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Abstract: We propose a generic bivariate hard thresholding estimator of the dis-

crete wavelet coefficients of a function contaminated with i.i.d. Gaussian noise. We

demonstrate its good risk properties in a motivating example, and derive upper

bounds for its mean-square error. Motivated by the clustering of large wavelet

coefficients in real-life signals, we propose two wavelet denoising algorithms, both

of which use specific instances of our bivariate estimator. The BABTE algorithm

uses basis averaging, and the BITUP algorithm uses the coupling of “parents” and

“children” in the wavelet coefficient tree. We prove the L2 near-optimality of both

algorithms over the usual range of Besov spaces, and demonstrate their excellent

finite-sample performance. Finally, we propose a robust and effective technique for

choosing the parameters of BITUP in a data-driven way.

Key words and phrases: Chi-square, discrete wavelet transform, nonparametric

regression, translation-invariance, universal threshold, wavelet shrinkage.

1. Introduction

A paradigmatic problem in non-parametric regression is the estimation of a

one-dimensional function f : [0, 1] 7→ R from noisy observations Xi taken on an

equispaced grid:

Xi = f(i/n) + εi, i = 1, . . . , n, (1.1)

where the εi’s are random variables with E(εi) = 0. Various subclasses of the

problem can be identified, depending on the joint distribution of (εi)
n
i=1 and on

the smoothness of f . In particular, substantial research effort has been and is

being expended on developing denoising techniques under the assumption that

(εi)
n
i=1 ∼ N(0, σ2I). In this paper, we also restrict ourselves to the i.i.d. Gaussian

case.

Since the seminal work of Donoho and Johnstone (1994), techniques based

on wavelets have become a commonly used tool in nonparametric regression,

extensively studied in the statistical literature. Many of them combine excel-

lent finite-sample performance, linear computational complexity, and optimal (or

near-optimal) asymptotic Mean-Square Error behaviour over a variety of func-

tion smoothness classes. (A general overview of wavelet methods in statistics can
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be found, for example, in Vidakovic (1999).) The main idea underlying most of

these techniques is that upon transforming the original regression problem (1.1)

via a “multiscale” orthonormal linear transform W called the Discrete Wavelet

Transform (DWT), we obtain the regression formulation

Yj,k = dj,k + εj,k, j = 0, . . . , log2 n− 1, k = 1, . . . , 2j , (1.2)

and k = 1 for j = −1, where j and k are (respectively) scale and location

parameters, Yj,k are the empirical wavelet coefficients of Xi, dj,k are the true

wavelet coefficients of f(i/n) which have to be estimated, and εj,k are again

i.i.d. N(0, σ2). The sequence dj,k is often sparse, with most dj,k’s being equal,

or close, to zero, which motivates the use of simple thresholding estimators d̂j,k

which do not estimate dj,k by zero if and only if the corresponding empirical

wavelet coefficient Yj,k exceeds a certain threshold in absolute value. This ensures

that a large proportion of the noise εj,k gets removed. The inverse DWT of the

thresholded coefficients then yields an estimate f̂ of the original signal f . Note

that, due to the orthonormality of W , the following Parseval-type relation holds:

1

n

n
∑

i=1

E

{

f̂(
i

n
) − f(

i

n
)

}2

=
1

n

∑

j,k

E
(

d̂j,k − dj,k

)2
.

This motivates our interest in studying the Mean-Square Error properties of the

thresholding estimators d̂j,k.

In many thresholding schemes, wavelet coefficients are considered individu-

ally, i.e., given the value of the threshold, each dj0,k0 is estimated using knowledge

of the corresponding Yj0,k0 only. In this paper, we refer to such threshold esti-

mators as univariate. A variety of methods for selecting threshold values in uni-

variate thresholding estimators have been shown to attain (near-)optimal Mean-

Square Error convergence rates over a range of smoothness classes of f . Examples

include the minimax and universal thresholds (Donoho and Johnstone (1994),

thresholds based on the False Discovery Rate (Abramovich and Benjamini (1996),

and Abramovich, Benjamini, Donoho and Johnstone (2000)), thresholds based

on Stein’s unbiased risk criterion Donoho and Johnstone (1995)) or the empirical

Bayes procedure of Johnstone and Silverman (2005).

Motivated by the observation that in a variety of real-life signals, signif-

icant wavelet coefficients often occur at adjacent scales and locations, several

authors have studied risk properties of various multivariate thresholding rules

(often referred to as “block thresholding rules”), whereby each dj0,k0 is estimated

using knowledge of not only Yj0,k0, but also other neighbouring coefficients Yj,k,

often within the same scale j = j0. Examples of such techniques include the

nonoverlapping block thresholding methods of Cai (1999) and Hall, Kerkyachar-

ian and Picard (1999), as well as the NeighBlock and NeighCoeff methods of
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Cai and Silverman (2001), which use overlapping block thresholding. Other in-

teresting wavelet thresholding algorithms in which the coefficients are consid-

ered jointly include Crouse, Nowak and Baraniuk (1998), Sendur and Selesnick

(2002) and Dragotti and Vetterli (2003); however, none of them are accompanied

by a theoretical risk analysis. Barber and Nason (2004) develop various thresh-

olding rules for complex-valued wavelet coefficients, where the real and imaginary

parts are considered jointly.

In this paper, we are also motivated by the clustering of significant wavelet

coefficients. However, we adopt a different approach, and estimate each dj0,k0 us-

ing knowledge of not only Yj0,k0, but also another “generic” normally distributed

quantity, which we provisionally denote here by Zj0,k0. Typically, Zj0,k0 will con-

tain some local information, taken from the neighbourhood of Yj0,k0 . Both Yj0,k0

and Zj0,k0 are used to form a chi-squared statistic, which is then used in esti-

mating dj0,k0. In Section 2, we motivate this approach with a toy example which

demonstrates a substantial risk reduction of the proposed “bivariate” threshold-

ing rule, compared to the analogous univariate rule. Without specifying the exact

choice of Zj0,k0, we derive generic risk properties of the proposed estimator of

dj0,k0 in Section 3. Sections 4 and 5 are devoted to specific choices of Zj0,k0. In

Section 4, we choose Zj0,k0 to be an empirical wavelet coefficient of Xi at scale

j0 and location k0, but computed using a different wavelet family than Yj0,k0.

In Section 5, we take Zj0,k0 to be the “parent” coefficient of Yj0,k0 in the binary

tree of wavelet coefficients. For both choices, we propose universal-type thresh-

olding rules, prove their near-optimal Mean-Square Error behaviour over a range

of smoothness classes (using the generic risk properties shown in Section 3), and

demonstrate their very good finite-sample performance. Proofs are deferred to

the Appendix.

2. Motivation and preliminaries

As in Section 1, consider the regression model (1.2), where the Yj,k arise as

empirical wavelet coefficients of (Xi)
n
i=1, computed using a real-valued DWT. The

reader is invited to think here, for example, of a DWT with periodic boundary

conditions that uses Daubechies’ (1992) compactly supported wavelets. Typ-

ically, such a wavelet decomposition is performed using the O(n) “pyramid”

algorithm of Mallat (1989). Throughout the paper, we assume that εi are

i.i.d. N(0, σ2), which implies that εj,k are also i.i.d. N(0, σ2).

For each j and k, our aim is to estimate dj,k. As we consider each coefficient

in turn, we drop the subscripts j and k to shorten notation. The univariate

hard thresholding rule (Donoho and Johnstone (1994)) estimates d by d̂U (t) =

Y I(Y 2/σ2 > t2), where t is the threshold and I(·) is the indicator function.

The choice t = (2 log n)1/2 yields the univariate universal hard thresholding rule
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(again, see Donoho and Johnstone (1994)). Note that if d = 0, then the LHS of
the argument of the indicator function in d̂U (t) is distributed as χ2

1.
In soft thresholding, “surviving” coefficients Y are not left intact as in d̂U (t),

but get shrunk towards zero. Since in simulated examples, hard thresholding
typically achieves much lower Mean-Square Error (MSE) than soft thresholding
(especially in the translation-invariant setting; see e.g., Antoniadis, Bigot and
Sapatinas (2001)), we do not consider soft thresholding in this paper. However,
corresponding theoretical results could also be developed for the soft thresholding

case.
Assume now that Z is a normally distributed quantity such that (Y,Z) is

bivariate normal with mean d and variance-covariance matrix Σ, where d =
(d, d′)T ,

Σ = σ2

[

1 ρ

ρ 1

]

.

We propose to estimate d by a “bivariate” hard thresholding estimator

d̂B(t) = Y I{(Y,Z)Σ−1(Y,Z)T > t2}, (2.1)

where t is the threshold and T denotes the transpose. Note that if d = 0, then

the LHS of the argument of the indicator function in (2.1) is distributed as χ2
2.

The idea of using a χ2
m variable (with m ≥ 2) as a “thresholding statistic”

is not new: it was used, for example, by Downie and Silverman (1998) in the
context of multiwavelet nonparametric regression, by Barber and Nason (2004)
in the context of real-valued nonparametric regression using complex wavelets

(with m = 2), and by Olhede and Walden (2004) in wavelet thresholding which
incorporates information from the discrete Hilbert transform of the signal (also
with m = 2). However, our approach is different from the above in that we work
in the classical real-valued wavelet context, and we derive the risk properties of

d̂B(t) without specifying the exact meaning of Z. This permits us to obtain a
general mean-square risk bound for bivariate thresholding in Propositon 3.2. The
latter result offers a flexible, easy-to-use device for assessing the risk of a bivari-
ate estimator by “reducing” the problem to the univariate case. Benefits of this
modular approach are demonstrated in Sections 4 and 5, where two estimators

involving specific instances of the variable Z are introduced. By applying Propo-
sition 3.2 in those two cases, we are easily able to prove the MSE near-optimality
of our two estimators over a range of Besov smoothness classes. By contrast, we
note that no such results were obtained for the related techniques cited above.

We now introduce notation for the mean-square risk of d̂U (t) and d̂B(t):

RU
d,σ(t) = E

{

d̂U (t) − d
}2
, (2.2)

RB
d,Σ(t) = E

{

d̂B(t) − d
}2
. (2.3)
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The following toy example demonstrates the potential usefulness of our approach.

Example. We assume that d′ = d (the means of Z and Y are equal), σ = 1,

ρ = 0 (Y and Z are uncorrelated). We take t = 1, 2, 3, 4 and plot RU
d,σ(t) and

RB
d,Σ(t) (computed using numerical integration of (2.2) and (2.3)) against d. The

plots are shown in Figure 2.1: irrespective of t, the risk of d̂B(t) is almost always

substantially lower than the risk of d̂U (t), except for “small” values of d where

it is slightly higher. The message here is that however one chooses the value of

t for univariate thresholding, the bivariate estimator with this specific choice of

Z, and the same value of t, can achieve better performance.

Obviously, in practical situations, the availability of Z such that d′ = d and

ρ = 0 is not guaranteed. However, the hope is that the following observation

might lead to a successful choice of Z: in a variety of real-life signals, large

(small) wavelet coefficients often come in clusters. Thus, for each Yj0,k0, the

corresponding Zj0,k0 might represent, for example, a neighbouring coefficient of

Yj0,k0 of a similar magnitude (so that hopefully d′ ≈ d, which would then lead to

a risk reduction by the above example). This is the main idea behind the two

specific instances of our estimator, described in Sections 4 and 5: by constructing

Z so that it contains “local” information, drawn from roughly the same location

as Y , we are able to achieve very good finite-sample performance.

Bivariate versus m-variate thresholding. We now describe our motivation for

focusing on the bivariate case instead of the more general m-variate thresholding

where m empirical coefficients are grouped together and a χ2
m variable is used as

a thresholding statistic. Our motivation can be summarised as follows.

1. There has been much interest in the bivariate case in the recent litera-

ture. Apart from Olhede and Walden (2004) and Barber and Nason (2004),

Sendur and Selesnick (2002) study a specific case of the bivariate thresholding

estimator. While all of these articles make interesting algorithmic contribu-

tions, none of them provides a mean-square risk theory for bivariate thresh-

olding which would lead to (near-)optimal rates of convergence over a range of

Besov classes. Our work fills this gap, and provides two new, well-performing

algorithms; see Sections 4 and 5.

2. We have found no empirical evidence of m-variate estimators with m > 2

performing better than bivariate ones and, in a number of cases, their per-

formance was found to be significantly inferior. In Section 5.2, we report the

outcome of a simulation study designed to illustrate this.

3. In Section 5.3, we introduce a computational procedure for choosing the aux-

iliary variable Z from the data for a specific instance of our bivariate thresh-

olding estimator. An analogous procedure for an m-variate estimator with

m > 2 would be significantly more computationally demanding, which would
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have a detrimental effect on the speed of such an m-variate wavelet estimation

algorithm.
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Figure 2.1. RB
d,Σ(t) (solid lines) and RU

d,σ(t) (dashed lines) for values of t as

in the titles, and values of d′, σ, ρ as in the Example in Section 2; plotted

against d.

3. Generic risk properties of d̂
B(t)

3.1. Upper bound for R
B
d,Σ(t)

As before, we drop the subscripts j, k to shorten notation. Consider a change

of variable U = (Z − ρY )/(1 − ρ2)1/2. Denote d′′ := E(U) and note that d′′ =

(d′ − ρd)/(1 − ρ2)1/2, cov(Y,U) = 0 and Var(U) = σ2. In the new coordinates,

d̂B(t) = Y I(Y 2 + U2 > t2σ2), which leads to the representation of RB
d,Σ(t) as

RB
d,Σ(t) = σ2 +

∫∫

y2+u2≤t2σ2

{

d2 − (y − d)2
}

fY,U(y, u)dydu, (3.1)
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where fY,U is the joint density of (Y,U):

fY,U(y, u) =
1

2πσ2
exp

{

−(y − d)2 + (u− d′′)2

2σ2

}

.

Note that due to the particular shape and location of the integration region in

(3.1), it is not possible to compute RB
d,Σ(t) exactly, or indeed to express it as a

simple formula involving the pdf or cdf of the normal distribution. However, we

establish simple upper bounds for RB
d,Σ(t) below. In order to do so, we introduce

the following notation:

δ =
{

d2 + (d′′)2
}

1
2 ,

R̃B,1
d,Σ(t)=d2

[

1−exp

{

−(tσ + δ)2

2σ2

}]

+σ2 exp

{

−(tσ−δ)2
2σ2

}{

(tσ−δ)2
2σ2

+1

}

,(3.2)

R̃B,2
d,Σ(t)=

d2tσ

2δ

[

exp

{

−(tσ − δ)2

2σ2

}

−exp

{

−(tσ+δ)2

2σ2

}]

+ σ2. (3.3)

Denote also

R̃B
d,Σ(t) =







R̃B,1
d,Σ(t) if δ < tσ

R̃B,2
d,Σ(t) if δ ≥ tσ.

Proposition 3.1. We have RB
d,Σ(t) ≤ R̃B

d,Σ(t).

Using (3.1), (3.2) and (3.3), it is easy to see that both RB
d,Σ(t) and R̃B

d,Σ(t)

satisfy the following conditions, which are indeed natural for the L2 risk of a

wavelet thresholding rule: RB
d,Σ(∞) = d2, RB

d,Σ(0+) = RB
d,Σ(0) = σ2; R̃B

d,Σ(∞) =

d2, R̃B
d,Σ(0+) = R̃B

d,Σ(0) = σ2.

3.2. Comparison with the univariate risk

In order to gain a better understanding of the behaviour of the bound R̃B
d,Σ(t),

we now compare it to the (better known) quantity RU
δ,σ(t): the MSE in estimating

δ from a N(δ, σ2)-distributed observation by means of a univariate hard thresh-

olding estimator with threshold t. Note that it seems natural to compare R̃B
d,Σ(t)

and RU
δ,σ(t), as both functions contain exponentials of the terms (tσ±δ)2/σ2. The

quantity RU
δ,σ(t) was studied in detail, for example, by Donoho and Johnstone

(1994). In the following proposition, we obtain an upper bound for R̃B
d,Σ(t) in

terms of RU
δ,σ(t).

Proposition 3.2. We have R̃B
d,Σ(t) ≤ max

(√

π
2 t+

√
2π,

√
2πt

)

RU
δ,σ(t).
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Even though the Example of Section 2 suggests that d̂B(t) is potentially a

“better” estimator of d than d̂U (t), note that Proposition 3.2 does not establish

anything resembling “R̃B
d,Σ(t) ≤ RU

d,σ(t)”. Indeed, continuing the example of

Section 2, it is easy to see that this inequality is not true: naturally enough, for

small values of d we have R̃B
d,Σ(t) > RU

d,σ(t).

On the other hand, it is obviously possible to establish a bound of the type

R̃B
d,Σ(t) ≤ gd,Σ(t)RU

d,σ(t) for an appropriate choice of g. However, we find that

the bound in Proposition 3.2 is sufficient for our purposes, so we stick to it for

simplicity.

The potential applicability of Proposition 3.2 is wide. It can be used to assess

the risk of our bivariate estimator for any procedure of choosing t for which the

mean-square properties of the univariate estimator are known.

The following corollary is a consequence of Proposition 3.2. It establishes

a simple upper bound for the risk of our bivariate thresholding estimator with

the universal threshold t = (2 log n)1/2. Indeed, Downie and Silverman (1998)

recommend (2 log n)1/2 as a “universal” threshold suitable for bivariate thresh-

olding estimators. Note that by Proposition 3.2, R̃B
d,Σ{(2 log n)1/2} is bounded

by a quantity involving RU
δ,σ{(2 log n)1/2}, the latter being well-known and easy

to work with.

Corollary 3.1. For any n ≥ 4, we have

RB
d,Σ{(2 log n)

1
2 } ≤ q{(log n)

1
2}

1 − |ρ|

{

σ2

n
+ min(d2, σ2) + min(d′2, σ2)

}

, (3.4)

where q is a cubic polynomial.

The form of inequality (3.4) is reminiscent of the “oracle inequality” of

Donoho and Johnstone (1994).

4. Algorithm I: Basis Averaging using Bivariate Thresholding

In this section, we introduce one of our two wavelet denoising algorithms

that involve specific instances of our bivariate hard thresholding estimator.

One way of improving the quality of wavelet-based function estimators is to

compute several estimates using different wavelet families, and then to average

them to obtain the final estimate. This is often referred to as basis averaging and

was studied, for example, by Kohn, Marron and Yau (2000) (who, however, did

not consider any bi- or multivariate estimation ideas). In this section, we propose

a basis averaging algorithm which uses our bivariate hard thresholding estimator.

The algorithm is called BABTE (Basis Averaging using the Bivariate Threshold-

ing Estimator). We note that BABTE is different than the biwavelet thresholding



BIVARIATE THRESHOLDING IN WAVELET ESTIMATION 1465

algorithm of Downie and Silverman (1998) in that it averages over two distinct

real-valued wavelet bases and thus requires no data preprocessing. (It is known

that preprocessing can hamper the practical performance of multiwavelet thresh-

olding estimators, see e.g. the simulation study in Barber and Nason (2003).)

Furthermore, unlike the above approaches, we prove the MSE near-optimality of

BABTE over a range of Besov smoothness classes.

The BABTE algorithm proceeds as follows.

1. Given the regression problem (1.1), compute the DWT ofXi using two distinct

Daubechies’ (1992) compactly supported orthonormal wavelet bases ψ(1) and

ψ(2) to obtain, respectively, the following regression problems in the wavelet

domain:

Y
(1)
j,k = d

(1)
j,k + ε

(1)
j,k , Y

(2)
j,k = d

(2)
j,k + ε

(2)
j,k ,

for j = 0, . . . , log2 n − 1 and k = 1, . . . , 2j (the meaning of the symbols is

as in (1.2)). Let J = log2 n. Recall that j = 0 (j = J − 1) is the coarsest

(finest) detail resolution scale: the only “smooth” coefficients are indexed by

(j, k) = (−1, 1), so that we have Y
(l)
−1,1 = d

(l)
−1,1+ε

(l)
−1,1 for l = 1, 2. The variance

of ε
(l)
j,k (l = 1, 2), denoted by σ2, is assumed known for the theory; in practice,

it is estimated via the MAD estimator on the finest resolution level J − 1 (see

e.g., Donoho and Johnstone (1994)).

2. For each l = 1, 2, and each j = J−2, J−3, . . . , 0, compute the discrete wavelet

vectors ψ
(l)
j using the formula {ψ(l)

j }m =
∑

k{ψ
(l)
j+1}kh

(l)
m−2k, where {ψ(l)

J−1}m =

g
(l)
m , and h(l), g(l) are low- and high-pass, respectively, quadrature mirror filters

associated with ψ(l) (for details of this computation, see Daubechies (1992,

p.204)). For each scale j = 0, . . . , J − 1, compute the inter-basis correlation

ρj as ρj =
∑

m{ψ(1)
j }m{ψ(2)

j }m.

3. Let ρ ∈ (0, 1) denote the maximum accepted correlation level, specified by the

user. For each j = 0, . . . , J − 1,

• if |ρj | ≤ ρ, then estimate d
(l)
j,k, l = 1, 2, by the bivariate universal thresh-

olding estimator

d̂
(l)
j,k{(2 log n)

1
2 } = Y

(l)
j,k I

{

(Y
(1)
j,k , Y

(2)
j,k )Σ−1

j (Y
(1)
j,k , Y

(2)
j,k )T > 2 log n

}

, (4.1)

where

Σj = σ2

[

1 ρj

ρj 1

]

;

• otherwise, estimate d
(l)
j,k, l = 1, 2, by the classical univariate universal

thresholding estimator

d̂
(l)
j,k{(2 log n)

1
2} = Y

(l)
j,k I

{

(Y
(l)
j,k )2

σ2
> 2 log n

}

.
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In either case, leave the smooth coefficient intact: d̂
(l)
−1,1 = Y

(l)
−1,1.

4. For l = 1, 2, perform the inverse DWT of d̂
(l)
j,k to produce f̂ (l)(i/n), i = 1, . . . , n.

The BABTE estimate is obtained as f̂ = (f̂ (1) + f̂ (2))/2.

The upper bound ρ < 1 for the inter-basis correlations ρj is required to keep

the risk bound in (3.4) finite: note the 1−|ρ| in the denominator. Note also that

the argument of the indicator function in (4.1) does not depend on l.

The rationale behind estimating d
(l)
j,k using our bivariate estimator involving

Y
(1)
j,k and Y

(2)
j,k is as in the Example of Section 2: the hope is that the true

coefficients d
(1)
j,k and d

(2)
j,k are both simultaneously either “large” or “small” in

magnitude, since they both carry information extracted from the signal f at scale

j and location k. If that is indeed the case, then we would expect a significant

risk reduction of our bivariate estimator, compared to the univariate estimator

with the same threshold. This heuristic observation will be confirmed by the

simulation results reported in Section 4.2.

4.1. Near-optimality of the BABTE algorithm

In this section, we show that BABTE attains near-optimal MSE behaviour

for a variety of signals. Note that from Figure 1, it is apparent that the bivariate

thresholding estimator, which forms a basis of BABTE, does not always improve

on the univariate thresholding estimator with the same threshold. Hence the

near-optimality of BABTE is not a simple consequence of the near-optimality of

the univariate thresholding estimator with the universal threshold. However, it

can be established using the generic results obtained in Section 3.

We consider a wide range of function spaces for f , corresponding to se-

quence space models for its wavelet coefficients d
(l)
j,k, l = 1, 2. A flexible scale

of function spaces is given by the Besov family, which is specified in the se-

quence space form via the wavelet coefficients of f in the following way. Let

‖d(l)
j ‖p = n−1/2(

∑2j

k=1 |d
(l)
j,k|p)1/p and

bνp,q(C) =

{

d
(l)
j,k :

∞
∑

j=0

2jsq‖d(l)
j ‖q

p ≤ Cq

}

,

where s = ν + 1/2 − 1/p.

Heuristically speaking, the (not necessarily integer) parameter ν is a smooth-

ness parameter which indicates the number of derivatives which the function f

possesses in Lp, while the additional parameter q provides a further, finer gra-

dation. The family of Besov spaces includes the Hölder and Sobolev spaces (for

p = q = ∞ and p = q = 2, respectively), as well as the class of functions of



BIVARIATE THRESHOLDING IN WAVELET ESTIMATION 1467

bounded variation, “sandwiched” between b11,∞ and b11,1. The reader is referred

to Meyer (1992) for rigorous definitions and a detailed discussion of Besov spaces.

Our quantity of interest is MSE(f, f̂) = (1/n)
∑n

i=1E{f(i/n) − f̂(i/n)}2,

where f̂ is the BABTE estimator. It is easy to see that MSE(f, f̂)≤{MSE(f, f̂ (1))

+MSE(f, f̂ (2))}/2. Thus, we now focus on each MSE(f, f̂ (l)) individually.

Theorem 4.1. If 0 < p, q ≤ ∞ and ν > 1/p, then for each l = 1, 2,

sup
d
(1)
j,k

,d
(2)
j,k

∈bν
p,q(C)

MSE(f, f̂ (l)) =
σ2

n
+ sup

d
(1)
j,k

,d
(2)
j,k

∈bν
p,q(C)

1

n

J−1
∑

j=0

2j
∑

k=1

E
(

d̂
(l)
j,k − d

(l)
j,k

)2

≤ C0 C
2

2ν+1 (1 − ρ)−1 q{(log n)
1
2 }n−

2ν
2ν+1 .

The rate O(n−(2ν)/(2ν+1)) is the best possible MSE rate for Besov spaces, and

BABTE achieves it up to a logarithmic factor, hence the term “near-optimality”.

BABTE is a non-linear estimator: linear estimators, such as kernel estimators,

cannot attain the optimal rate of MSE convergence for p < 2.

4.2. Empirical performance of the BABTE algorithm

In this section, we compare the empirical performance of the BABTE algo-

rithm to that of a simple algorithm which averages over two univariate estimators.

Our test functions are the Donoho and Johnstone (1994) blocks, bumps, doppler

and heavisine signals, sampled at n = 1, 024 equispaced points and rescaled to

have a unit variance. The standard deviation of the noise is σ = 1/3, so that the

root signal-to-noise ratio is 3. The variance σ is not known to the algorithms and

is estimated using the MAD estimator on the finest resolution level, J − 1 = 9.

Due to their superior performance, we only compare the translation-invariant

(TI) versions of both algorithms, whereby the final estimator is the average of

estimators obtained for all circular shifts of the data. This is common practice

in wavelet regression. The fast O(n log n) implementation of the TI wavelet

thresholding algorithms uses the Non-Decimated Wavelet Transform (NDWT),

see e.g., Nason and Silverman (1995). For simplicity, we use periodic boundary

conditions and set the primary resolution to zero.

For each signal, we chose the wavelet families ψ(1) and ψ(2) as follows: we

performed an additional simulation study in which we estimated the signal in

question using the TI wavelet estimator based on (univariate) universal hard

thresholding, with the primary resolution set to 0. We compared the Integrated

Square Error (ISE), averaged over 100 realisations, for each of the following

wavelet families: Daubechies’ Least Asymmetric (DLA) with 4, . . . , 10 vanishing

moments; Daubechies’ Extremal Phase (DEP) with 1, . . . , 10 vanishing moments.
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We chose ψ(1) to be the wavelet which performed the best among the DLA family,

and ψ(2) to be the wavelet which performed the best among the DEP family.

Having chosen the families ψ(1) and ψ(2) for each signal separately, we now

compare the performance of our BABTE algorithm with ρ = 0.99 (labelled

BABTE-TI to emphasise the translation-invariance), and a simple algorithm

which averages over two TI estimates based on univariate universal hard thresh-

olding, obtained using ψ(1) and ψ(2) (we label the latter algorithm AVG-TI).

Table 4.1 shows the results, and also indicates the families ψ(1) and ψ(2) used

for each signal: notation DEP/DLA N means “the DEP/DLA wavelet with N

vanishing moments”.

Table 4.1. ISE averaged over 100 sample paths (×105 and rounded) for the

competing methods based on the NDWT. The better results are boxed.

ψ(1) ψ(2) AVG-TI BABTE-TI

blocks DLA 4 DEP 1 1,213 1,121

bumps DLA 4 DEP 2 1,727 1,560

doppler DLA 9 DEP 8 965 814

heavisine DLA 8 DEP 3 505 476

The improvement in ISE, achieved by BABTE, ranges from 6 to 16%. This

is indeed a very good result: the simple TI univariate universal hard thresholding

estimator is one of the best performing competitors in the comprehensive sim-

ulation study reported in Antoniadis, Bigot and Sapatinas (2001). In the above

simulated examples, it was observed that the ISE decreased as ρ increased (this

is not surprising as BABTE-TI reduces to AVG-TI for ρ = 0). Our recommen-

dation is to set ρ “as close as possible” to one, but less than one, to ensure the

theoretical mean-square consistency of the procedure, see Theorem 4.1.

The BABTE algorithm is fast, with the computational complexity of order

n for the non-TI version, and of order n log n in the TI case. Note that the

computation of the estimates in (4.1) requires little computational effort, which

is yet another advantage of the proposed procedure.

5. Algorithm II: Bivariate Thresholding using Parent Coefficients

In this section, we propose a denoising algorithm based on a version of our

bivariate thresholding estimator that uses “parent” wavelet coefficients: coef-

ficients are computed at a coarser scale than their “children”, but at roughly

the same location. For completeness, we note that Sendur and Selesnick (2002)
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proposed an algorithm which exploited the parent-child dependency and used a

bivariate soft thresholding rule; however, it was not accompanied by a theoretical

risk analysis. Indeed, due to the complicated form of the thresholds used by those

authors, any theoretical analysis of their procedure appears challenging, if at all

possible. In contrast, we propose an algorithm which is both tractable theoreti-

cally, and performs well in practice. The algorithm is called BITUP (BIvariate

Thresholding Using Parents).

We note that BITUP is different from other block thresholding techniques

for which a mean-square risk theory for Besov spaces exists (see the references

in Section 1), in that it groups the empirical wavelet coefficients across scales,

and not within the same scale. Johnstone and Silverman (2004) remark that

a possible reason why within-scale block thresholding techniques often perform

poorly is that for many signals, their neighbouring wavelet coefficients are only

weakly related to one another. By coupling “parents and children”, rather than

“neighbours”, BITUP is able to overcome this problem, and this is reflected in

its good finite-sample performance reported in Section 5.2.

The BITUP algorithm proceeds as follows.

1. Given the regression problem (1.1), compute the DWT of Xi using a Daube-

chies’ (1992) compactly supported orthonormal wavelet basis ψ to obtain the

following regression problem in the wavelet domain: Yj,k = dj,k + εj,k, where

the meaning of the symbols and the ranges of the parameters are as in the

BABTE algorithm of Section 4. The variance of εj,k is denoted by σ2.

2. For each j = 1, . . . , J − 1, given a pre-set vector of integer shift parameters

(∆j)
J−1
j=1 , estimate dj,k by the bivariate universal thresholding estimator

d̂j,k{(2 log n)
1
2}

= Yj,kI
{

(Yj,k, Yj−1,⌈k
2
⌉+∆j

)Σ−1
j (Yj,k, Yj−1,⌈k/2⌉+∆j

)T > 2 log n
}

, (5.1)

where

Σj = σ2

[

1 0

0 1

]

and Yj−1,l is the shorthand notation for Yj−1,((l−1) mod 2j−1)+1. Note that,

given this particular form of Σj, formula (5.1) simplifies to

d̂j,k{(2 log n)
1
2} = Yj,kI

(

Y 2
j,k + Y 2

j−1,⌈k/2⌉+∆j
> 2σ2 log n

)

.

3. For j = 0, estimate d0,1 by the classical univariate universal hard thresholding

estimator d̂0,1 = Y0,1I(Y
2
0,1/σ

2 > 2 log n). Leave the smooth coefficient intact:

d̂−1,1 = Y−1,1.
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4. Perform the inverse DWT of d̂j,k to produce the BITUP estimate f̂(i/n),

i = 1, . . . , n.

Note that Yj−1,⌈k/2⌉ is the “parent” of Yj,k, that is, it is located directly above

Yj,k in the binary tree of wavelet coefficients. The shift parameters ∆j provide

an extra degree of flexibility, making it possible to use “foster parent”, instead

of parent, coefficients. Also observe that in contrast to the BABTE algorithm,

the correlations ρj do not come into play here, as the DWT is orthonormal and

thus (foster) parent and child coefficients are mutually uncorrelated.

The motivation for BITUP is again as in the Example of Section 2: since

both dj,k and dj−1,⌈k/2⌉+∆j
carry information extracted from the signal at roughly

the same location (provided that ∆j is “small”), although at different scales, the

hope is that they are both simultaneously either “large” or “small” in magnitude.

5.1. Near-optimality of the BITUP algorithm

We now show that the BITUP algorithm achieves near-optimal MSE be-

haviour for a variety of signals from Besov spaces. For the purpose of this section,

we take MSE(f, f̂) = (1/n)
∑n

i=1E{f(i/n) − f̂(i/n)}2, where f̂ is the BITUP

estimator.

Theorem 5.2. Let d̂j,k be the BITUP estimator of dj,k. If 0 < p, q ≤ ∞ and

ν > 1/p, then

sup
dj,k∈bν

p,q(C)
MSE(f, f̂) =

σ2

n
+ sup

dj,k∈bν
p,q(C)

1

n

J−1
∑

j=0

2j
∑

k=1

E
(

d̂j,k − dj,k

)2

≤ C0C
2

2ν+1 q{(log n)
1
2 }n−

2ν
2ν+1 .

Note that we do not aim to show theoretically that the constants in the MSE

rates attained by BABTE and BITUP are lower in value than those attained

by any other thresholding estimators. Any comparisons of this kind would be

difficult to accomplish, as the risk analysis of bivariate thresholding estimators

involves integrals with respect to the bivariate Gaussian density over regions

whose shapes and locations prevent explicit computation (see the discussion in

Section 3.1). Thus, only “suboptimal” risk bounds are possible. Those bounds

are sufficient to show the near-optimality of BABTE and BITUP; however, their

suboptimality means that they cannot be used to investigate the exact magnitude

of risk reduction compared to other algorithms, or whether the reduction is in any

sense optimal. Instead, we take the option of demonstrating the excellent finite-

sample performance of BABTE and BITUP in simulation studies, see Sections

4.2 and 5.2.
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5.2. Empirical performance of the BITUP algorithm

In this section, we compare the empirical performance of BITUP to two state-

of-the-art wavelet denoising technologies: the eBayes method of Johnstone and

Silverman (2005), and a variety of methods based on complex-valued wavelets

(Barber and Nason (2004)). EBayes was shown to outperform some earlier meth-

ods such as the classical univeral thresholding (Donoho and Johnstone (1994)),

the SureShrink technique (Donoho and Johnstone (1995)), techniques based on

the False Discovery Rate (FDR; Abramovich and Benjamini (1996)), the block

thresholding techniques NeighBlock and NeighCoeff of Cai and Silverman (2001),

as well as the QL method of Efromovich (1999). The techniques based on

complex wavelets were shown to outperform the PostBlockMean procedure of

Abramovich, Besbeas and Sapatinas (2002), the multiwavelet technique due to

Downie and Silverman (1998), the FDR method, the cross-validation technique

of Nason (1996), and, in most cases, eBayes.

Our simulation set-up and error measure are as in Section 4.2. As before,

we only compare the TI versions of the algorithms, labelling them CPLX-TI

(complex wavelets), EBAYES-TI (eBayes) and BITUP-TI (BITUP). We assume

periodic boundary conditions and, in the BITUP-TI and EBAYES-TI procedures,

set the primary resolution to zero for simplicity. The EBAYES-TI method uses

the Laplace prior and the posterior median threshold. In our BITUP-TI method,

we set ∆j = 0 for all j.

Table 5.2 summarises our findings. The results for the CPLX-TI are the

best results (over the thresholding technique and wavelet used) quoted in Barber

and Nason (2003), who use the same simulation set-up and error measure. The

results for BITUP-TI and EBAYES-TI are based on 100 simulated sample paths

and are optimised over the wavelet used (DEP 1, . . . , 10 and DLA 4, . . . , 10).

The wavelets ψ which achieved the lowest ISE were, incidentally, the same for

BITUP-TI and EBAYES-TI, and are also indicated in Table 5.2.

Table 5.2. ISE averaged over 100 sample paths (×105 and rounded) for the

competing methods based on the NDWT. The best results are boxed.

CPLX-TI EBAYES-TI BITUP-TI ψ

blocks 1,727 932 918 DEP 1

bumps 1,603 1,956 1,596 DEP 2

doppler 710 1,021 1,033 DLA 9

heavisine 470 458 409 DLA 8
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Our BITUP-TI technique outperformed the competitors, with the exception

of the doppler signal. In the next section, we identify possible reasons for the

weaker performance for the doppler signal and propose a remedy.

The poor performance of CPLX-TI on blocks was due to the fact that blocks

is a piecewise constant signal, and we used the piecewise constant DEP 1 (Haar)

wavelet to estimate it with EBAYES-TI and BITUP-TI, whereas the degree of

smoothness of the “least smooth” complex-valued Daubechies’ wavelet is the

same as that of DEP/DLA 3.

While in practice the “optimal” analysing wavelet for the signal at hand is

obviously unknown, a suitable wavelet can be chosen, for example, via the fast

cross-validation algorithm of Nason (2002).

BITUP versus trivariate thresholding. As mentioned in Section 2, we found

no empirical evidence of m-variate thresholding estimators, m > 2, perform-

ing better than bivariate ones and, in a number of cases, their performance

was found to be significantly worse. To illustrate this, we assess the perfor-

mance of a trivariate estimator constructed in an analogous way to BITUP,

except involving both “parents” and “grandparents”. We tested two TI ver-

sions of this trivariate estimator: one with the classical universal threshold

t = (2 log n)1/2 also used in BITUP-TI (TRITUP-TI-UNIV), and the other

with the threshold of the form t = (2 log n + log log n)1/2, recommended by

Downie and Silverman (1998) as a “universal” threshold suitable for trivariate

thresholding (TRITUP-TI-DOWSIL). The simulation set-up was identical as

above. TRITUP-TI-DOWSIL was found to perform better than TRITUP-TI-

UNIV, but BITUP-TI outperformed TRITUP-TI-DOWSIL by 21% to 36% per-

cent, depending on the signal. The fact that “grandparents” are not helpful here

might indicate that they do not provide much extra information apart from that

already provided by the “parents”.

5.3. Choosing ∆j from the data

Previously, we used ∆j = 0, which did not lead to satisfactory results for the

doppler signal. We now identify possible reasons for this, and suggest a remedy.

The doppler signal (n = 1, 024) and its wavelet coefficients computed using

the DLA 9 wavelet, are plotted in Figure 5.2. The example of Section 2 suggests

that the successful performance of the BITUP estimator with ∆j = 0 would

rely on the “child” and “parent” coefficients in the signal under consideration

being simultaneously “large”, at least in some of the cases. However, a careful

look at the wavelet coefficients of the doppler signal reveals that it is not the

case here: the groups of large coefficients at any two adjacent scales do not lie

along a vertical line but the group at the coarser scale is translated to the right.

Therefore, setting ∆j > 0 might be more appropriate in this case.
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Figure 5.2. Left plot: the doppler signal. Right plot: its DLA 9 wavelet
coefficients at scales j = 0, . . . , 9 (the y-axis) plotted for each k = 1, . . . , 2j

(the x-axis).

In practice, a suitable value of ∆j for j = 1, . . . , J − 1 might be found by

aligning the sequences (Yj,k)k and (Yj−1,k)k using the following algorithm:

1. Upsample (Yj−1,k)
2j−1

k=1 to create Y ∗
j−1,k such that Y ∗

j−1,k = Yj−1,⌈k/2⌉ for k =

1, . . . , 2j .

2. For c = −M, . . . ,M , take a circular shift of Y ∗
j−1,k by 2c (denoted here by

Y ∗
j−1,k+2c with a slight abuse of notation), and measure the distance between

|Yj,k| and |Y ∗
j−1,k+2c|.

3. Choose ∆j to be the shift c which minimises the distance between |Yj,k| and

|Y ∗
j−1,k+2c|.

The rationale behind this algorithm is that by minimising the distance be-

tween |Yj,k| and |Y ∗
j−1,k+2c|, we are forcing the large coefficients in Yj,k to lie

directly underneath the large coefficients in Y ∗
j−1,k+2∆j

. We then proceed with

our bivariate thresholding estimator by coupling Yj,k and Yj−1,⌈k/2⌉+∆j
, rather

than Yj,k and Yj−1,⌈k/2⌉, for the estimation of dj,k.

Table 5.3. ISE averaged over 100 sample paths (×105 and rounded) for
BITUP-TI and BITUP-TI with M = 3.

BITUP-TI BITUP-TI M = 3

blocks 918 909

bumps 1,596 1,602
doppler 1,033 766

heavisine 409 438

Table 5.3 shows the simulation results for our BITUP-TI algorithm combined

with the above method for choosing ∆j in a data-driven way, with the maximum

number of shifts M set to 3 and the l2 distance used in step 2. As expected, the

ISE result for doppler is now significantly improved, while the results for the other

functions are almost unaffected. This provides evidence for the effectiveness and
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robustness of the algorithm. The overall algorithm is fast, and its computational

complexity is O(Mn log n) (or O(Mn) for the non-TI version). As in the case of

BABTE, the computation of thresholds and thresholding statistics in BITUP is

extremely rapid. Both BITUP and BABTE are easy to code in any package which

implements the DWT, e.g., the WaveThresh package for the R environment.
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Figure 5.3. Results for the doppler signal. In all plots, solid lines are the
estimates, and dotted lines are the doppler signal. Left column: the complete
plots; right column: the first 40 observations. From top to bottom: results
for UNIV-TI, NC-TI and BITUP-TI with M = 3.
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We conclude with a noise removal example involving BITUP-TI with M = 3,

TI univariate thresholding with the universal threshold (UNIV-TI), and the TI

version of NeighCoeff by Cai and Silverman (2001) labelled NC-TI. We apply all

three methods to the doppler signal, with the standard deviation of the noise

σ = 1/3. The aim of this study is to illustrate how three different methods, each

of which uses the universal threshold, is based on a single wavelet basis, and

combines neighbouring coefficients (except UNIV-TI), compare on a “difficult”

signal. All of the above use the DLA 9 wavelet and hard thresholding; results

for soft thresholding were significantly worse and we do not report them.

The outcome is illustrated in Figure 5.3. Note that BITUP-TI does an

excellent job in estimating the initial part of the signal. NC-TI does not perform

so well, and UNIV-TI performs poorly. This is not surprising as the initial part

of the doppler signal is highly structured across scales, see Figure 2, but only

BITUP-TI takes advantage of this feature. On the other hand, both BITUP-TI

and NC-TI display spurious blips in the final parts of the respective estimates.

Again, this is not surprising as both use thresholds which are, effectively, lower

than that used by UNIV-TI. Hoever, the spurious spikes in BITUP-TI are less

pronounced than those in NC-TI.

Software. S-Plus code implementing BABTE and BITUP can be obtained

from http://www.maths.bris.ac.uk/ mapzf/biv/biv.html.
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Appendix 1. Proofs

Proof of Proposition 3.1. First consider the case δ < tσ. Note the inequalities

∫∫

y2+u2≤t2σ2

fY,U(y, u)dydu

≤ 1

2πσ2

∫∫

(y−d)2+(u−d′′)2≤(tσ+δ)2
exp

{

−(y − d)2 + (u− d′′)2

2σ2

}

dydu

=
1

σ2

∫ tσ+δ

0
r exp

(

− r2

2σ2

)

dr = 1 − exp

{

−(tσ + δ)2

2σ2

}

,
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∫∫

y2+u2≤t2σ2

(y − d)2fY,U(y, u)dydu

≥ 1

2πσ2

∫∫

(y−d)2+(u−d′′)2≤(tσ−δ)2
(y − d)2 exp

{

−(y−d)2+(u−d′′)2
2σ2

}

dydu

=
1

2πσ2

∫ 2π

0
cos2(θ)dθ

∫ tσ−δ

0
r3 exp

(

− r2

2σ2

)

dr

= σ2
[

1 − exp
{

− (tσ − δ)2

2σ2

}{(tσ − δ)2

2σ2
+ 1

}]

.

Using the above bounds in (3.1), we obtain RB
d,Σ(t) ≤ R̃B,1

d,Σ(t) as required. Now

consider the case δ ≥ tσ. Let D denote the smallest angular section of the

smallest ring centred at (d, d′′) containing {(y, u) : y2 + u2 ≤ t2σ2}. We have

∫∫

y2+u2≤t2σ2

fY,U(y, u)dydu ≤ 1

2πσ2

∫∫

D
exp

{

−(y − d)2 + (u− d′′)2

2σ2

}

dydu

=
1

πσ2
arcsin

(

tσ

δ

)
∫ δ+tσ

δ−tσ
r exp

(

− r2

2σ2

)

dr

≤ tσ

2δ

[

exp

{

−(tσ − δ)2

2σ2

}

− exp

{

−(tσ + δ)2

2σ2

}]

.

On the other hand, obviously
∫∫

y2+u2≤t2σ2(y − d)2fY,U(y, u)dydu ≥ 0. Again

using these two bounds in (3.1), we get RB
d,Σ(t) ≤ R̃B,2

d,Σ(t) as required.

Proof of Proposition 3.2. Let φµ,σ(x) = φ{(x− µ)/σ} and Φµ,σ(x) = Φ{(x−
µ)/σ}, where φ and Φ are the pdf and the cdf of the standard normal, respectively.

By straight intergration, we have

RU
δ,σ(t) = δ2{Φδ,σ (tσ) − Φδ,σ (−tσ)}

+σ2
{

(tσ − δ)φδ,σ (tσ) + (tσ + δ)φδ,σ (−tσ)

+1 − Φδ,σ (tσ) + Φδ,σ (−tσ)
}

. (A.1)

Consider the case δ < tσ and compare RU
δ,σ(t) and R̃B,1

d,Σ(t). First examine

σ2{(tσ − δ) φδ,σ (tσ) + 1 − Φδ,σ (tσ)}
σ2 exp

{

− (tσ−δ)2

2σ2

} {

(tσ−δ)2

2σ2 + 1
}

(A.2)

(note that the numerator is part of the second summand in (A.1), whereas the

denominator is the second summand in (3.2)). With x = (tσ − δ)/σ, (A.2)
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becomes

x
√

2π
(

x2

2 + 1
) +

1 − Φ(x)

exp
(

−x2

2

) (

x2

2 + 1
) . (A.3)

We now use the following result from Ito and McKean (1974, p.17) for all x,

1 − Φ(x) ≥
√

2

π

1√
x2 + 4 + x

exp

(

−x
2

2

)

. (A.4)

Using (A.4), we bound (A.3) from below by

x
(√

x2 + 4 + x
)

+ 2

√
2π

(

x2

2 +1
) (√

x2+4+x
) ≥ 1

√

π
2x+

√
2π

≥ 1
√

π
2 t+

√
2π
,

which leads to

σ2 exp

{

−(tσ − δ)2

2σ2

} {

(tσ − δ)2

2σ2
+ 1

}

≤
(

√

π

2
t+

√
2π

)

σ2 {(tσ − δ)φδ,σ (tσ) + 1 − Φδ,σ (tσ)} . (A.5)

We now consider the ratio

δ2 {Φδ,σ (tσ) − Φδ,σ (−tσ)}
d2

[

1 − exp
{

− (tσ+δ)2

2σ2

}] . (A.6)

(note that the numerator is the first summand in (A.1), whereas the denominator

is the first summand in (3.2)). With y = −(tσ + δ)/σ, and with x as above, we

bound (A.6) from below by

δ2 {Φ(x) − Φ(y)}
d2

{

1 − exp
(

−y2

2

)} ≥ δ2 {1/2 − Φ(y)}
d2

{

1 − exp
(

−y2

2

)} ≥ δ2

2d2
, (A.7)

where the last inequality comes from the fact that h(y) := exp(−y2/2)−2Φ(y) ≥
0 for y ≤ 0 (note that h(−∞) = h(0) = 0 and differentiate twice to see that h(y)

has one maximum but no minima on (−∞, 0)). (A.7) implies that

d2

[

1 − exp

{

−(tσ + δ)2

2σ2

}]

≤ 2d2

δ2
δ2 {Φδ,σ (tσ) − Φδ,σ (−tσ)} . (A.8)

By adding up (A.5) and (A.8), we obtain

R̃B,1
d,Σ(t) ≤ max

(
√

π

2
t+

√
2π,

2d2

δ2

)

RU
δ,σ(t) =

(
√

π

2
t+

√
2π

)

RU
δ,σ(t). (A.9)
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Now consider the case δ ≥ tσ and compare RU
δ,σ(t) and R̃B,2

d,Σ(t). We first examine

the ratio

d2tσ
2δ

[

exp
{

− (tσ−δ)2

2σ2

}

− exp
{

− (tσ+δ)2

2σ2

}]

δ2 {Φδ,σ (tσ) − Φδ,σ (−tσ)}

(note that the numerator is the first summand in (3.3), whereas the denominator

is the first summand in (A.1)). With x and y as before, the extended Mean Value

Theorem implies that there exists ω ∈ (y, x) such that

d2tσ
{

exp(−x2

2 )−exp(−y2

2 )
}

2δ3 {Φ(x)−Φ(y)} =
−
√

2πd2tσω exp(−ω2

2 )

2δ3 exp(−ω2

2 )
≤ d2

δ2

√
2πt≤

√
2πt, (A.10)

where the last but one inequality follows from −ω ≤ −y and δ ≥ tσ. (A.10)

implies that

d2tσ

2δ

[

exp

{

−(tσ−δ)2
2σ2

}

−exp

{

−(tσ+δ)2

2σ2

}]

≤
√

2πtδ2 {Φδ,σ (tσ)−Φδ,σ (−tσ)} .
(A.11)

Finally, consider the ratio

σ2

σ2 {(tσ − δ)φδ,σ (tσ) + 1 − Φδ,σ (tσ)}

(note that the numerator is the second summand in (3.3), and the denominator

is part of the second summand in (A.1)). Since u(x) := (2π)−1/2x exp(−x2/2) +

1 − Φ(x) ≥ 1/2 for x ≤ 0 (as u(0) = 1/2 and u′(x) < 0), it follows that

σ2 ≤ 2σ2 {(tσ − δ)φδ,σ (tσ) + 1 − Φδ,σ (tσ)} . (A.12)

By adding up (A.11) and (A.12), we obtain

R̃B,2
d,Σ(t) ≤ max

(√
2πt, 2

)

RU
δ,σ(t).

(A.13)

Combining (A.9) and (A.13) completes the proof.

Proof of Corollary 3.1. Using Proposition 3.1 and then Proposition 3.2,

RB
d,Σ{(2 log n)

1
2 } ≤ R̃B

d,Σ{(2 log n)
1
2 }

≤ max
{

(π log n)
1
2 + (2π)

1
2 , 2(π log n)

1
2

}

RU
δ,σ{(2 log n)

1
2 }.

By Theorem 7 from Donoho and Johnstone (1994), we have

RU
δ,σ{(2 log n)

1
2 } ≤ (2 log n+ 2.4)

{

σ2

n
+ min

(

σ2, δ2
)

}



BIVARIATE THRESHOLDING IN WAVELET ESTIMATION 1479

for n ≥ 4. From the definition of δ at (3.2), we get successively that

δ2 =
d2 + d′2 − 2ρdd′

1 − ρ2
≤ d2 + d′2

1 − |ρ| ,

σ2

n
+ min

(

σ2, δ2
)

≤ 1

1 − |ρ|

{

σ2

n
+ min(δ2, d2 + d′2)

}

.

Finally, it is easy to see that min(δ2, d2 + d′2) ≤ min(δ2, d2) + min(δ2, d′2). Com-

bining the above in an obvious way leads to the result.

Proof of Theorem 4.1. The first equality comes from the orthonormality of

the DWT. Assume n ≥ 4. Using the bound (3.4), for those levels where the

bivariate estimator is used (|ρj | ≤ ρ), we have that

E
(

d̂
(l)
j,k−d

(l)
j,k

)2
≤ q{(log n)

1
2}

1−ρ

[

σ2

n
+min

{

(

d
(1)
j,k

)2
, σ2

}

+ min

{

(

d
(2)
j,k

)2
, σ2

}]

.

(A.14)

For the remaining levels, by the oracle inequality of Donoho and Johnstone (1994),

E
(

d̂
(l)
j,k − d

(l)
j,k

)2
≤ (2 log n+ 2.4)

[

σ2

n
+ min

{

(

d
(l)
j,k

)2
, σ2

}]

. (A.15)

The bound on the RHS of (A.15) is majorised by the bound on the RHS of (A.14),

so that (A.14) can be used for all levels j, irrespective of ρj . The rest of the

proof proceeds exactly like the proof of Theorem 3 in Johnstone and Silverman

(1997), but uses the bound (A.14) instead of the bound from Theorem 1 of

Johnstone and Silverman (1997). The adaptation is straightforward and we omit

the details.

Proof of Theorem 5.2. The first equality comes from the orthonormality of

the DWT. Assume n ≥ 4. Using the bound (3.4) (for j = 1, . . . , J − 1) and the

oracle inequality of Donoho and Johnstone (1994) (for j = 0), we have

J−1
∑

j=0

2j
∑

k=1

E
(

d̂j,k − dj,k

)2

≤ q{(log n)
1
2}

[

σ2 +

J−1
∑

j=1

2j
∑

k=1

{

min
(

d2
j,k, σ

2
)

+ min
(

d2
j−1,⌈k

2
⌉+∆j

, σ2
)}

+ min
(

d2
0,1, σ

2
)

]

≤ q{(log n)
1
2}

{

σ2 + 3

J−1
∑

j=0

2j
∑

k=1

min
(

d2
j,k, σ

2
)

}

. (A.16)
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The rest of the proof proceeds exactly like the proof of Theorem 3 in Johnstone

and Silverman (1997), but uses the bound (A.16) instead of the bound from

Theorem 1 of Johnstone and Silverman (1997). We omit the details.
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