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Abstract: The accelerated failure time (AFT) model assumes a linear relationship

between event time and covariates. We propose a robust weighted least-absolute-

deviations (LAD) method for estimation in the AFT model with right-censored

data. This method uses the Kaplan-Meier weights in the LAD objective function

to account for censoring. We show that the proposed estimator is root-n consistent

and asymptotically normal under appropriate assumptions. It can also be easily

computed using existing software, which makes it especially useful for data with

medium to high dimensional covariates. The proposed method is evaluated using

simulations and demonstrated on two clinical data sets.
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1. Introduction

The accelerated failure time (AFT) model is a linear regression model in

which the response variable is the logarithm or a known monotone transfor-

mation of a failure time (Kalbfleisch and Prentice (1980)). As a useful alter-

native to the Cox model (Cox (1972)), this model has a more intuitive linear

regression interpretation, see Wei (1992) for a lucid discussion. Semiparametric

estimation in the AFT model with an unspecified error distribution has been

considered by many authors. Two methods have received special attention.

One method is the Buckley-James estimator which adjusts censored observa-

tions using the Kaplan-Meier estimator in the least squares regression. The

other is the rank-based estimator which is motivated by the score function

of the partial likelihood, see for example, Prentice (1978), Buckley and James

(1979), Ritov (1990), Tsiatis (1990), Wei, Ying and Lin (1990), Ying (1993)

and Jin, Lin, Wei and Ying (2003), among others.

For uncensored data, the least-absolute-deviations (LAD) method has re-

ceived much attention due to its robustness property (Bassett and Koenker (1978)

and Koenker and Bassett (1978)). Powell (1984) and Newey and Powell (1990)

proposed LAD estimators in regression models with censored response when the

censoring variables are always observable. Ying, Jung and Wei (1995) proposed
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a median regression estimator in the AFT model with right-censored response

variable. They pointed out that, in addition to its robustness property, the LAD

method is particularly attractive for the AFT model due to the simple fact that

the median is well defined for censored data as long as censoring is not too heavy.

Yang (1999) and Subramanian (2002) also considered median based regression

methods for censored data. These estimators have rigorous theoretical justi-

fication under appropriate conditions. However, they are difficult to compute

since the estimating equations for these estimators involve estimation of survival

or hazard functions, which in turn involve the unknown regression parameters.

Most of these approaches either demand a brutal searching procedure in a high

dimensional coefficient space, or need to use stochastic algorithms such as sim-

ulated annealing (Lin and Geyer (1992)). However, brutal search or simulated

annealing can be slow and difficult to implement. There appear to be no com-

puter programs readily available for computing these estimators. This makes

application of these methods difficult in practice.

In this paper, we propose a weighted LAD estimator in the AFT model us-

ing Kaplan-Meier weights. For simplicity of notation, we call this estimator the

KMW-LAD estimator. Use of Kaplan-Meier weights to account for censoring

was proposed by Stute (1993, 1996, 1999) in the context of least squares esti-

mation in the AFT model. A seemingly different but equivalent formulation of

the Kaplan-Meier weights was proposed by Zhou (1992). Zhou (1992) proved

asymptotic results of his weighted least squares estimator. His proof used the

explicit expression of the least squares estimator and is not applicable to the

LAD estimator. Bang and Tsiatis (2002) also used this method in analyzing

censored cost data. In a recent paper by Zhou (2005), motivated by the work of

Ying, Jung and Wei (1995), a weighting method was also proposed in the con-

text of censored median regression. This weighting method is exactly the same

as that of Zhou (1992). Zhou (2005) also proposed using an artificial censoring

in connection with the weights of Zhou (1992).

An important advantage of the proposed KMW-LAD estimator is that it

can be computed using existing software. The computational simplicity is es-

pecially valuable for data with medium to high dimensional covariates. The

KMW-LAD estimator also has rigorous theoretical justification under appropri-

ate conditions. In the following, we first define the KMW-LAD estimator in the

AFT model. In Section 3, we state the consistency and asymptotic normality

results for the KMW-LAD estimator and discuss the assumptions needed for

these results. These assumptions are different from but comparable to those for

the existing estimators of the AFT model. In Section 4, we use simulations to

evaluate the KMW-LAD estimator in finite samples and illustrate it using two

clinical trial data sets. Some concluding remarks are given in Section 5.
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2. The LAD Regression for Censored Data

Let T be the logarithm of the failure time and X = (X1, . . . ,Xd)
′ be a

d-dimensional covariate vector. The AFT model assumes

T = β0 +X1β1 + · · · +Xdβd + ǫ, (2.1)

where β0 is the intercept, β1, . . . , βd are the regression coefficients and ǫ is the

error term with an unknown distribution function. When T is subject to right

censoring, we can only observe (Y, δ,X) with Y = min{T,C}, where C is the

logarithm of the censoring time and δ = 1{T ≤ C} is the censoring indicator.

Suppose that a random sample (Yi, δi,Xi), i = 1, . . . , n, with the same distribu-

tion as (Y, δ,X) is available.

Let F̂n be the Kaplan-Meier estimator of the distribution function F of T

(Kaplan and Meier (1958)). Following Stute and Wang (1993), F̂n can be written

as F̂n(y) =
∑n

i=1 wni1{Y(i) ≤ y}, where the wni’s are the Kaplan-Meier weights

wn1 =
δ(1)

n
, and wni =

δ(i)

n− i+ 1

i−1∏

j=1

(
n− j

n− j + 1

)δ(j)

, i = 2, . . . , n. (2.2)

Here Y(1) ≤ · · · ≤ Y(n) are the order statistics of Yi’s and δ(1), . . . , δ(n) are the

associated censoring indicators. Similarly, let X(1), . . . ,X(n) be the associated co-

variates of the ordered Yi’s. Let β = (β0, β1, . . . , βd). The KMW-LAD estimator

β̂n is the minimizer of

Ln(β) =

n∑

i=1

wni|Y(i) − β0 −X(i1)β1 − · · · −X(id)βd|. (2.3)

Robustness is gained by using the LAD objective function. β̂n can be computed

using the R function rq in the R library quantreg. The LAD regression program

is also available in many other packages, such as the LAV command in the IML

library, Proc Quantreg in SAS, and the quantile regression (qreg) procedure in

STATA.

The weights wni’s are the jumps of the Kaplan-Meier estimator F̂n. Another

weighting method uses wni = δi/(1 − Ĝn(Yi)) (Zhou (1992), Bang and Tsiatis

(2002) and Zhou (2005)), where Ĝn is the Kaplan-Meier estimator of G, the

distribution function of Ci. These two seemingly different weighting methods are

equivalent. This can be shown as follows. By the property of the Kaplan-Meier

estimator,

[1 − F̂n(t)][1 − Ĝn(t)] =
1

n

n∑

i=1

1{Yi > t}. (2.4)
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Let s be a jump point of F̂n. Let ∇f(x) = f(x)−f(x−) for any right continuous

function f . Because F̂n and Ĝn do not jump at the same time points, (2.4)

implies that

∇(1 − F̂n)(1 − Ĝn)(s) = −[1 − Ĝn(s)]∇F̂n(s) = − 1

n
.

It follows that,

∇F̂n(s) =
1

n

1

1 − Ĝn(s)
. (2.5)

For general s, to avoid Ĝn(s) = 1, we use Ĝn(s−). It follows from (2.5) that

δi/[n(1 − Ĝn(Yi−))] ≤ 1 for all i = 1, . . . , n, since the jumps of F̂n are bounded

by 1. Therefore, these weights are stable and there is no need to artificially censor

the observed times Yi’s as suggested by Zhou (2005). We note that with the least

squares approach, no artificial censoring was suggested by Zhou (1992) or Stute

(1993, 1996, 1999). The simulation study of Stute (1999) in the context of the

least squares estimation, and our simulation study in Section 4 below, also show

good finite sample performance.

As shown in Theorems 1 and 2 below, the KMW-LAD estimator is root-n

consistent and asymptotically normal. However, the asymptotic variance does

not have a simple form. In particular, the conditional density function of the

error term is involved in the asymptotic variance in the term E[ZZ ′fε(0|Z)].

Although in principle we can estimate E[ZZ ′fε(0|Z)] using a kernel estimator,

this is not straightforward due to censoring. Therefore, we propose the following

nonparametric bootstrap (Efron and Tibshirani (1993)) for inference.

Sample m ≈ 0.632n from the n observations without replacement. The

bootstrap sample is estimated following the same procedure as for the complete

sample. The bootstrap procedure is then repeated B times. After proper scale

adjustment, the sample variance of the bootstrap estimates provides an estimate

of the variance of β̂n. We use m = 0.632n since the expected number of distinct

bootstrap observations is about 0.632n. Simulation studies in Section 4 are used

to investigate finite sample performance of this bootstrap procedure (and see

Ma and Kosorok (2005)).

3. Large Sample Properties

We now state the consistency and asymptotic normality results for β̂n. De-

note β0 as the unknown true value of β. We first introduce the notation needed

for stating these results. Let H denote the distribution function of Y . Let

τY , τT and τC be the end points of the support of Y, T and C, respectively. Let

Z = (1,X1, . . . ,Xd)
′ = (Z0, Z1, . . . , Zd)

′, and F 0 be the joint distribution of
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(Z, T ). Write

F̃ 0(z, t) =

{
F 0(z, t), t < τY
F 0(z, τY −) + F 0(z, τY )1{τY ∈ A}, t > τY

,

where A denotes the set of atoms of H. Define sub-distribution functions

H̃11(z, y) = P (Z ≤ z, Y ≤ y, δ = 1), H̃0(y) = P (Y ≤ y, δ = 0).

Let sgn(x) = −1, 0, 1 if x < 0,= 0, > 0, respectively. For j = 0, . . . , d, let

γ0(y) = exp

{∫ y−

0

H̃0(dw)

1 −H(w)

}
,

γ1j(y;β) =
1

1 −H(y)

∫
1{w > y}sgn(w − z′β)zjγ0(w)H̃11(dz, dw),

γ2j(y;β) =

∫∫
1{v < y, v < w}sgn(w − z′β)zjγ0(w)

[1 −H(v)]2
H̃0(dv)H̃11(dz, dw).

For j = 0, 1, . . . , d, let ψj = Zjsgn(Y −Z ′β0)γ0(Y )δ+γ1j(Y ;β0)(1−δ)−γ2j(Y ;β0),

and σij = Cov (ψi, ψj). Write Σ = (σij)0≤i,j≤d. We assume the following condi-

tions.

A1: Let Fε(·|z) be the conditional distribution function of ε given Z = z and

fε(·|z) be its conditional density function. Then Fε(0|z) = 0.5, and fε(e|z)
is continuous in e in a neighborhood of 0 for almost all z.

A2: T and C are independent and P (T ≤ C|T,Z) = P (T ≤ C|T ).

A3: τT < τC or τT = τC = ∞.

A4: E[ZZ ′fε(0|Z)] is finite and nonsingular.

A5: (a) The covariate Z is bounded and the right end point of the support of

Z ′β0 is strictly less than τY ; (b) E
[
‖Z‖2γ2

0(Y )δ
]
<∞ and

∫
|zj |D1/2(w)F̃ 0

(dz, dw) <∞, for j = 0, . . . , d, where D(y) =
∫ y−
0 [(1−H(w))(1−G(w))]−1

G(dw). Here G is the distribution function of the censoring time C.

In (A1), we only need that median(ǫ|X = x) = 0. The distribution of ǫ

can depend on covariates; this allows heteroscedastic error terms. For example,

the results below hold for ǫi = σ(Xi)ǫ0i, where the ǫ0i’s are independent and

identically distributed with median 0. This is weaker than the corresponding

assumption in the Buckley-James method (Buckley and James (1979)) and the

rank-based method (Jin et al. (2003)), where the error terms ǫi’s are assumed to

have a common distribution and to be independent of the Xi’s. (A2) assumes

that δ is conditionally independent of the covariate X given the failure time

Y . It also assumes that T and C are independent, which is the same as that

for the Kaplan-Meier estimator. However, we note that (A2) does allow the



1538 JIAN HUANG, SHUANGGE MA AND HUILIANG XIE

censoring variable to be dependent on the covariates. In comparison, in the

Buckley-James and rank-based estimators, it is assumed that T − β0 −X ′β and

C − β0 − X ′β are conditionally independent given X. (A3) ensures that the

distribution of T can be estimated over its support. It is part of the conditions

for the identification of β0 in the model. (A4) is the same as the assumption

for the consistency and asymptotic normality of the LAD estimator in linear

regression models. (A1)−(A4) ensure identifiability of β0 and consistency of the

KMW-LAD estimator. (A5a) and (A5b) are technical assumptions for proving

asymptotic normality. (A5b) together with (A4) entail finite asymptotic variance

of the KMW-LAD estimator. (A5c) guarantees that the bias of Kaplan-Meier

integral is on the order of o(n−1/2). It is related to the degree of censoring and the

tail behavior of the Kaplan-Meier estimator. Therefore, the assumptions needed

for theoretical justification of the KMW-LAD estimator are quite reasonable and

comparable to those of the Buckley-James and rank-based estimators.

Theorem 1. (Consistency). Suppose that (A1)−(A4) hold. Then β̂n →P β0 as

n→ ∞.

Theorem 2. (Asymptotic Normality). Suppose that (A1)−(A5) hold. Let Z(i) =

(1,X ′
(i))

′ and A = 2E[ZZ ′fε(0|Z)]. We have

√
n(β̂n − β0) = A−1√n

n∑

i=1

wniZ(i)sgn(Y(i) − Z ′
(i)β0) + op(1).

In particular,
√
n(β̂n − β0) →D N(0, A−1ΣA−1).

4. Numerical Studies

4.1. Simulation studies

We first compare the KMW-LAD estimator with the median regression es-

timator of Ying et al. (1995) using simulation. Consider the AFT model with a

single covariate. We set the sample size at 100 and take (β0, β1) = (0, 1). The

covariates X for Examples 1−6 are generated from the U(0, 1) distribution. In

Examples 1−3, the errors are normally distributed with mean 0 and standard

deviation 0.5. Censoring variables are generated uniformly distributed and in-

dependent of the covariates and the event. The censoring rates for Examples

1−3 are 0%, 30% and 70%, respectively. Examples 4−6 are similar to Examples

1−3, respectively. The only difference is that the errors for Examples 4−6 have a

Cauchy(0, 0.5) distribution. In Examples 7 and 8, X has truncated N(0, 0.5) and

N(0, 0.25) distributions, respectively. The errors are Cauchy(0, 1) distributed

and the censoring variables are generated from N(1, 1) and independent of X.

The censoring rates for Examples 7 and 8 are both around 30%. The simulation



LAD ESTIMATION FOR THE AFT MODEL 1539

settings here are similar to those in Ying et al. (1995). Summary statistics based

on 1,000 replicates are given in Table 1.

Table 1. Simulation study: comparison of the proposed approach with Ying’s

approach. (β0, β1) = (0, 1). The values below are sample means (standard

deviations) and median of mean squared errors.

Ying KMW-LAD
β0 β1 mse β0 β1 mse

1 -0.011 (0.128) 1.019 (0.221) 0.031 -0.001 (0.126) 1.002 (0.221) 0.031
2 -0.006 (0.159) 1.035 (0.320) 0.061 0.010 (0.152) 0.943 (0.286) 0.050

3 -0.003 (0.256) 1.029 (0.496) 0.171 -0.009 (0.245) 1.003 (0.479) 0.123

4 -0.011 (0.166) 1.029 (0.294) 0.054 0.005 (0.163) 1.002 (0.282) 0.047

5 -0.024 (0.228) 1.023 (0.408) 0.104 -0.014 (0.197) 0.997 (0.348) 0.072
6 0.009 (0.438) 0.977 (0.858) 0.287 -0.091 (0.344) 0.992 (0.610) 0.221

7 0.046 (0.156) 1.051 (0.456) 0.135 -0.117 (0.202) 0.965 (0.495) 0.194

8 0.009 (0.187) 1.092 (0.798) 0.321 -0.073 (0.207) 0.933 (0.978) 0.389

It can be seen that both approaches perform well under all simulated sce-

narios. The biases of the proposed estimator are small. The accuracy of the

proposed approach decreases as the censoring rate increases, as can be seen from

Examples 1−6. With regard to relative efficiency for estimating β1, the two

approaches are equally efficient in Example 1; the KWM-LAD is more efficient

in Examples 2−6; while Ying’s approach is more efficient in Examples 7 and 8.

Extensive simulation studies show that in general the relative efficiency is model

and data dependent.

We use the following simulation study to assess the bootstrap inference pro-

cedure. Consider the AFT model with a three dimensional covariate vector.

We set sample size at 100 and take (β0, β1, β2, β3) = (0, 1, 1, 1). Covariates are

marginally uniformly distributed. In Example 9, the covariates are generated

in a manner such that the pairwise correlation coefficient between the ith and

the jth components is 0.5|i−j|. Errors are generated as normally distributed

with mean 0 and standard deviation 0.5. In Example 10, covariates are in-

dependently generated. For both examples, censoring variables are generated

independent of the covariates and the event. The censoring rates are ∼ 30%.

Confidence intervals are constructed using the nonparametric bootstrap, based

on the asymptotic normality results in Theorem 2. The marginal empirical cov-

erage rates of 95% confidence intervals are (0.942, 0.948, 0.968, 0.954) in Example

9 and (0.958, 0.954, 0.968, 0.956) in Example 10, based on 1,000 replicates and

1,000 bootstrap for each sample. Extensive simulation studies under different

simulated scenarios all yield similar, satisfactory empirical coverage rates.
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We also conduct simulation studies to examine the sensitivity of the proposed

approach to violation of assumption (A2). Set the sample size at 100 and the

generating parameter value (β0, β1) = (0, 1). Let X be U(0, 1) distributed. In

Examples 11 and 12, T is normally distributed with mean X and variance 0.025.

In Examples 13 and 14, T is normally distributed with mean X and variance

0.025X; the censoring variables are normally distributed with mean v +X and

variance 0.025, where v is chosen with certain pre-specified censoring rate. The

censoring rates are 25% for Examples 11 and 13, and 50% for Examples 12 and

14. For Examples 11−14, the mean correlation coefficients between the event

time and the censoring are 0.769, 0.768, 0.818, 0.818, respectively. Simulation

based on 1,000 replicates shows that the sample means of the estimates are

(-0.038, 1.002), (-0.121, 1.099), (-0.034, 1.083) and (0.001, 0.970) for Examples

11−14, respectively. The empirical coverage rates of the 95% confidence intervals

based on the nonparametric bootstrap are 0.983, 0.981, 0.984 and 0.985 for β1 in

Examples 11−14, respectively. So even if assumption A2 is seriously violated, the

proposed estimation procedure still performs well, although the nonparametric

bootstrap over-estimates the variances.

4.3. Small cell lung cancer data

We use the lung cancer study data in Ying et al. (1995) as the first example

to demonstrate the proposed method. For patients with small cell lung cancer

(SCLC), the standard therapy is to use a combination of etoposide and cisplatin.

However, the optimal sequencing and administration schedule have not been

established. The data are from a clinical study which was designed to evaluate

two regimens: Arm A: cisplatin followed by etoposide; and Arm B: etoposide

followed by cisplatin. In this study, 121 patients with limited-stage SCLC were

randomly assigned to these two groups, with 62 patients to A and 59 patients

to B. At the time of the analysis, there was no loss to follow-up. Each death

time was either observed or administratively censored. Therefore, the censoring

variable does not depend on the covariates, which are the treatment indicator

and patients’ entry age. Let T be the base 10 logarithm of the patients’ failure

time. Let X1 = 0 if the patient is in Group A and 1 otherwise. Let X2 denote

the patients’ entry age. We assume the AFT model T = β0 + β1X1 + β2X2 + ε.

The data and model settings are the same as in Ying et al. (1995).

The proposed approach gives β̂0 = 2.693(0.164), β̂1 = −0.146(0.050) and β̂2 =

0.001(0.003), where the numbers in parentheses are the estimated standard errors

obtained using the nonparametric bootstrap with 1,000 bootstrap samples. The

median regression estimates of Ying et al. (1995) (reproduced from their paper)

are β̂0 = 3.028, β̂1 = −0.163(0.090) and β̂2 = −0.004(0.005). (No standard error
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was given for β̂0 in Ying et al. (1995)). Estimates of the covariates effects from

the two methods are reasonably close. The effect of X1 is modestly significant,

which indicates that Arm A tends to give better results than Arm B. The effect

of entry age is not significant. As pointed in Ying et al. (1995), one advantage

of the AFT model is that the median survival time for a prospective patient can

be predicted based on the above estimates.

4.4. PBC data

Between 1974 and 1984, the Mayo Clinic conducted a double-blinded ran-

domized clinical trial in primary cirrhosis of the liver (PBC). 312 patients par-

ticipated in the trial and there were 18 covariates. We focus on the 276 pa-

tients with complete records only. Descriptions of this data set can be found in

Fleming and Harrington (1991), where the Cox model is used in the analysis. As

an alternative, we apply the AFT model using the proposed KMW-LAD estima-

tor as an illustration. log transformations of the covariates alkphos, bili, chol,

copper, platelet, protime, sgot and trig are first made, so that the marginal dis-

tributions of those covariates are closer to normal. We also apply the logarithm

transformation to the observed time.

The KMW-LAD estimates and their estimated standard errors are shown

in Table 2. The estimated standard errors are obtained with 1,000 bootstrap

samples. As a comparison, we also include the estimates obtained based on the

Cox model in Table 2. Although estimates from two different models are not

directly comparable, we can see that the biological conclusions, in terms of posi-

tive or negative association with survival, are similar. Here we note that because

the Cox model models the conditional hazard function, while the AFT model

models the failure time directly, opposite signs of the corresponding regression

coefficients in the two models indicate qualitative agreement. Because the di-

mension of the covariates is relatively high, we are not able to apply the existing

censored median regression estimator for the AFT model, due to computational

difficulties.

5. Concluding Remarks

The KMW-LAD estimator does not require independence between the cen-

soring variable and covariates. However, it does require independence between

the censoring time and event time. In many studies, such as the small cell lung

cancer study, this assumption is reasonable, since censoring was done adminis-

tratively. Simulation studies reported in Section 4 show that although coverage

rates of the confidence intervals are slightly higher than the nominal 95% rate
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when the censoring variable and the event are strongly correlated (correlation co-

efficients ranging from 0.77 to 0.82), the estimation results are satisfactory. This

suggests that the KMW-LAD estimator is quite robust to departure from the in-

dependence assumption. However in general, if the independence assumption is

not satisfied, caution is needed in applying the proposed KMW-LAD estimator.

Table 2. PBC data: comparison of the KMW-LAD estimator and the max-

imum partial likelihood estimator for the Cox model. s.e.: standard error.

Cox KMW-LAD

covariate estimate s.e. estimate s.e.

intercept NA NA 3.974 6.091

age 0.031 0.011 -0.012 0.015

alb -0.612 0.300 0.464 0.378

log(alkphos) 0.039 0.147 0.246 0.170
ascites 0.211 0.377 -0.543 0.847

log(bili) 0.632 0.178 -0.153 0.236

log(chol) 0.162 0.292 -0.032 0.347

edtrt 0.918 0.380 -0.854 0.982
hepmeg -0.087 0.257 0.037 0.299

log(platelet) 0.132 0.285 -0.261 0.321

log(protime) 2.482 1.348 1.815 1.759

sex -0.182 0.318 0.035 0.386

log(sgot) 0.406 0.309 -0.040 0.374
spiders 0.049 0.241 -0.123 0.322

stage 0.366 0.178 -0.071 0.153

trt -0.006 0.212 0.127 0.259

log(trig) -0.144 0.251 -0.192 0.375
log(copper) 0.284 0.176 -0.129 0.198
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Appendix

We now prove Theorems 1 and 2. The proofs use the convergence results for
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Kaplan-Meier weighted statistics of Stute (1993, 1996). They also use the empir-

ical process theory and the methods of Hjort and Pollard (1993) for asymptotic
analysis in convex minimization problems.

Proof of Theorem 1.(Consistency) Let Mn(β) =
∑n

i=1wni[|Y(i)−Z ′
(i)β|−|Y(i)−

Z ′
(i)β0|]. Then the minimizers of Mn are identical to those of Ln in (2.3), since

Mn is a shift of Ln by a constant term independent of β. Because the L1 norm

is convex, Mn is a convex function of β.

In Stute (1993), under (A2) and (A3), it was proved that for any measurable
function ϕ,

Sϕ
n ≡

n∑

i=1

wniϕ(z(i), y(i)) → Sϕ ≡
∫
ϕdF̃ 0, a.s.

provided that
∫
|ϕ|dF 0 is finite. Applying this result to ϕβ(z, t) = |t− z′β| −

|t− z′β0| , when τT < τC or τY = ∞, we obtain

Mn(β) −→M(β), a.s., for any fixed β ∈ Rd+1, (6.1)

where the limit

M(β) ≡ E
{
|T − Z ′β| − |T − Z ′β0|

}

= E

[∫ Z′(β−β0)

0
[2Fε(e|Z) − 1]de

]
.

By (A1), ∂M(β)/∂β|β=β0
= 0, and by (A1) and (A4), ∂2M(β)/∂β2 = 2E[

ZZ ′fε

(
Z ′(β − β0)|Z

)]
≥ 0 and strict inequality holds for β 6= β0 in a neigh-

borhood of β0. Thus,

h(δ) ≡ inf
‖β−β0‖=δ

M(β) > 0, for any δ > 0. (6.2)

By the convexity lemma of Pollard (1991), for any compact set K in a convex
open subset of Rd+1,

sup
β∈K

|Mn(β) −M(β)| →P 0 (6.3)

follows from the convexity of ϕβ(z, t) as a function of β and (6.1). By Lemma 2

of Hjort and Pollard (1993), β̂n →P β0. This completes the proof of Theorem 1.

Proof of Theorem 2.(Asymptotic Normality) Let

Mn(s) = n
n∑

i=1

wni

[
|Y(i) − Z ′

(i)(β0 + n−
1
2 s)| − |Y(i) − Z ′

(i)β0|
]
,

Rn(z, y; s) = |y − z′(β0 + n−
1
2 s)| − |y − z′β0| + n−

1
2 sgn(y − z′β0)z

′s.
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We can express Mn(s) as

Mn(s) = n
n∑

i=1

wniRn(Z(i), Y(i); s) − n
1
2

n∑

i=1

wnisgn(Y(i) − Z ′
(i)β0)Z

′
(i)s. (6.4)

Denote the first term on right-hand side of (6.4) by Qn(s) = n
∑n

i=1 wniRn(Z(i),

Y(i); s). We first show that, for any fixed s,

Qn(s) →P
1

2
s′As, (6.5)

where A is defined in Theorem 2. Let the empirical counterparts of H(y), H̃0(y)

and H̃11(z, y) be:

Hn(y) = n−1
n∑

i=1

1{Y(i) ≤ y}

H̃0
n(y) = n−1

n∑

i=1

1{Y(i) ≤ y, δ(i) = 0}

H̃11
n (z, y) = n−1

n∑

i=1

1{Z(i) ≤ z, Y(i) ≤ y, δ(i) = 1}.

By Lemma 5.1 of Stute (1996),

Qn(s)=

∫
nRn(z, y; s) exp

{∫ y−

−∞
n ln(1+

1

n(1−Hn(u))
)H̃0

n(du)

}
H̃11

n (dz, dy).

Write Qn(s) = I1n + I2n + I3n + I4n, where

I1n =

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0(du)

1 −H(u)

}
H̃11(dz, dy),

I2n =

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0(du)

1 −H(u)

}
(H̃11

n − H̃11)(dz, dy),

I3n =

∫
nRn(z, y; s)

(
exp

{∫ y−

−∞

H̃0
n(du)

1 −Hn(u)

}

− exp

{∫ y−

−∞

H̃0(du)

1 −H(u)

})
dH̃11

n (z, y),

I4n =

∫ (
exp

{∫ y−

−∞
n ln(1 +

1

n(1 −Hn(u))
)H̃0

n(du)

}

− exp

{∫ y−

−∞

H̃0
n(du)

1 −Hn(u)

})
× nRn(z, y; s) H̃11

n (dz, dy).
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Under (A3) and (A4), and recall A = 2E[ZZ ′fε(0|Z)], the first term

I1n =

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0(du)

1 −H(u)

}
H̃11(dz, dy)

=

∫
nRn(z, y; s)F̃ 0(dz, dy) = E[nRn(Z, T ; s)]

= s′E[ZZ ′fε(0|Z)]s + o(1) =
1

2
s′As+ o(1). (6.6)

Under (A5b), and by Lemma 19.31 of Van der Vaart (1998), the second term

I2n =

n∑

i=1

nRn(Z(i), Y(i); s)δiγ0(Y(i)) − E[nRn(Z, T ∧ C; s)δγ0(T ∧ C)]

= Gn

(√
nRn(z, t ∧ c; s)δγ0(t ∧ c)

)
= oP (1). (6.7)

For I3n, we first note that, for η < τY ,

sup
y≤η

∣∣∣∣∣exp

{∫ y−

−∞

H̃0
n(du)

1 −Hn(u)
−
∫ y−

−∞

H̃0(du)

1 −H(u)

}
− 1

∣∣∣∣∣

= sup
y≤η

∣∣∣∣∣exp

{∫ y−

−∞

H̃0
n(du)

1 −Hn(u)
−
∫ y−

−∞

H̃0
n(du)

1 −H(u)
+

∫ y−

−∞

H̃0
n(du)

1 −H(u)

−
∫ y−

−∞

H̃0(du)

1 −H(u)

}
− 1

∣∣∣∣∣
= |exp{oP (1) + oP (1)} − 1| = oP (1),

where the second equality follows the generalized Glivenko-Cantelli Theorem

(Van der Vaart and Wellner (1996)). We also have

Rn(z, y; s) =





2
(
n−

1
2 z′s− (y − z′β0)

)
1{z′β0 < y < z′(β0 + n−

1
2 s)} z′s > 0

−2
(
n−

1
2 z′s− (y − z′β0)

)
1{z′(β0 + n−

1
2 s) < y < z′β0} z′s < 0.

Thus under (A5a),

I3n =

∫
nRn(z, y; s)γ0(y)

(
exp

{∫ y−

−∞

H̃0
n(du)

1−Hn(u)
−
∫ y−

−∞

H̃0(du)

1−H(u)

}
−1

)
H̃11

n (dz, dy)

= oP (1)

∫
nRn(z, y; s)γ0(y)H̃

11
n (dz, dy)

= oP (1)(I1n + I2n) = oP (1). (6.8)
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Finally,

I4n =

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0
n(du)

1 −Hn(u)

}

[
exp

{∫ y−

−∞
n ln

(
1+

1

n(1−Hn(u))

)
− 1

1−Hn(u)
H̃0(du)

}
−1

]
H̃11

n (dz, dy).

The expression in the square brackets is bounded between [−2n(1−Hn(y−))]−1

and 0. Because nRn(z, y; s) vanishes when y goes beyond z′β0 or z′(β0 +n−1/2s),

by the generalized Glivenko-Cantelli Theorem and (A5a),

I4n = OP (n−1)

∫
nRn(z, y; s) exp

{∫ y−

−∞

H̃0
n(du)

1 −Hn(u)

}
H̃11

n (dz, dy)

= OP (n−1)(I1n + I2n + I3n) = oP (1). (6.9)

Combining (6.6) to (6.9), (6.5) follows. Therefore, Mn(s) = s′As/2−s′n1/2
∑n

i=1

wniZ(i)sgn(Y(i) − Z ′
(i)β0) + oP (1). Under (A2)-(A5), by Theorem 3.1 of Stute

(1996), n1/2
∑n

i=1 wniZ(i)sgn(Y(i)−Z ′
(i)β0) →D N(0,Σ). By the Basic Corollary of

Hjort and Pollard (1993), we have
√
n(β̂n−β0) = A−1√n

∑n
i=1 wniZ(i)sgn(Y(i)−

Z ′
(i)β0) + op(1). This completes the proof of Theorem 2.
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