt1) yields

c(t2, r) =
ρ
√

v(t1)lt1 +
√

ṽ(t1 + t2) − ρ2v(t1)zA
√

ṽ(t1 + t2)
. (17)

However we choose (t2, r), the type I error is α as long as the critical value

c(t2, r) is chosen to satisfy (17). In particular, we may choose (t2, r) such that
CPβ(t2, r, c|lt1) = 1 − δ. Plugging (17) into the expression for CPβ(t2, r, c|lt1 ), it
follows that this conditional power can be achieved by any (t2, r) such that

zA + zδ =
µ̃(t1 + t2) − ρµ(t1)
√

ṽ(t1 + t2) − ρ2v(t1)
,
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where zA = zA(lt1 ). Note that this reduces to (9) when new subjects are not

added (i.e., when r = 0 and therefore ρ = 1).

8. Application to Frailty Model

Although motivated by the problem of heterogeneity in randomized trials,

many components of the results presented in Sections 3 − 7 are applicable to

any situation in which the weighted log rank test is used for analysis. For ap-

plication of the conditional power procedure, a model must be assumed for the

data and the unknown parameters of the model must be known. The analysis

at t1 can typically be used to estimate these parameters. For the frailty model,

these include the baseline hazard function and the frailty variance parameter, θ.

Although θ is not identifiable in the absence of additional data (at least in the

presence of a binary treatment indicator), in many situations it may be reason-

able to assume that there is a secondary endpoint that shares the frailty with

the endpoint of interest (Oakes (1989)). In this case, θ is estimable from the

marginal association of the two events. For example, for a log gamma frailty,

θ = 1/2τ − 1, where τ is Kendall’s tau measure of association between the two

events. Thus, a simple nonparametric estimate of θ is available at the stage 1

analysis that does not depend on the joint survivor distribution of the two events.

If one of the endpoints is death, and thus the event times are ordered, the work of

Jiang, Fine and Chapell (1999) is applicable. Of potential concern is the variabil-

ity with which the measure of association is estimated, especially at a relatively

early point in the study. However θ is estimated, it must be done so consistently

so that Slutsky’s Theorem can be invoked. We recommend a sensitivity analysis

with respect to θ, informed by the estimated measure of association.

9. Brain Tumor Example

To illustrate the proposed design, we use an expanded version of a brain tu-

mor data set analyzed in Ino et al. (2001). Patients in this study were diagnosed

with anaplastic oligodendroglioma, a common variant of malignant brain tumor.

Ninety-six subjects were enrolled in the study, and 49 of them died during the

study period. Loss of Heterozygosity (LOH) of chromosome 1p was found to be

highly predictive of survival among these patients. For illustration, we consider

the problem of testing whether LOH at chromosome 19q is predictive of survival

when ignoring LOH at 1p; that is, we pretend that the biologists had not yet

discovered that 1p LOH is predictive of survival and thus artificially ensure that

there is important unrecognized heterogeneity in the data. Indeed in this study

a number of subjects were missing the covariate of 1p LOH.

We consider what would have happened if the study had been conducted in

two stages, the first being at t1 = 185 months. For simplicity, we assume that the
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frailty, b, induced by ignoring LOH at 1p, has a known variance θ̂ = 0.571. We

used p̂(1 − p̂)η̂2 to estimate this variance, where p̂ is the proportion of subjects

with 1p LOH, which is estimated based on subjects with complete 1p LOH infor-

mation, and η̂ is the estimated coefficient for 1p LOH in a proportional hazards

model with covariates 1p LOH and 19q LOH among subjects with complete 1p

LOH and 19q LOH information. To account for the variability of the estimated

frailty parameter, we propose a sensitivity analysis to examine the choice of θ̂.

This sensitivity analysis approach is immediately available to the analysis of real

data for which we suspect heterogeneity, but the magnitude of such heterogeneity

is uncertain.
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Figure 1. Estimated cumulative hazard functions under various frailty dis-

tributions. The step functions in dotted lines represent nonparametric esti-

mates of the cumulative hazard functions.

At t1 = 185 months, 66 subjects had entered the study: 54 of them (with

16 deaths) had 19q LOH and 12 of them (with 4 deaths) did not have 19q LOH.

The fitted cumulative hazard functions with a Weibull baseline hazard are shown

in Figure 1 for the four parametric frailty models considered in Section 2. Also

shown in Figure 1 are the nonparametric estimates of the cumulative hazard

functions (dotted lines). All frailty models provide a reasonably good fit, with
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the fit under the positive stable model worse than that of the other three. The

positive stable model yields proportional marginal hazard functions and thus

does not capture the nonproportional marginal hazards observed in this dataset.

For illustration, we carried out the conditional power calculation for the

weighted log rank test. Under the normal frailty model, the optimally weighted

log rank statistic is L(t1)/
√

v(t1) = −1.516, with one-sided p-value 0.065. The

optimal weight is defined to maximize the Pitman asymptotic efficacy defined in

(4.11) of Fleming and Harrington (1991, p.270)). The variance function, v(t1),

is calculated under the assumed parametric model

λ(t|LOH19q, b) = λ0t
p−1 exp(β · 1{LOH19q=1} + b),

where the frailty b follows a normal distribution with mean 0 and variance 0.571.

The maximum likelihood estimates for λ0, p and β are 4.23 × 10−4, 2.244, and

−2.525, respectively. It follows that Rmax = 0.441. For p∗ = 0.15, we have

k = 1.770 for r = 0 and the conditional error function derived in Section 4, and

we have k = 1.821 for r > 0 and the circular conditional error function, Acir

(Section 7). Figure 2(a) displays the conditional power for extending follow-up

time by 6 to 36 months and adding r times as many new subjects, assuming that

80% of the new subjects enter the study uniformly during the first one-third of the

follow-up period and the other 20% of new subjects enter the study uniformly

during the last two-thirds of the follow-up period. It is clear that extending

follow-up alone will not yield high conditional power, as can be expected from

moderate Rmax. To attain 80% conditional power, one can either add half as

many subjects (r = 0.5) and extend the follow-up by 27.4 months, add as many

subjects (r = 1) and extend the follow-up by 22.6 months, or add twice as many

subjects (r = 2) and extend the follow-up by 18.6 months. Also shown in Figure

2 are the conditional powers of the weighted log rank test under the log gamma,

inverse Gaussian, and positive stable frailty models. The conditional powers

for the log gamma and inverse Gaussian frailty model are similar to that for a

normal frailty model. For example, to obtain 80% conditional power with as

many new subjects, it requires extending follow-up by 22.9 months under a log

gamma frailty model and 24.7 months under an inverse Gaussian frailty model,

as compared to 22.9 months under a normal frailty model. For the not as well

fitted positive stable frailty model, it requires 27.0 months of additional follow-

up. These results suggest that the designed extension using conditional power is

robust to the selected frailty model, as long as the chosen frailty model provides

a reasonable fit to data.

We went through this same exercise for the simple log rank statistic. With

adding as many new subjects (r = 1), the required follow-up for the normal, log
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gamma, inverse Gaussian and positive stable frailty models are 29.6, 34.4, 34.2,

and 27.0 months, respectively; all of them are longer than those for the weighted

log rank statistic. This suggests that in spite of the added computational burden

of computing the optimal weights, the weighted test is preferable because of the

efficiency gained.
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Figure 2. Conditional power based on the optimally weighted log rank statis-

tic for extending follow-up time (in months) and adding r times as many new

subjects, under various frailty distributions: (a) normal; (b) log gamma; (c)

inverse Gaussian; (d) positive stable.

Figure 3 gives the conditional power under the log gamma frailty model

when adding one times as many new subjects in stage 2. The conditional power

is similar for θ ranging from 0.4 to 0.8. In particular, compared to 22.9 months

for θ = 0.571, the follow-up time required to achieve 80% conditional power for

θ = 0.4, 0.5, 0.7, 0.8 are 26.2, 24.1, 21.0 and 20.0 months, respectively. Based on

this sensitivity analysis, one might choose the more conservative estimate of 26

months.
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Figure 3. Conditional power based on the optimally weighted log rank statis-

tic for extending follow-up time (in months) and adding one time as many

new subjects, under the log gamma frailty distribution and a range of θ

values.

10. Discussion

We have proposed an adaptive procedure for a survival endpoint to recover

power when the model assumed for design of the trial is suspect. It is worth

noting that, as opposed to Proschan and Hunsberger (1995) who confined the

application of conditional power design to parametric tests, we have generalized

the applications to semi-parametric tests for data which are subject to censoring.

Our motivating application was the common situation of unrecognized genetic

heterogeneity, known to dilute the power of the log rank test through decreased

precision. This procedure allows for extension of follow-up time, with or without

additional accrual of subjects. It also allows for early stopping for futility if

the treatment is ineffective. In this regard, it is widely applicable as it may be

tailored to the relative costs of the study.

Effect modification is another plausible mechanism for loss of power. This

occurs if the effect of chemotherapy varies by genetic subtype. This would require

including an interaction term in the proportional hazards frailty model. This may

lead to a non-monotone drift function, making the conditional power procedure

inapplicable (i.e., equation (9) cannot be solved). Thus, alternative adaptive

designs are required for this situation.
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As for any adaptive procedure, estimates of unknown parameters at early
points in the study may be highly variable. This is especially true for estimation
of θ as a shared frailty between event times, and for the baseline hazard function.
A partial remedy to this problem would be to re-estimate the frailty parameter
at the end of the study and to use it in the final analysis. The impact of this
approach on the overall type I error remains an interesting open question.

It must be recognized that this procedure addresses the problem of unex-
plained heterogeneity at the cost of modeling assumptions: the frailty propor-
tional hazards model, including the baseline hazard function and the frailty dis-
tribution, and the shared frailty model. All of these assumptions certainly call
for sensitivity analyses and conservative choices. If genetic (or other) information
becomes available during the course of the trial, it would be desirable to use that
information in the selection of subjects. However, short of new discoveries during
the course of the study that explain heterogeneity, an adaptive procedure such
as this to recover power may be the best approach.
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Appendix: Proof of Proposition 2.

We prove the weak convergence theorem by using the Cramer-Wold device;
we show that any linear combination of L(t1) and L̃t1(t2), under the local al-
ternatives, converges weakly to the same linear combination of L∞

1 and L∞
2 , as

n → ∞.
We may re-express L(t1) and L̃t1(t2) as

L(t1) =

∫ t1

0
K(u)

dM1

Ȳ1
−
∫ t1

0
K(u)

dM2

Ȳ2
+

∫ t1

0
K(u)(dΛ2,n − dΛ1,n)

=

∫ t1+t2

0
K(u)I(u ≤ t1)

dM1

Ȳ1
−
∫ t1+t2

0
K(u)I(u ≤ t1)

dM2

Ȳ2

+

∫ t1

0
K(u)(dΛ2,n − dΛ1,n),

L̃t1(t2) =

∫ t1+t2

0
K̃(u)

dM1 + I(u ≤ t2)dM ′
1

Ȳ1 + I(u ≤ t2)Ȳ ′
1

−
∫ t1+t2

0
K̃(u)

dM2 + I(u ≤ t2)dM ′
2

Ȳ2 + I(u ≤ t2)Ȳ ′
2

+

∫ t1+t2

0
K̃(u)(dΛ2,n − dΛ1,n),
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where, for k = 1, 2, Mk(u) = Nk(u) −
∫ u
0 Ȳk(s)dΛk,n(s) and M ′

k(u) = N ′
k(u) −

∫ u
0 Ȳ ′

k(s)dΛk,n(s) are martingales with respect to the filtration F(u) = σ(Nk(s),

Ȳk(s), N
′
k(s), Ȳ ′

k(s), 0 ≤ s ≤ u, k = 1, 2), and Λk,n is the marginal cumulative

hazard for treatment arm k. Note that Λ1,n(u) ≡ Λ(u).

Hence, for any two real numbers, c1, c2,

c1L(t1) + c2L̃t1(t2)

=

∫ t1+t2

0

{

c1K(u)I(u ≤ t1)

Ȳ1
+

c2K̃(u)

Ȳ1 + I(u ≤ t2)Ȳ ′
1

}

dM1(u)

+

∫ t1+t2

0

c2K̃(u)I(u ≤ t2)dM ′
1

Ȳ1 + I(u ≤ t2)Ȳ ′
1

−
∫ t1+t2

0

{

c1K(u)I(u ≤ t1)

Ȳ2
+

c2K̃(u)

Ȳ2 + I(u ≤ t2)Ȳ ′
2

}

dM2(u)

−
∫ t1+t2

0

c2K̃(u)I(u ≤ t2)dM ′
2

Ȳ2 + I(u ≤ t2)Ȳ ′
2

+c1

∫ t1

0
K(u)(dΛ2,n − dΛ1,n) + c2

∫ t1+t2

0
K̃(u)(dΛ2,n − dΛ1,n). (18)

The last two terms in (18) converge in probability to

c1

∫ t1

0
κ(u)γ(u)dΛ(u) + c2

∫ t1+t2

0
κ̃(u)γ̃(u)dΛ(u),

where κ̃(u) and γ̃(u) are as defined in (11), (12) and (15).

Noticing that M1,M
′
1,M2,M

′
2 are independent martingales, we consider square

integrable martingale terms

∫ t1+t2

0
H1(u)dM1(u),

∫ t1+t2

0
H ′

1(u)dM ′
1(u),

∫ t1+t2

0
H2(u)dM2(u),

∫ t1+t2

0
H ′

2(u)dM2(u)

in (18), where for k = 1, 2,

Hk(u) =
c1K(u)I(u ≤ t1)

Ȳk
+

c2K̃(u)

Ȳk + I(u ≤ t2)Ȳ ′
k

,

H ′
k(u) =

c2K̃(u)I(u ≤ t2)

Ȳ1 + I(u ≤ t2)Ȳ
′
1

.

With assumptions (3) − (14), it follows that sup0<u≤t1+t2 |{Hk(u)}2Ȳk(u) −
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hk(u)| p→ 0 and sup0<u≤t1+t2 |{H ′
k(u)}2Ȳ ′

k(u) − h′
k(u)| p→ 0, where

hk(u) =



c1I(u ≤ t1)a
1

2

3−kπ
− 1

2

k κ(u)+c2{1+rI(u ≤ t2)}
1

2

a
1

2

3−kπ
1

2

k

πk+rπ′
kI(u ≤ t2)

κ̃(u)





2,

h′
k(u) = I(u ≤ t2)c

2
2

r(1 + r)a3−kπk

{πk + rπ′
kI(u ≤ t2)}2

κ̃2(u).

By applying the Martingale Central Limit Theorem (e.g., Theorem 6.2.1 in Flem-

ing and Harrington, (1991)), it follows that

(∫ t1+t2

0
H1(u)dM1(u),

∫ t1+t2

0
H ′

1(u)dM ′
1(u),

∫ t1+t2

0
H2(u)dM2(u),

∫ t1+t2

0
H ′

2(u)dM2(u)

)

D→ (L1,L′
1,L2,L′

2),

where L1,L′
1,L2,L′

2 are mutually independent mean zero normal random vari-

ables with variances
∫ t1+t2
0 h1(u) dΛ(u),

∫ t1+t2
0 h′

1(u) dΛ(u),
∫ t1+t2
0 h2(u) dΛ(u),

∫ t1+t2
0 h′

2(u) dΛ(u), respectively. Some algebra then shows that the first four

terms in (18) converge weakly to a Gaussian random variable with mean 0 and

variance

c2
1v(t1) + c2

2ṽ(t1 + t2) + 2c1c2

∫ t1

0
{1 + rI(u ≤ t2)}−1/2dv(u),

where ṽ(t1 + t2) =
∫ t1+t2
0 w(u)κ̃(u)dΛ(u).

Hence, by Slutsky’s theorem, c1L(t1) + c2L̃t1(t2)
D→ c1L

∞
1 + c2L

∞
2 .
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