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Abstract: A DNA microarray experiment simultaneously measures the expression
levels of thousands of genes. An important question is to identify genes that express
differentially between two types of tissues or at different experimental conditions.
Since large numbers of genes are compared simultaneously, simple use of significance
tests can easily lead to false positive findings. We propose a sequential procedure for
estimating the empirical null distribution of multiple hypothesis testing and apply
the procedure to identify differentially expressed genes in microarray experiments.
Our procedure can be viewed as a new method to estimate the g-value proposed by
Storey (2002). The key intuition is to obtain an estimate of the null distribution
that is robust to the observations from the alternative distribution. Technically, we
borrow strength from the missing data literature so that we can avoid estimating the
density function corresponding to differentially expressed genes nonparametrically,
but can focus on estimating the null density. Numerical comparisons between
our method and Storey’s original method were conducted in simulated and real
data examples. The numerical results show that our procedure outperforms the
originally estimated g-values in almost all scenarios.

Key words and phrases: False discovery rate, Markov chain Monte Carlo, microar-
ray data analysis, missing data, multiple hypothesis testing.

1. Introduction

A DNA microarray experiment measures the expression levels of thousands
of genes simultaneously. An important question is to identify genes that express
differentially between two types of tissues or at different experimental conditions.
Since large numbers of genes are compared simultaneously, the use of significance
testing methods, such as a Student’s ¢-test or Wilcoxon test, can easily lead
to false positive findings if the extremes of multiple samples are not properly
accounted for. SeelGe, Dudoit._and Speed (2003) for more discussion on this issue.
Two recent methods that effectively account for the extremes in multiple testing
are the false discovery rate (FDR) method and the empirical Bayes method.

To set notation, let Hy, ..., Hy denote the collection of N null hypotheses,
and Py, ..., Py denote the corresponding p-values of the N tests. The outcome
of testing N genes simultaneously can be summarized as follows.
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Accept H; Reject H; | Total
Genes for which H; is true: U \%4 n
Genes for which H; is false: T S n
Total w R N

The FDR method is due to Benjamini_and Hochbergd (1994), where
v
FDR = E<§|R > O)Pr(R > 0),

i.e., the false discovery rate is the expected proportion of false positive find-
ings among all the rejected hypotheses. Under the null hypothesis that the
p-values resulted from testing the non-differentially expressed genes are inde-
pendent and uniformly distributed on [0, 1], Benjamini_and Hochberd (1995) and
Benjamini and Liu (1999) proposed sequential p-value procedures that can con-
trol FDR to a desired level. Under the same null hypothesis, [Storey (2002, 2003)
and IStorey, Taylot. and Siegmund (2004) proposed a new class of testing proce-
dures which incorporate the information of n/N in the test, and thus have a
higher power. Storey (2002) also defined two new quantities, the positive FDR
and the g-value. The positive FDR is

pFDR = E<%|R >0)

and has certain conceptual advantages over FDR (Storey (2002)). In addition,
Storey (2002) showed that, for A = [0, A], for a test that rejects when the p-value
< A, pFDR can be written

TP, (A)

pFDR(A) = PrA)

if the N p-values are mutually independent and follow the mixture distribution

f(p) = mofolp) + (1 — o) f1(p)- (1)

Here 7y denotes the a priori probability that a null hypothesis is true and is
typically near 1, say mg > 0.9; fo and f; denote the distributions of the p-
values corresponding to the null and alternative hypotheses, respectively; P, (A)
and Py(A) are the probabilities of A with respect to the densities fo and f,
respectively. Note that in the FDR method, it is generally assumed that fj is
uniform[0, 1]. For an observed p-value p, the g-value is

q(p) = . A'};lef A}{pFDR(A)} (2)
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m (@) argued that the g-value is a natural pFDR analogue of the p-
value used in the conventional single hypothesis test, and suggested that the
g-value could be used as a reference quantity for decision of multiple tests. More

discussion on the FDR method can be found in Benjamini and Yekutieli (IZO_QJ]
Finner and Roterd dZODj),lGencvese A dZODj |20Qd Reiner, Yeku-
tieli and Benjamini (2003) and BlacK (2004).

The empirical Bayes method was proposed by Efron, Tibshirani, Storey and
Tusher (2001) and (@) Unlike the FDR method, the empirical Bayes
method works on the test statistics Y;’s, or the test scores z; = <I>_1(P,~) or
z; = ®~1(1 — P;), where ® is the cumulative distribution function (CDF) of the
standard normal distribution. [Efror (@) assumed that the test scores follow
a mixture distribution

f(2) =m0 fo(z) + (1 —m) f1(2), 3)

where fj is assumed to be a non-standard normal distribution that can be esti-
mated from the data. In this sense, the method is empirical, and the estimate
of fo is called the empirical null distribution. (Eb) estimated fy and f
using a spline method. This idea was further extended by i

m) They assumed no parametric structure on fi nor on f, and estimated

the densities using a nonparametric Bayesian approach. We note that there are
other papers which also focused on the mixture ([l); a non-exhaustive list in-
cludes Allison, Gadbury, Heo, Fernandez, Lee, Prolla and Weindruch (2002),
[Pounds and Morris (2003) and [Liao, Lin, Selvanayagam and Shili (2004). They
assumed that fy is uniform[0, 1] and formulated f; as a beta or mixture of beta
distributions. In the empirical methods, the differentially expressed genes are

usually identified using the local FDR (IEfmn_QLa.l] (2001), Efron (2004) and
Liao et all (2004))
7o.fo(zi)

dr(z;)) = ————=,
or the posterior expected FDR (Genovese and Wasserman (2002, 2003)). Al-

though these methods work well for many problems, they often need to model
or estimate both densities fy and fi. Estimation of f; or f can be difficult for
certain values of z, particularly when the number of differentially expressed genes
is small. The problem can be worse when the distribution of differentially ex-
pressed genes has a complex structure. In most of the unsuccessful cases, the

estimate of FDR deteriorates simply because one can not accurately estimate f;
or f.

To address this issue, we propose a sequential Bayesian procedure for iden-
tifying differentially expressed genes. Our approach is motivated by methods
from the missing data literature and takes advantage of the fact that fy usually
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has a known parametric structure, at least approximately, as indicated in the
literature. Let F', Fy and F; denote the CDFs of f, fo and f1, respectively. Note
that it is much easier to estimate a CDF than to estimate a density function
nonparametrically. This is evidenced by the faster optimal convergence rate of
the former. We thus focus on building an estimated pFDR on a parametrically
estimated Fy and a nonparametrically estimated F. This new procedure natu-
rally avoids the difficulties embedded in estimating f; or f nonparametrically,
with fy to be estimated simultaneously. As a result, our estimation of the null
distribution is robust to the observations from the alternative distribution fi.

The rest of the article is organized as follows. In Section 2, the sequential
Bayesian procedure is described. In Section 3, the procedure is demonstrated
and compared with Storey’s procedure through three simulated examples. In
Section 4, the new procedure is applied to a data set. In Section 5, we conclude
with a brief discussion.

2. The sequential Bayesian Method

In Section 2.1, we give a detailed description for the sequential Bayesian
procedure, where the generalized normal distribution is employed to model the
null test scores. In this article, the null test scores refer to the test scores for
which the null hypotheses are true. In Section 2.2, we justify the validity of
the generalized normal distribution for modeling the null test scores through a
simulation.

2.1. The sequential Bayesian procedure

We consider the test scores, 21,. .., 2y, where z; = ®~!(1 — P;) with P; being

the p-value corresponding to the i*" test. For simplicity, we assume that the z;’s

are mutually independent. We assume the following.

(1) The z;’s come from two different populations. The majority of the z;’s are
from the null distribution Fy(z|6), parameterized by a vector #; the other z;’s
are from an arbitrary unknown distribution F(z).

(2) There exists an m < N such that the smallest m z;’s are from the null
distribution Fy(z|#) with mode(Fp); the mode of the null distribution Fy(z|6)
is inside the range of these m smallest z;’s. In other words, there exists a
number ¢ > mode(Fp) such that Fj(c) is practically 0 and 1 — Fy(c) remains
positive, so any test score z < ¢ comes from the null distribution Fj.

Our goal is to find the sample size n and the n z;’s that correspond to non-
differentially expressed genes. We first explain the intuition behind our method,
the description of the detailed algorithm follows. We consider the following pro-
cedure.
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Let {z],...,2;} denote the samples in the set {z1,...,2zx} which are from
Fy(z]0); n < N. We assume that {z},..., 25} is a copy of the set of the m
smallest 2;’s, and treat {2, ,;,...,2;} as missing. Furthermore, we assume that
{21,25,..., 2} satisfies the condition maxi<j<yn, 2} < ¢ and ming,41<i<n 2} > c.
Note that ¢ is here treated as a working parameter, fixed at each cycle of our
Bayesian procedure, and is effectively increased from cycle to cycle to improve
efficiency by including more data that are potentially from fy. The joint posterior
distribution of n and 6 can be written as

F0,nlc, 21, ... 2n) x <:1> 1 folz10)[1 — Fo(cl0)]"™P(n)P(6),  (4)
=1

where the binomial coefficient is the number of all possible arrangements of the n
samples with m samples less than or equal to ¢ and others greater than ¢; fo(z|0)
is the probability density function of the null distribution; and P(n) and P(6)
denote the prior distributions of n and 6, respectively.

To accommodate the possible deviation of the null distribution from the
normal distribution, we assume that fo(z|0) belongs to the family of generalized
normal distributions (Box and Tiad (1973)),

m@w>=2d§%ymp{—(kifﬂf}7 (5)

where 6 = (u, a, 3) with a > 0 and 8 > 0. The location parameter u represents
the center of the distribution, the scale parameter « represents the standard
deviation, and the shape parameter (3 represents the rate of exponential decay.
For 3 = 2, the distribution is N(y, a?); for 0 < 3 < 2, the distribution has longer
tails than the normal distribution; and for § > 2, the distribution has shorter
tails than the normal distribution.

For a Bayes analysis, we specify the following prior distributions for u, a,
and n. We assume

Fl) o, f@) oo (w<e), f(5) x B R,

For our examples, we set ¥ = 2 so 3 has a prior mean value of 2. Based on the
symmetry property of the generalized normal distribution, we set

P(n)  exp{=Aln —ng|}, n=m,m+1,...,N,

where X is a hyperparameter, and ng = ng if ng < 0.95N, ng = 0.95N otherwise;
here, n§ is defined to be twice #{z; : z; < mode(Fp), i = 1,...,N}. Note that
mode(Fp) can be easily identified as the biggest mode of F', the distribution of
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all test scores. We use a simple histogram-based method to estimate mode(Fy),
though better methods can be used. Since our method is a sequential approach,
the current estimate of x can be used as an estimate of mode(Fp) for the next
cycle. The hyperparameter A represents our belief on how much n is different
from ng. For our examples the A = 0.001, which corresponds to a vague prior on
n.

With above specifications, we have the following posterior distribution of n
and 6,

f@,nlc,z1,...,ZN)

(o) Gargpy) e { -2 (1))

=1

[t A VC) _ v_1
P g [ e e
2 20(3) Jo o ’

where < ¢, « >0, >0, andn € {m,m+1,...,N}.

Given the observations zi,...,zy, we can simulate the sample size n and
the parameter vector 6 from (@) using the Metropolis-within-Gibbs sampler
(Robert._and Caselld (1999)) as follows.

(a) Simulate n from the conditional posterior f(n | 0,¢,21,...,zx) using the
Metropolis-Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller
and Teller (1953) and [Hastingd (1970)).

(b) Simulate 6 from the conditional posterior f(6 | n,c, z1,...,2n) using the
Metropolis-Hastings algorithm.

With the estimate of 6§ obtained in the above simulation (how to estimate 6 is
described below), we can test whether z(;,11),- -+, Z(mts) ~ fo(z|é), where z(
denotes the I*" order statistic of z;’s, and Z(m+1)s - -+ s Z(m+s) are all the samples
which are in the interval (¢, c+0a]. Here 0 is the step size of the increment of c. If
¢ is too large, the estimate of ¢, hence the estimate of n, can not be very accurate,
-they will be too small or too large relative to their true values. Otherwise, the
procedure will need to iterate too many steps for m to reach n. Our experience
suggests that a number between 0.01 and 0.1 is often a good choice for §. If we
decide to accept the hypothesis that z(m41) - .- 2(mts) ~ fo(z|é), with the testing
procedure described below, then we let the new m «— m + s, is repeat the above
procedures, and re-estimate 6 with more observations. The above procedure is
iterated until no more samples can be added to fy. The detailed algorithm is
summarized at the end of this section.

To test if {2(mi1) - Zmts)} ~ fo(2]0), we design the following test which is
referred to as a null-score-addition test hereafter. We note that testing {z(m+1) e
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Z(mts)} ~ fo(2]0) is approximately equivalent to testing that s ~ Binomial(f —
m, ), with 7§ = [Fy(c4+6a|0)— Fo(c|0)]/[1—Fy(c|d)]. Considering the additivity of
the components of the mixture model (@), we conduct the following single-sided
test. For the null hypothesized value 19 = 1 the hypothesis is stated as

Hy :n < no, Hy :n > no, (7)

which rejects the hypothesis {z(m41) -+ Zm+ys)} ~ fo(2]6) when s is too large.
The p-value of the test can be calculated as

— [ —m N A\ A—m—i
pzz:( . >77(1—77) : (8)

1=S

When nn—m is large and 7 is small, p can be calculated by Poisson approximation.
Once a stable value of m has been established, re-simulate (ﬁl,él)

(ﬁM/,éM/) from f(n,0|2f,...,2},) by the Metropolis-within-Gibbs sampler. For
a particular rejection region A specified for the scores under study, we estimate
the pFDR by

fo |9
pFDR(A =7 Z ~ : 9)
where I3f(A) is estimated by #{z; : z; € A,i = 1,...,N}/N, as in [Storey
(2002). If the rejection region takes the form [w,o0), we denote pFDR(|w,0))
by pFDR(w) and re-write (@) as

nll—Fow\H)
pFDR 1
pPFDR(w M,ZN [ Fw) (10)

where F'(w) = #{z : z; < w}/N. Furthermore, for the nested rejection regions
of the form [w, 00), we can estimate the g-value of the observed score z by

§(z) = inf {pFDR(w)}. (11)

w<z

The genes in the set {z; : §(z;) < (¢} are then identified as the differentially
expressed genes at the significance level (. We now summarize the algorithm.

The Sequential Bayesian Estimation Algorithm

(a) Set ¢ to the Q™ percentile of z, and determine the value of m such that
Z(m) < ¢ and z(p41) > ¢ Let I denote the number of consecutive sampling
stages used for estimation of the parameters n and . Let I = 1, ng = m,
[?0 = 2, and fip and &g be the mean and standard deviation of z(y),. .., z(m),
respectively.
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(b) Simulate samples (n1,61),...,(nar,0a) from the joint posterior f(n,6|c, z1,
..., zn) for M steps starting with the current estimate (fi7_1,607-1). Estimate
n by

1 1 M
A= (1— Vg b .
mr=( I)m“r(]w—]wo)],Z i
i=Mop+1

where My is the number of burn-in steps. Estimate p, a and 3 similarly.

(c) Calculate the p-value at {). If p < 0.1 and I < S, set [ «— [ + 1 and go to
step(b). Otherwise, go to step (d).

(d) Test the hypothesis Ho : 2(m1) - - - Z(ms) ~ fo(z|07) versus H : Z(m41) - - -
Z(mts) fo(z|é1) at a pre-specified level . If Hy is accepted, set m < m+s,
¢ — c+0&, hg = fy, By = 07 and I = 1, go to step (b). Otherwise, go to
step (e).

(¢) Fix ¢ to its current value, re-simulate samples (7, 61), ..., (Aae, Oar) from
f(n,0lc,z1,...,2zn) by the Metropolis-within-Gibbs sampler, calculate §(z;)
for ¢ =1,..., N, and identify the differentially expressed genes according to
the ¢(z;)’s.

In the sequential procedure, the parameters that need to be specified by the
user include Q, My, M, §, v, S and M’. The default setting used in our examples
is Q = 80, My = 200, M = 1,000, 6 = 0.025, v = 0.05, S = 3, and M’ = 1,000.
Otherwise, the setting used will be specified in context.

The default setting of ) is 80. This is quite reasonable as my often takes a
value greater than 0.9. The problem of identifying differentially expressed genes
is truly a clustering problem. The idea underlying the sequential procedure is
similar to that of semi-supervised learning (Basu, Banerjee and Mooney (2002)),
(@ can be as large as possible if we are sure that the genes included in the learn-
ing dataset (i.e., {2(1),.--,2(m)}) express non-differentially. In our experience,
we obtain similar outcomes provided we choose () from a reasonable range, say,
@ > 50. This “robust” property actually made finding an optimal @) a practi-
cally difficult and unrewarding procedure in the sense that the results are not
very differential with respect to ), and the “optimal” @) provides very limited
improvement. The values of My, M and M’ are problem dependent. The more
complex the posterior distribution is, the larger the My, M and M’ used. The
setting v = 0.05 is appropriate for most examples, although this may be too
strict. The parameter § controls the step size of null test score addition. If § is
too large, the resulting estimate of ¢, and thus the estimate of n may be far from
its true value. Otherwise, the procedure will need to iterate too many steps to
have m reach n. Our experience suggests that a number between 0.01 and 0.1 is
often a good choice for §. Fortunately, the outcome of the sequential procedure
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will not be affected much by the setting of v and ¢ as shown by one of our ex-
amples. The parameter S together with the parameter M controls the accuracy
of the estimate of ¢. The larger the product MS is, the smaller variance the
estimates of ¢ have. Introducing the parameter S improves the efficiency of the
sequential procedure, as it can make a moderate M acceptable.

2.2. Numerical evaluation of the generalized normal modeling

Let z1,...,2, denote the null test scores. The null test scores have been
modeled using different distributions by different authors. IStorey (2002) mod-
eled the scores using the standard normal distribution N(0,1) by assuming that
the corresponding p-values follow the uniform distribution Unif(0, 1). [Efron
(2004) relaxed Storey’s assumption and modeled the scores using a non-standard
normal distribution N (u, 0%), where i and o are estimated from the data using a
spline method. In the sequential procedure, we relaxed Efron’s assumption and
modeled the null test scores using a generalized normal distribution. In the fol-
lowing simulation, we illustrate the flexibility of the use of the generalized normal
distribution.

Suppose that the expression levels of n genes are measured under two ex-
perimental conditions on ten microarray chips. Let x; = (x;1,...,2;10) be the
expression levels of gene ¢, where z; 1,...,7; 5 were measured under condition 1,
and x;6,...,%;10 were measured under condition 2. We assume that the distri-
bution of the expression levels can deviate from normal and that there could exist
dependence among genes. Furthermore, we assume that not all gene expression
measurements are usable and we keep all the genes which have at least two usable
expression levels per condition.

First, we allowed error distribution to be non-normal. Let x;; be the gene
expression level described above, so
(2)

' zii — p1t
~tw), j=1,...,5 LTt
o; 0j

NS
L5 ; ~ t(’lj), j = 6, ey 10; (12)

(1)

where t(v) denotes the student ¢-distribution with degree of freedom v, p;

and ,ugz) are the respective mean expression levels of gene ¢ under condition
1 and condition 2, and o? is a random variable distributed according to the
inverse gamma distribution IG(2.5,0.5). The parameters of the inverse gamma
distribution are computed from a gene expression dataset, the avian pineal gland
gene expression data analyzed in Section 4. In analyzing the dataset, we also
found that the distribution of the gene expression levels was significantly different
from the normal distribution and closer to a student t-distribution with the
degrees of freedom ranging from 3 to 5. Hence, we tried v = 3,4 and 5 in

([2) and ([I3).
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Next, we created some level of dependence among genes. To correlate gene
1 with gene [ in expression, conditional on the expression levels of gene [, we let
(1) )
Tig = Fyjjt . Tig = Hyjjy .
T L), =15 2 T 4y, j=6,...,10, (13)
i\l g3l

where ,ul(.;.l‘)l = ,ul(-a) + puoi/oy(xy; — ul(a)) (a=1,2), ogp = 04y /1 — P2, and py is a
random variable drawn from the uniform distribution Unif[—1,1]. Note that if
t(v) is replaced by N(0,1) in (I3), then z;; and x;; are normal random variables
and their correlation coefficient is equal to p; exactly. Here, with z;; and x;; as
student-t random variables, our simulation results show a correlation coefficient
slightly larger than p;;.

At last, for each gene we randomly discard some expression levels as disqual-
ified and thus missing values, but per condition we retain at least two expression
levels as usable values.

Based on the principles described above, we have the following algorithm for
simulating gene expression zs, s =1,...,n.

(a) Set v =3, 4, or 5 and s = 1; generate x; according to ().
(b) Repeat steps (b.1)-(b.3) below for s = 2 to n.

(b.1) Randomly choose an [ uniformly from the set {0,1,...,s —1}.

(b.2) If I = 0, generate x, according to ().

(b.3) If I # 0, generate x5 according to (I3), conditional on the expression

levels of gene I.
(c) Repeat steps (c.1)-(c.2) below for s =1 to n.

(c.1) Randomly choose kg1 and ko uniformly from the set {2,3,4,5}.

(c.2) Retain zg1,...,T5%,, and Zsg,...,Ts 54k, as usable expression levels

of gene s under condition 1 and condition 2, respectively.

Figure 1 (1)-(4) show the quantile-quantile (Q-Q) normal plots of the ex-
pression levels of 5,200 genes simulated with v = 4, ugl) = 0 for all i, u§2) =0
for i = 1,...,5,000 and p\* drawn from N(5,1) for i = 5,001, ...,5,200. The
data shown in Figures 1 (1)-(4) correspond to x.1, .2, z.¢ and x.7, respectively.
Hence, Figures 1, 3 and 4 mimic datasets that include differentially expressed
genes. For comparison, we also show the Q-Q normal plots of the expression lev-
els of the avian genes (Figure 1, 5-12). Refer to Section 4 for more information
on the dataset. Visually, the simulated datasets seem to share similar features

with gene expression data when the data are not normally distributed.
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Figure 1. Comparison of the distributions of the simulated and gene ex-
pression levels (scaled). Plots 1-4: Q-Q normal plots of the simulated gene
expression data. Plots 5-8: Q-Q normal plots of the avian LD data mea-
sured in four chips at a time point. Plots 9-12: Q-Q normal plots of the
avian DD data measured in four chips at a time point. The horizontal axis
is the quantile of the standard normal distribution, and the vertical axis is
the quantile of the gene expression levels.

With the simulated data, we test the hypotheses H;q : ,u(l) = #2(2)

i

i1t #2(1) # ,uz(?) using the two sample t-test statistic

v @(1) B @(2)

1 1
S?(? + E)

Y

o))

7

2)

and T,

versus

denote the averages of the observed expression levels of gene

1 under conditions 1 and 2, respectively; and SZ-2 is the pooled variance estimate
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for a?. We assume that Y; ~ t(k;1 + kip — 2) by treating x;;’s as samples drawn
from a normal distribution, calculate the p-value, and then convert the p-value
to the score z; = ®~1(1 — P;). Figure 2 summarizes the characteristics of the test
scores for a simulated data set. Figure 2 (a) and (b) are the histogram and Q-Q
normal plot of the test scores for the non-differentially expressed genes, while
Figure 2c and 2d are for the differentially expressed genes. Figure 2b indicates
that a normal distribution may not be the best distribution for modeling null
test scores of the gene expression data. This is further evidenced by the avian
DD data shown in Figure 8a.

<
3
n
g 2«
g :
wn
3 2 ©
< 9
> s
5] q
o 4
-2 0 2 4 -2 0 2
test scores standard normal variables
= 0 =
n P
= g -
2 ;o
=} N
& 9 “,f
o — [
i .
o o
0 1 2 3 4 5 -3 -2 -1 0 1 2
test scores standard normal variables

Figure 2. Test scores of a simulated data set. Plots a and b are the histogram
and Q-Q normal plot of the test scores of the non-differentially expressed
genes. Plots ¢ and d are the histogram and Q-Q normal plot of the test
scores of the differentially expressed genes.

For a simulation study to compare the performance of the normal and gener-
alized normal distributions, the above procedure was replicated 30 times and 30
independent datasets were created. The degree of freedom of the t-distribution
was set to v = 3, 4 and 5 for the first, second and third 10 datasets, respectively.
The null test scores were then fitted by both the normal and the generalized
normal distributions. The fitness was measured using the BIC statistic

BIC, = —log-likelihood + % log(n), (14)

where d € {1,2} denotes the choice of the fitting distribution (1 for the normal
distribution and 2 for the generalized normal distribution), and pg is the number
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of parameters of the fitting distribution. According to the BIC criterion, the
fitting distribution which results in a smaller BIC value is preferred.

Table 1. Comparison of the normal and generalized normal distributions for
modeling the simulated null test scores: v is the degrees of freedom of the t-
distribution used in simulating the data; #{BIC; < BIC5} is the number of
datasets favoring the normal distribution; #{BICy; < BIC4} is the number
of datasets favoring the generalized normal distribution; BIC; — BIC, is
the average (over 10 datasets) of the difference of the BIC values for the two
distributions; the number in parentheses is the standard deviation of the
corresponding average value.

v #{BIC; < BICy}  #{BIC, < BIC,}  BIC, — BIC,
3 10 5.61 (1.41)
4 1 9 2.51 (0.77)
5 5 5 -0.03 (1.09)

Table 1 summarizes the BIC values calculated for the 30 datasets. It indicates
that the generalized normal distribution is a good choice for modeling simulated
null test scores when v is less than 5, and the normal distribution is preferred
by BIC otherwise. Nonetheless, even when normal assumption is preferable, the
generalized normal distribution still allows normality as a special case but at the
cost of a higher number of parameters. From this result and Figure 1, we can
see that the generalized normal distribution is not a bad choice for avian gene
expression data. In fact, it is the necessary choice for the DD data shown in
Figures 8 and 9.

3. Simulated Examples

In this section, the sequential Bayesian procedure is compared with Storey’s
procedure (2002) through three simulated examples, one of which satisfies our
assumptions while the others do not.

3.1. Example 1

This example comprises 20 datasets. Each dataset consists of 2,100 test
scores, of which the first 2,000 scores are generated from the standard normal
distribution, and the remaining 100 scores are generated from a left-truncated
student-¢ distribution with df = 5 and the truncation threshold T' = 3. In this
section, each score is viewed as a different gene, and the terms score and gene
are used exchangeably. In terms of mixture models, the density function of the
data can be written as

f(z2) =mod(2) + (1 — mo)t(z|df =5, T =3), (15)
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where ¢(z) denotes the density function of the standard normal, and t(z|df =
5,T = 3) denotes the density function of the left-truncated student-t distribution.
Here ¢(-) and #(-) correspond to the fy and f; in (@), respectively. The histogram
of one of the 20 datasets is shown in Figure 3a. The long right tail corresponds
to the left-truncated student-t distribution. Since fi(z) is left-truncated, this
example satisfies our assumptions that the majority of the scores are from fy(z)

and that there exists a number ¢ such that all z;’s less than ¢ are from fy.

(a) (b)
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Figure 3. a: Histogram of the test scores. The vertical line shows the cut-
off point, the value of ¢, obtained in a run of the sequential procedure at
the final stage. b: the g-values versus the test scores; c¢: the numbers of
significant genes versus the g-value cut-off values; d: the true false discovery
rates (tFDR) versus the g-values.

We first applied the sequential procedure to the dataset shown in Figure 3a.
The computational results are summarized in Figures 3 and 4. The vertical line
in Figure 3a shows the cut-off point, the value of ¢, obtained in a run of the
sequential procedure at the final stage. It splits the dataset into two parts, the
part used (left) and the part not used (right) for estimation of fy and my. Five
runs of the sequential procedure produced 75 = 0.9519 with standard deviation
2¢ — 5, which is almost identical to the true value 0.9524; and 6 = (,&,&,B) =
(—0.0124,1.4298,2.0169) with standard deviation (0.0007, 0.0016, 0.0037), also
very close to the true value (0.0, 1.414, 2.0). These results show the validity of
the sequential procedure for estimation of the empirical null distribution. Figure
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3b shows the g-values, which decrease monotonically with test scores. Figure
3¢ shows the number of significant scores versus different g-value cut-off values.
Figure 3d compares the g-value and the true false discovery rate (tFDR), where
the tFDR is defined for a given rejection region as the ratio V/R if R > 0 and 0
otherwise. The tFDR is calculable only when V' and R are both available. The
approximate equality of the g-value and tFDR in Figure 3d shows that the g-
value defined in ([[IJ) is a valid measure for the false discovery rate. Note that the
results shown in Figure 3 are all from a single run of the sequential procedure.
They are almost identical to those obtained by averaging over multiple runs.
This can be seen from the small standard deviations of the estimates of g and 6.
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Figure 4. Intermediate results produced in a run of the sequential procedure.
a: the increasing process of m; b: the p-values of the null-score-addition tests;
c: the estimates of my and 6 in different stages.

Figure 4 shows some of the intermediate results produced during a run of
the sequential procedure. Figure 4a shows the increasing progress of the value
of m, the number of scores used for estimation of fy. It starts with 1,680, the
80" percentile of the dataset, and then increases sequentially until the null-
score-addition test is rejected. The number of observations added in each stage
tends to decrease as the procedure evolves. Figure 4b shows the p-values of the
null-score-addition tests. Figure 4c¢ shows the estimates of my and 6 at different
stages. It is easy to see that these estimates are quite stable over the whole run of
the sequential procedure, although they tend to have large variations in the early
stages. This implies that the value of m is not crucial to the sequential procedure.
At the beginning of the sequential procedure, we have almost enough data for
estimation of fy, the sequential procedure makes the estimate more accurate.
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The sequential procedure was then run once for each of the 20 datasets.
The results of the 20 runs are summarized in Table 2, which shows the tFDRs
for different rejection regions. For example, the tFDR of the rejection region
A(0.25) = {z : 4(z) < 0.25} is 0.252 with standard deviation 0.017, where the
tFDR and its standard deviation are calculated by averaging over the 20 runs.
Here we suppose that the rejection regions are determined according to the g-
values. The consistency of the tFDR and the claimed g-value for each of the
rejection regions considered in Table 2 suggests that the g-value defined in ([ITI)
provides a good approximation to the tFDR, and can work as a reasonable test
statistic for multiple tests.

Table 2. True false discovery rates for Example 1. The true false discov-
ery rates and their standard deviations (the numbers in parentheses) are
calculated by averaging over 20 runs.

True false discovery rate
Methods o
A(0.3)  A(0.25) A(0.2) A(0.15) A(0.1) A(0.05)
0.945 0.303 0.252 0.198 0.146 0.096 0.049
Sequential
(0.004) | (0.018) (0.017) (0.016) (0.016) (0.012) (0.006)
0.943 0.296 0.250 0.201 0.136 0.090 0.046
Store
Y (0.010) | (0.007) (0.008) (0.008) (0.009) (0.009) (0.005)

For comparison, we also applied Storey’s FDR procedure (Storey (2002)) to
this example. The software was downloaded from http://faculty.washington
.edu/~jstorey/. It was run at the default setting for all examples. The p-values
used in Storey’s procedure are transformed from the Z-scores as P =1 — ®(z).
In Storey’s procedure, fj is assumed to be uniform[0, 1]. This is equivalent to
using the true null distribution N(0,1) in (I0) and ([Il) while we consider a more
general family in (B). Hence, we expect that Storey’s procedure will outperform
the sequential procedure for this example with fy(z) being the standard normal.
It is encouraging to note that two procedures perform similarly, and the sequential
procedure performs even better than Storey’s procedure for small ¢ rejection
regions. The true FDRs produced by the sequential procedures are closer to
the theoretical g-values than those produced by Storey’s procedure for these
rejection regions. In practice, the p-values may not be exactly uniform[0, 1] and
our procedure should have more flexibility.

Table 3 displays the agreement/disagreement between the two procedures
on the identification of differentially expressed genes. The table can be read as
follows. For example, if the rejection region is chosen as A(0.10), on average (over
the 20 runs) there are 109.1 genes identified by both procedures as differentially
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expressed genes. The sequential procedure identifies 111 (=109.1+1.9) genes, and
Storey’s procedure identifies 110.05 (=109.14-0.95) genes. The respective FDRs
of the two procedures are displayed in Table 2. For completeness, we also give in
the ‘Disagree/Disagree’ column the average numbers of differentially expressed
genes that are not identified by either of two procedures. This number should not
be related with the comparison of the two procedures. Table 3 indicates that these
two procedures are almost identical for this ideal example on identification for
differentially expressed genes. A minor difference is that the sequential procedure
tends to identify slightly more genes as differentially expressed genes for this
example, and this makes the resulting true FDRs closer to nominal levels.

Table 3. Agreement/disagreement between the sequential and Storey’s pro-
cedures on the identification of differentially expressed genes for Example
1. Agree/Agree: the average number of differentially expressed genes iden-
tified by both procedures. Agree/Disagree: the average number of differ-
entially expressed genes identified by the sequential procedure but not by
Storey’s procedure. Agree/Disagree: the average number of differentially
expressed genes identified by the sequential procedure but not by Storey’s
procedure. Disagree/Disagree: the average number of truly differentially ex-
pressed genes not identified by either of two procedures. The averages are
calculated based on the 20 runs, and the numbers in parentheses are the
standard deviations of the averages.

Sequential/Storey | Agree/Agree Agree/Disagree Disagree/Agree Disagree/Disagree
A(0.30) 137.50(1.84)  8.15 (3.14) 1.80(1.35) 0.0 (0.0)
A(0.25) 129.75(2.03)  5.40 (1.87) 3.85(1.32) 0.0 (0.0)
A(0.20) 121.60(1.68)  4.10 (1.46) 3.80(1.29) 0.0 (0.0)
A(0.15) 113.85(1.38)  4.05 (1.38) 2.05(0.60) 0.0 (0.0)
A(0.10) 109.10(1.14)  1.90 (1.02) 0.95(0.34) 0.0 (0.0)
A(0.05) 104.20(0.65)  0.90 (0.33) 0.70(0.25) 0.0 (0.0)

3.2. Example 2

This example also comprises 20 datasets. Each dataset consists of 2,100 test
scores, of which the first 2,000 are generated from N(0,1.5?), and the remaining
100 are generated from N(4,1). Similar to ([[3), we write the mixture model as

F(z) = md() + (1= m)(= — 4). (16)

where ¢(z/1.5) and ¢(z — 4) correspond to fo(z) and fi(z), respectively. Figure
5a shows the histogram of one dataset. The shape of the histogram shows the
difficulty and practicality of the dataset: the right tail is slightly long, and there
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is no a clear split between fy and fi. In addition, our second assumption may
be violated: the data used for estimation of fy may not be all from fjy.
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Figure 5. a: histogram of test scores from Example 2; b: histogram of test
scores from Example 3.

Table 4. True false discovery rates for Example 2. The numbers in paren-
theses are standard deviations of the true FDRs. The upper panel shows the
sensitivity of the sequential procedure to the choice of A. The middle panel
shows the sensitivity of the sequential procedure to the choice of v.

True false discovery rate

A0.3) A(0.25) A(0.2) A(0.15) A(0.1) A(0.05)
0.952 | 0.306 0.252 0.200 0.150 0.087 0.046
(0.002) | (0.019) (0.020) (0.019) (0.016) (0.018) (0.013)
0.953 | 0.306 0.250 0.196 0.148 0.082 0.046
(0.003) | (0.019) (0.020) (0.019) (0.015) (0.015) (0.013)
0.950 | 0.318 0.258 0.206 0.154 0.089 0.045
(0.002) | (0.018) (0.020) (0.018) (0.015) (0.018) (0.013)
0.952 | 0.306 0.249 0.195 0.142 0.070 0.044
(0.003) | (0.019) (0.019) (0.019) (0.017) (0.016) (0.012)
0.953 | 0.306 0.250 0.196 0.148 0.082 0.046
(0.003) | (0.019) (0.020) (0.019) (0.015) (0.015) (0.013)
0.952 | 0.311 0.251 0202 0.148 0.081 0.054
(0.002) | (0.017) (0.018) (0.018) (0.016) (0.016) (0.016)
1.0 | 0750 0.721 0689 0.638 0577 0.479
(0.000) | (0.004) (0.005) (0.006) (0.006) (0.007) (0.009)

Methods A\ v) o

(0.0005,2)

Sequential | (0.001,2)

(0.002,2)

(0.001,1)

Sequential | (0.001,2)

(0.001,3)

Storey

Both the sequential procedure and Storey’s procedure were applied to this
example. The results are summarized in Table 4 (the row with A = 0.001 and
v = 2). For preparing the p-values used in Storey’s procedure, the transformation
P =1— ®(z) was applied to the Z-scores as in Example 1. Table 4 shows that
this example is much more difficult than Example 1, and our assumptions are
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possibly violated, but the sequential procedure still works well. The true FDRs
are consistent with their nominal levels, and 7y is estimated rather accurately.
Note that the true value of 7y is 0.952. However, Storey’s procedure completely
fails here, the true FDRs are much higher than their nominal levels and mq is
over-estimated in all runs.

To assess the dependence of the performance of the sequential procedure on
the prior distributions, sensitivity analysis was done for the hyperparameters A
and v that control the strength of the prior information on n and 3, respectively.
The sequential procedure was re-run for the choices of (A, 3) given in Table 4.
The numerical results show that the sequential procedure is not sensitive to the
choice of the hyperparameters. Note that the change of v from 2 to 1 or 3
represents a significant change in our belief about the tail behavior of f;. The
choices v = 1,2, 3 drive the tail of the fitted distribution fo toward exponential
(with rate 1), normal and Weibull (with the shape parameter 3), respectively.
The change of A from 0.001 to 0.0005 or 0.002 also represents a big change in our
thinking about ng, the initial guess at n.

Table 5. Agreement/disagreement between the sequential and Storey’s pro-
cedures on the identification of differentially expressed genes for Example 2.
The notation is that of Table 3.

Sequential/Storey| Agree/Agree Agree/Disagree Disagree/Agree Disagree/Disagree
A(0.30) 112.80(6.11) 0.0(0.0) 285.35(10.19) 0.85 (0.22)
A(0.25) 96.10(5.80) 0.0(0.0) 259.20( 9.46) 1.35 (0.33)
A(0.20) 78.15(5.75) 0.0(0.0) 236.05( 8.60) 2.15 (0.38)
A(0.15) 57.55(5.42) 0.0(0.0) 211.00( 7.67) 3.15 (0.44)
A(0.10) 33.80(4.60) 0.0(0.0) 192.50( 6.40) 4.85 (0.58)
A(0.05) 13.20(3.06) 0.0(0.0) 163.00( 4.80) 8.75 (0.92)

Table 5 displays the agreement/disagreement between the two procedures on
the identification of differentially expressed genes. It shows that Storey’s proce-
dure tends to identify too many genes as differentially expressed. The significant
genes identified by the sequential procedure is a subset of those identified by
Storey’s procedure. Note that a plot like Figure 3¢ would be helpful in determin-
ing an appropriate cut-off value of q.

3.3. Example 3

This example also comprises 20 datasets. Each dataset consists of 2,100
test scores as described in Section 2.2. The first 2,000 genes were generated
as non-differentially expressed genes, and the last 100 genes were generated as
differentially expressed genes.
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Both the sequential procedure and Storey’s procedure were applied. The
computational results are summarized in Table 6 and Table 7. They show that
even though this example violates our assumptions on test score independence
and normality of gene expression levels, the sequential procedure still works well.
The tFDR is still close to the nominal level, as shown in Table 6, and the estimate
of mg is rather accurate. However, Storey’s procedure fails here since the tFDR is
much lower than its nominal level. Table 7 just confirms the results presented in
Table 6. The sequential procedure tends to identify more differentially expressed
genes than Storey’s procedure and this brings the resulting true FDRs close to
their nominal levels.

Table 6. True false discovery rates for Example 3. The notation is that of

Table 2.
True false discovery rate
Methods o
A(0.3)  A(0.25) A(0.2) A(0.15) A(0.1) A(0.05)

0.956 0.296 0.242 0.193 0.142 0.097 0.055
Sequential

(0.003) | (0.017) (0.016) (0.016) (0.013) (0.012) (0.009)

0.956 0.245 0.201 0.151 0.103 0.067 0.027
Storey

(0.008) | (0.014) (0.011) (0.010) (0.009) (0.007) (0.005)

Table 7. Agreement/disagreement between the sequential and Storey’s pro-
cedures on the identification of differentially expressed genes for Example 3.
The notations are as in Table 3.

Sequential/Storey| Agree/Agree Agree/Disagree Disagree/Agree Disagree/Disagree
A(0.30) 108.65(2.37)  13.25(3.74) 1.30(1.30) 15.15 (0.77)
A(0.25) 98.15(1.81)  10.75(2.51) 0.95(0.77) 18.05 (0.91)
A(0.20) 86.55(1.49)  11.35(2.45) 1.10(1.10) 21.50 (0.87)
A(0.15) 74.80(1.61)  10.70(2.01) 0.85(0.85) 26.50 (1.11)
A(0.10) 63.65(1.62) 9.60(1.94) 0.75(0.65) 33.70 (1.47)
A(0.05) 45.80(1.22)  11.90(2.19) 0.55(0.50) 45.20 (1.95)

4. Avian Pineal Gland Gene Expressions Data

The avian pineal gland contains both circadian oscillators and photorecep-
tors to produce rhythms in biosynthesis of the hormone melatonin in vivo and
in vitro. It is of great interest to understand the genetic mechanisms driving the
rhythms. For this purpose, a sequence of cDNA microarrays of birds’ pineal gland
transcripts under light-dark (LD) and constant darkness (DD) conditions were
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generated. Under LD, birds were euthanized at 2, 6, 10, 14, 18 and 22 hour Zeit-
geber time (ZT) to obtain mRNA for adequate cDNA libraries. Four microarray
chips per time point were produced, and there are two replicates for each gene in
each chip. The experiment was then repeated under DD. Throughout, samples
from LD ZT18 were used as controls. Relative gene expression levels to the con-
trols were recorded and processed. The initial goal is to identify genes that are
differentially expressed at different time points. Mixed effect analysis, with the
fixed effect being the different time points and the random effects corresponding
to chips and biological batches, was applied to the relative gene expression levels
in log-scale. Normalization procedures were adopted but will not be listed here
since they are not the focus of the paper. Under both LD and DD conditions,
the p-values P; for testing the existence of different time effects were produced
and transformed to test scores using ®~(1 — P;).
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Figure 6. Computational results of the sequential procedure for the LD
data. a: the histogram of the scores and the fitted fy in one run of the
sequential procedure; b: the g-values versus the test scores; c: the numbers
of significant genes versus the g-value cut-off values.

4.1. LD data

We first applied the sequential procedure to the scores of the LD data. The
computational results are summarized in Figure 6. Figure 6a shows the histogram
of the scores and the estimated density curve fy by a run of the sequential pro-
cedure. From this plot, we can see that fy can be well-estimated, the estimate is
actually quite stable. We repeated the procedure five times. And found the esti-
mate (7o, i, &, §) = (0.863,1.341,2.207,2.521) with standard deviation (0.0003,
0.0018, 0.0041, 0.0092). The vertical line shows the split point between the scores
that are used and those not used for estimation of fj in the run. The interaction
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of the fitted fy density curve and the histogram bars suggests that there are as
many as 1,400 genes which might be differentially expressed. The test scores of
these genes are all greater than 3.5. Figure 6b shows the g-values versus the
test scores. Figure 6¢ shows the numbers of significant genes versus the ¢-value
cut-off values. Our analysis suggests that among the identified 1,400 differen-
tially expressed genes, there are about 400 genes (= 1,400 x 28%) which are false
positive and about 1,000 genes which are really differentially expressed.

For comparison, we also applied Storey’s procedure to the p-values con-
structed above for the LD data. The computational results are summarized
in Figure 7. Figure 7a shows the g-values, and Figure 7b shows the numbers
of significant genes versus the g-value cut-off values. Figure 7 implies that even
we include as many as 4,000 genes in the set of differently expressed genes, the
false discovery rate is as low as 5%. In addition, Storey’s procedure produces
the estimate 7y = 0.235. These results are quite different from what we have
obtained. Figure 4a seems to suggest that 79 = 0.235 severely underestimates
the true my. Note that ﬁ = 2.54 in our analysis, and this implies that the original
null p-values may not be uniformly distributed, as assumed by Storey. We believe
our analysis provides a more reasonable outcome than does Storey’s.
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Figure 7. Computational results of Storey’s procedure for the LD data. a:
the g-values versus the test scores; b: the numbers of Significant genes versus
the g-value cut-off values.

4.2. DD data

We also applied the sequential procedure to the test scores of the DD data.
The computational results are summarized in Figure 8. This plot tells us again
that fy can be well-estimated by the sequential procedure. We repeated the pro-
cedure five times as before, and obtained the estimate (7, fi, &, B) = (0.970,0.357,
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0.939, 1.285) with standard deviation (0.0005, 0.0011, 0.0033, 0.0043). The ver-
tical line shows the split in one run between the scores which are used and those
which are not used for estimation of fj.
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Figure 8. Computational results of the sequential procedure for the DD
data. a: the histogram of the scores and the fitted fy in one run of the
sequential procedure; b: the ¢-values versus the test scores; c¢: the numbers
of Significant genes versus the g-value cut-off values.

As pointed out before, the number of scores, m, used in the estimation of
fo, or the size v of the null-score-addition test designed to increase m, is not
crucial for the proposed sequential procedure. To illustrate this, we reduce the
significant level of the null-score-addition test from the default of v = 0.05 to
~ = 0.001, so a larger choice of final m could result. We then purposely chose two
different split points from two different runs. One is at the 93.68" percentile,
and the other one at the 98.47"" percentile, shown by the vertical lines in Figure
9a and Figure 9d, respectively. Taking a closer look at the fitted density curves
in the three runs, we can see that the curve shown in 9d is slightly shifted to
the right compared to the other two. However, the effect on the final outcome
is minor. The plots in Figure 8a, Figure 9a and Figure 9d suggest that there
are about 100 suspiciously differentially expressed genes with test scores greater
than 3.6, and the false discovery rate of the identified significant genes is about
20%.

For comparison, we also applied Storey’s procedure to the p-values of the
DD data. The computational results are summarized in Figure 10. As with
the LD data, Storey’s procedure again produces unreasonable outcomes. The
estimate of my by Storey’s procedure is 0.396, which seems low. Compared to
our findings, we also suspect that Storey’s procedure severely underestimates the
false discovery rate.
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Figure 9. Computational results of the sequential procedure for the DD data
with the significant level v = 0.001 of the data addition tests. a and d: the
histogram of the scores and the fitted fy; b and e: g-values versus the test
scores; ¢ and f: the numbers of significant genes versus g-value cut-off values.
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Figure 10. Computational results of Storey’s procedure for the DD data. a:
g-values versus test scores; b: the numbers of Significant genes versus the
g-value cut-off values.
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5. Discussion

Although our sequential procedure works well for many problems, it can be
modified, extended or improved further in several aspects as listed below.

The null distribution fy can be modeled by different parametric distribu-
tions, a mixture of the generalized normal distributions for example, to reflect
the biological background of the “null” condition for the dataset under study.
The null score addition process can be slightly improved by adding a backward
deletion step even though the final outcomes seem to be fairly indifferent toward
the choice of m.

The sequential procedure is developed based on the assumption that the
test scores are independent. In reality, this is not true. Test scores are of-
ten correlated due to the correlations among functionally related genes. An
extension of the sequential procedure to correlated test scores would be of in-
terest, although the current procedure works well for a simulated (Example 3)
and two real datasets where the genes are correlated in expression. We note
that the SAM procedure presented in [Tusher, Tibshirani and Chu (2001)) retains
the correlation structure in gene expression. However, SAM and our proce-
dure estimate different targets. As pointed out by IDudoit, Shaffer and Boldrick
(2003), the definition of FDR in SAM is different from the standard one given in
Benjamini and Hochberg (1995): the SAM FDR is estimating E(V|H§)/R and
not E(V/R) as in Benjamini and Hochberd (1995), where H§ denotes the com-
plete null hypotheses. Consequently the SAM FDR can be greater than 1 (e.g.,
Table 3 in [Chu_ et all (2000, p.16), Other FDR procedures which have accounted
for the dependence structure of gene expression include Benjamini and Yeku-
tieli (2001), |Storey and Tibshirani (2001, 2003), Storey, Taylor and Siegmund
(2004), among others. A major problem with these procedures is an unrealistic
assumption: the p-values are uniformly distributed under the null hypotheses.
As discussed in [Efrond (2005), the violation of the uniformity assumption of p-
values for the FDR procedures may be more harmful to FDR estimation than
the violation of the independence assumption of test statistics for the empirical
Bayes procedures.

As in many other papers on FDR estimation (e.g., [Efron (2004)), we start
our analysis with z-scores (or, equivalently, p-values) by treating them as ob-
servations. Due to the randomness and limited sample size of the microarray
experiments, these analyses may not be able to identify all genes which express
differentially, but they should be able to identify the genes which express at a
level significantly different from the normal one. This can be seen in our Example
3, where the majority of the differentially expressed genes are identified by the
sequential procedure. Of course, further research on how to take into account
the observation errors in FDR estimation is of great interest. However, with the
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small sample sizes commonly seen in microarray experiments, it is hard to say
whether the practice of taking into account this further uncertainty could be a
practical one.
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