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Abstract: Phase I clinical trials aim to find the maximum tolerated dose of an

experimental drug. We consider dose escalation, de-escalation, or staying at the

current dose as three different stochastic moves over the lattice of a sequence of

prespecified dose levels. Each move is chosen by minimizing an expected penalty

that determines the dose level for treating the next cohort of patients. We develop

a stopping rule under which the termination of the trial ensures that the posterior

probability that the current dose is the maximum tolerated dose is larger than a

prespecified value. Under a new class of priors, posterior estimates for the dose

toxicity probabilities are obtained using the Markov chain Monte Carlo method.

We demonstrate the new designs using a real phase I clinical trial.

Key words and phrases: Markov chain Monte Carlo, penalty, stopping rule, stochas-

tic moves, toxicity.

1. Introduction

In phase I oncology clinical trials, various doses of a new drug are screened
to search for the maximum tolerated dose (MTD), with a probability of toxicity
that is closest to a prespecified value pT . Patients in these trials are at high risk
of death, so they consent to undergo therapies at dose levels that are possibly
toxic in order to potentially prolong survival. Since relatively little is known
about the appropriate dose level in this early phase of a study, a sequence of
doses is screened in order to find the MTD.

Various statistical designs have been proposed to locate the MTD. O’Quigley,
Pepe and Fisher (1990) proposed the continual reassessment method (CRM),
which was based on a hypothetical function between the dose toxicity and dose
level. The CRM was further investigated and refined by Goodman, Zahurak,
and Piantadosi (1995) and Shen and O’Quigley (1996), among others. The use
of a parametric function between dose toxicity and dose level reflects the need for
statistical modeling when only a small number of patients are allowed in phase I
clinical trials. More recently, a curve-free dose-finding method was proposed by
Gasparini and Eisele (2000), in which the functional form between dose toxicity
and dose level was relaxed while strong correlations were imposed among different
dose toxicities. Cheung (2002) pointed out the rigidity of the curve-free method,
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potentially due to its prior constructions. Whitehead and Brunier (1995) in-

troduced a phase I design which incorporated the elements of decision theory.
Their approach, like the CRM, also assumed a parametric function between the

dose toxicity and the dose level. Durham, Flournoy and Rosenberger (1997) and

Stylianou and Flournoy (2002) proposed a random walk rule also known as the

biased coin design (BCD) for phase I clinical trials. Bayesian c- and D-optimal
designs were investigated by Haines, Perevozskaya and Rosenberger (2003).

In this article, we propose a new method that provides a statistical framework

for designing phase I trials. Our method does not assume a functional relationship

between the dose toxicity and the dose level. We consider a stochastic walk over
the lattice of the ordered experimental dose levels. That is, starting from the

lowest dose level, a phase I trial proceeds through dose escalation, de-escalation,

or staying at the current dose level. By walking over different doses based on the

toxicity responses from sequentially assigned patients, the MTD is thus located.
Regarding these aspects of phase I trials, the proposed framework consists

of three components: a set of penalty functions, stochastic moves, and a stop-

ping rule. The penalty functions specify the penalties for taking a wrong move
away from the MTD. For example, if the current dose is too toxic and the trial

continues assigning patients to this dose level or even to the next higher dose

level (which is more toxic), a penalty is then imposed for such a wrong move.

The stochastic moves, including dose escalation, de-escalation, and staying at the
current dose level, are determined by minimizing the associated penalties. Based

on the toxicity responses observed from patients, a stopping rule is simultane-

ously applied to decide whether the trial can be terminated to select a tried dose

as the MTD. Under a proper set of penalty values, the termination of the trial
guarantees that the posterior probability that the selected dose is the MTD is

greater than a prespecified threshold value.

The proposed dose-finding algorithm differs from the CRM in that the dose

escalation, stay, or de-escalation is simply based on the toxicity of the current
dose at which patients are treated. The CRM chooses the next dose by comparing

the posterior means of toxicity probabilities for all the doses, including the tried

and untried ones. The posterior means for the untried doses are not based on any

observed data but on model and prior assumptions. If the assumptions are wrong,
then the posterior estimates may be biased. The proposed algorithm focuses on

the toxicity estimates for the current dose. These estimates are data driven and

are less vulnerable to model mis-specifications. Under the new algorithm, if the

current dose is close to the MTD, then the dose level will not be changed; if the
current dose is too toxic, then the dose level will be de-escalated; otherwise, the

dose level will be escalated.

In Section 2, we introduce the three key components of the proposed sta-

tistical framework, on which we base the proposal of our Bayesian dose-finding
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design and the development of its theoretic properties in Section 3. We describe
a new class of prior distributions in Section 4. In Section 5, we perform sim-
ulations based on a cancer phase I clinical trial to demonstrate the operating
characteristics of the new Bayesian design. We provide some concluding remarks
in Section 6, and outline the technical proofs in the Appendix.

2. Statistical Framework

We consider d dose levels of a certain cytotoxic drug in a phase I trial. Let pi

be the unknown probability of toxicity associated with the ith dose, i = 1, . . . , d.
The toxicity probability usually increases with the dose level, and we assume

p1 < · · · < pd. (1)

Suppose that the trial starts at dose i, and ni (ni ≥ 1) patients are treated,
of which xi experience toxicity. Based on the observed values of xi and ni, one
of three moves is taken to treat the next cohort of patients: de-escalate (D) to
the previous lower dose (i − 1); stay (S) at the same dose i; or escalate (E) to
the next higher dose (i + 1). According to the chosen move, the next cohort is
treated at dose j ∈ {i − 1, i, i + 1}; the values of xj and nj are observed for the
new cohort, after which an appropriate move is taken based on the cumulated
data from both dose i and j. The trial thus continues until at least one dose is
selected as the MTD.

2.1. The penalty functions

We propose a set of penalty functions for choosing a proper stochastic move
at each step of the trial. For dose i, define the penalty functions

L(D, pi) =







KD, if − δ1 ≤ pi − pT ≤ δ2;
0, if pi − pT > δ2;
ND, if pi − pT < −δ1;

L(S, pi) =







0, if − δ1 ≤ pi − pT ≤ δ2;
MS , if pi − pT > δ2;
NS , if pi − pT < −δ1;

L(E, pi) =







KE , if − δ1 ≤ pi − pT ≤ δ2;
ME , if pi − pT > δ2;
0, if pi − pT < −δ1.

In phase I trials, the toxicity probability of a candidate dose almost never
equals pT . Therefore, the interval (pT − δ1, pT + δ2) allows the design to select
the dose at which the toxicity probability is close to pT . The two δ values can
be determined by consultation with physicians and by proper tuning to achieve
desirable sample size in computer simulations. For ease of description, we define
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a target dose as one with a toxicity probability pi that falls into the interval
[pT − δ1, pT + δ2]. Note that whether a dose is a target dose depends on the
values of the δ’s. For small δ1 and δ2, there is usually only one target dose, which
is considered to be an MTD candidate.

The six penalties KD, KE , MS , ME, NS and ND are positive real numbers.
The value of KD or ND is the penalty for taking the move D (de-escalate) when
the current dose is a target dose and the right move is S (stay), or when the
current dose level is lower than the MTD and the right move is E (escalate),
respectively. The values of MS , NS , KE and ME can be interpreted similarly.
We assign zero penalty for taking the right moves.

2.2. The stochastic moves

Let X = {(x1, n1), . . . , (xd, nd)} be the cumulated data in which ni patients
have been treated at dose i and xi of them have experienced toxicities, for i =
1, . . . , d. The information set corresponding to X is a σ-algebra, F = σ(X ).
Note that the x and n values in X increase as the trial continues to accrue new
patients. Suppose that the prior for the vector p = (p1, . . . , pd)

′ has a density
π(p). Define

R(D, pi) = E{L(D, pi)|F}, R(S, pi) = E{L(S, pi)|F},

and R(E, pi) = E{L(E, pi)|F}

to be the three posterior expected penalties corresponding to π(p). Let

qDi = Pr(pi − pT > δ2|F), qSi = Pr(−δ1 ≤ pi − pT ≤ δ2|F),

and qEi = Pr(pi − pT < −δ1|F).

Then

R(D, pi) = KDqSi + NDqEi; R(S, pi) = MSqDi + NSqEi;

and R(E, pi) = KEqSi + MEqDi. (2)

The stochastic move Bi at dose i is

Bi = arg min
m∈{D,S,E}

R(m, pi), (3)

which chooses the move in {D,S,E} that has the smallest posterior expected
penalty.

2.3. The stopping rule

Define a stopping region

Ai =

{

X :
min [R(D, pi), R(E, pi)]

R(S, pi)
≥ ξ

}

, i = 1, . . . , d,
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for each dose i, where ξ is a positive unknown constant. Then define a random
variable T =

∑d
i=1 I(X∈Ai), where I() is the indicator function. The stopping rule

terminates the trial if T > 0. Specifically, when T = 1, we select dose i as the
target dose for which X ∈ Ai. When T > 1, there is more than one target dose
and we can select the dose with the smallest posterior expected penalty R(S, pi).
If T = 0, the trial continues by taking the stochastic move Bi. An alternative way
of selecting a target dose when T > 1 is by comparing the posterior probability
of qSi and selecting the dose with the largest qSi. Under the configurations of
the penalties described later in Section 3.3, these two approaches are equivalent.

According to (2), the criterion

min [R(D, pi), R(E, pi)]

R(S, pi)
≥ ξ (4)

is satisfied only when the posterior probability qSi is much larger than qDi and
qEi, i.e., when there is a large probability that the current dose is the target dose.

3. Bayesian Design and Its Configurations

3.1. Bayesian design

Based on the penalty function, the stochastic move, and the stopping rule,
we propose a two-step Bayesian design:
(1) Before treating the next cohort of patients, if T > 0, terminate the trial.

Specifically, when T = 1, select dose i, for which X ∈ Ai, as the target dose.
When T > 1 there is more than one target dose, and choose the one with the
smallest posterior expected penalty of S, R(S, pi).

(2) If T = 0, take the stochastic move Bi for the current dose i at which patients
are treated.
For safety reasons, one can add the restriction that any untried dose cannot

be selected as the target dose.
To implement the Bayesian design, we need to specify the values of all the

design parameters, including the penalties and the unknown parameters δ1, δ2

and ξ.

3.2. Specification of ξ

The following theorem provides a specification of parameter ξ.

Theorem 3.1. For any given α ∈ (0, 1], let

ξ =
(1 − α){max(KD,KE) − max(ND,ME)} + max(ND,ME)

α min(MS , NS)
. (5)

Then

Ai ⊆ {X : Pr(−δ1 ≤ pi − pT ≤ δ2|F) ≥ 1 − α} . (6)



536 Y. JI, Y. LI AND G. YIN

According to (6), when the trial is terminated based on the ξ in (5) and dose i
is selected based on the proposed design, the posterior probability that dose i is a

target dose will be at least (1 − α).

3.3. Configuration of penalties

We impose the following condition for the penalties.

Condition 3.1. The penalties satisfy MS + NS = KD + ND = KE + ME.

This condition is based on the rationale that when the three posterior proba-

bilities qSi, qDi and qEi are equal, the three posterior penalties R(S, pi), R(D, pi)
and R(E, pi) should be equal.

To facilitate both the stochastic moves Bi and the stopping rule T , the fol-
lowing theoretical results lead to two sets of penalty values, one for the stochastic

move and the other for the stopping rule. In dose-finding trials, fast escalation
and de-escalation lead to a fast location of the MTD, which is essential in main-
taining a small sample size. Therefore, the penalties for the stochastic moves

should be configured such that moving over different doses is as free as possi-
ble. In contrast, the stopping rule terminates the trial when the target dose is
located. Thus, the penalties for the stopping rule should be configured such that
the termination of the trial is as easy as possible once the target dose is found.

Apparently, the purpose of the stochastic move and that of the stopping rule are
complementary; the stochastic move tends to carry on the trial and the stop-
ping rule is formulated to terminate the trial. Consequently, their corresponding
penalties are very different.

Penalties for the stopping rule: Lemma 3.1, Theorems 3.2 and 3.3 provide
the best penalty values for stopping the trial.

Lemma 3.1. Under Condition 3.1, for any trial data X , if dose i is selected as

a target dose based on the penalty function in which KD 6= KE or MS 6= NS,

dose i must be selected based on the penalty function in which KD = KE and

MS = NS.

Remark 3.1. Under Condition 3.1 and Lemma 3.1, the penalties are in the
form of MS = NS = K, KD = KE = K(1 + β) and ND = ME = K(1 − β), for

K > 0 and β ∈ (−1, 1).

Without loss of generality, we assume K = 1 hereafter. The penalties thus
are functions of β, which is directly related to the ease of termination of the

trial. If we refer to the definition of the penalty and consider the case when
−δ1 < pi − pT < δ2, we see that a larger β leads to larger penalties of D and E,
thus making the stay S easier, which further leads to easier termination of the

trial.
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Theorem 3.2. Let L(β) denote the set of penalty functions in which MS =

NS = 1, KD = KE = 1 + β, and ND = ME = 1 − β, for β ∈ (−1, 1). Then,

given X , if dose i is selected as a target dose under L(β) for β ∈ (−1, 0], dose i

must be selected under L(β) for β ∈ (0, 1).

This theorem states that the set of doses selected under L(β) (β ≤ 0) are

contained in the set of doses selected under L(β)(β > 0). Define the average

sample size as the expected sample size of the trial where the expectation is

taken with respect to the probability measure on the space (X ,F). The following

theorem reveals the relationship between the average sample size of the trial and

the value of β.

Theorem 3.3. The average sample size of the design under L(β) is a decreasing

function in β, for β ∈ (−1, 1).

According to the above theorem, the optimal set of penalties for stopping

the trial has the form MS = NS = 1, KD = KE = 1 + β and ND = ME = 1− β,

with β taking a value less than, but as close to, one as possible. As indicated by

simulations, a design with β = 0.9, i.e., with the penalty L(0.9), is close to being

optimal in practice, and the reduction in the average sample size is negligible if

β is larger.

Penalties for the stochastic move: The penalty function L(0.9) is not suitable

for determining the three stochastic moves. It is easy to show that the posterior

expected penalties R(D, pi) and R(E, pi) for taking the moves D and E are

decreasing in β under L(β) for β > 0. Therefore, if L(0.9) is used to compute

the stochastic move Bi, it will result in a design that is reluctant to change from

the current dose. Consequently, fast escalation and de-escalation would not be

possible under this penalty.

Alternatively, we choose the penalty L(−0.9) for computing the stochastic

move Bi which gives minimum penalty for taking the moves D and E. This

penalty function will allow the design to escalate or de-escalate quickly and hence

to find the target dose rapidly. In addition, it controls very well for overdose since

it moves away from excessively toxic doses more easily than other penalties.

However, the design under L(−0.9) will tend to assign fewer patients at the

MTD, since it favors the moves D and E over the move S.

To implement the new Bayesian design, we recommend using L(0.9) in com-

puting the stopping rule T and using L(−0.9) in computing the stochastic move

Bi.

4. Probability model

The proposed prior distributions are based on a class of transformations that
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represent the toxicity probabilities pi. Define

pi = h(ǫi) =

∑i
j=1 exp(ǫi)

1 +
∑i

j=1 exp(ǫi)
, i = 1, . . . , d.

We assume that ǫi are independent and follow N(0, σ2). Under this transforma-
tion, the condition that pi < pi+1 is guaranteed automatically. The likelihood
function is a product of binomial densities l(p) ∝

∏d
i=1 pxi

i (1 − pi)
ni−xi ; and the

joint posterior density of ǫ = (ǫ1, . . . , ǫd)
′ is given by

f(ǫ) ∝

d
∏

i=1

h(ǫi)
x
i (1 − h(ǫi))

ni−xiφ(ǫi; 0, σ
2), (7)

where φ(·;µ, σ2) is the density function of a normal distribution with mean µ
and variance σ2.

When the toxicity outcomes of the previous cohort are observed, posterior
samples of the toxicity probabilities pi are drawn from the full conditional distri-
butions using the Gibbs sampler with the adaptive rejection Metropolis sampling
algorithm (Gilks, Best and Tan (1995)). After 3,000 burn-in samples, we keep
every fifth sample in the 5,000 samples from Markov chains. In our MCMC simu-
lations, the autocorrelations of the final samples were negligible and the Markov
chains mixed very well, implying fast convergence.

5. Example

We illustrate the proposed Bayesian design based on a clinical trial described
in a study by Goodman, Zahurak, and Piantadosi (1995). For comparison, we
also implement the continual reassessment method (CRM) and the biased coin
design (BCD). The clinical trial was an open-label, non-comparative, multicenter
dose-escalation study and the drug was an orally administered compound for
treating patients with advanced cancer. The MTD was defined to be the highest
dose level at which no more than pT = 25% of the treated patients would exhibit
dose-limiting toxicity. There were eight doses (d = 8) available at 50, 100, 200,
300, 400, 500, 650, and 800 mg/day. The first cohort of patients started at the
lowest dose of 50 mg/day. In our simulations, the cohort size was three for the
new Bayesian design and CRM, and was one for the BCD.

For the CRM design, we used the power model (Shen and O’Quigley (1996))
in which

pi = p̂α
i , i = 1, . . . , d,

where α has a normal prior with mean 0 and variance 2. In a sequential manner,
the BCD design assigns the next patient to a future dose whenever the toxicity
response is observed from the previous patient. When pT < 0.5, the BCD steps
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down a dose if toxicity is observed from the previous patient and randomizes
with probability pT/(1 − pT ) to the next higher dose and {1 − pT/(1 − pT )}
to the same dose if no toxicity is observed from the previous patient. When
pT > .5, the BCD design is similar. (See the work of Stylianou and Flournoy
(2002) for details.) The trial is stopped when the prespecified maximum sam-
ple size is reached. We used the isotonic estimator with linear interpolation, as
described by Stylianou and Flournoy (2002), to estimate the dose level of the
MTD. The isotonic estimator is obtained via the pool adjacent violators algo-
rithm (Robertson, Wright and Dykstra (1988)). Then, the dose closest to the
estimated dose level of the MTD is selected as the recommended dose.

To implement the new Bayesian design, we took a vague prior for ǫi by
assigning the prior variance σ2

i = 20 for i = 1, . . . , 8. We took δ1 = 0.1, δ2 =
0.15, and (1 − α) = 0.7, which determines the value of ξ in the stopping rule.
As suggested by a referee, we tried the following alternative stopping rule for
the proposed method: the trial is terminated if the posterior probability qSi

of staying is greater than a cutoff value q∗, which is taken to be 0.7 in our
simulation. Intuitively, this rule stops the trial and selects dose i if there is
substantial evidence that pi is in the neighborhood of pT . For ease of exposition,
we denote the proposed method using the stopping rule (4) as “Bayesian ξ” and
the method with the alternative stopping rule as “Bayesian qS”.

We simulated 1,000 trials for 10 different scenarios. For each scenario, eight
prespecified true dose toxicity probabilities were assigned to the corresponding
doses, and toxicity outcomes were generated based on these probabilities. The
maximum sample size was 30. For both the proposed Bayesian design and the
CRM, the prior toxicity probabilities p̂i = 0.05i, i = 1, . . . , 8. In practice, ethical
concerns require that the trial be terminated early once excessive toxicity is
observed for the first dose. For the Bayesian design and the CRM, if the posterior
probability of the first dose’s toxicity probability being larger than pT is larger
than .95, the trial is stopped and no dose is selected as the MTD. The BCD
design in our simulation did not have an early stopping rule and always assigned
all 30 patients to the trial doses.

Table 1 lists the operating characteristics of all four designs for the 10 differ-
ent dose toxicity scenarios. For each scenario, the percentages for selecting the
target doses and the average number of patients treated at each dose are listed.
The standard deviations of the toxicity percentage and the sample size over the
1,000 simulations, if provided by the software, are given in parentheses in the last
two columns. The correct selection percentages of the MTD are in bold font.

The operating characteristics of the four methods are comparable in most sce-
narios. In Scenario 1, dose 5 and 6 are the MTD. The three methods, “Bayesian
ξ”, “Bayesian qS” and the CRM all performed very well, although the CRM has
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Table 1. Simulation results comparing the new Bayesian designs, the CRM

and the BCD.

Recommendation percentage at dose level Toxicity per- Average
100(1 − α) = 70, δ1 = 0.1, δ2 = 0.15 centage (SD number of

Design 1 2 3 4 5 6 7 8 none in percentage) patients (SD)

Scenario 1 1 5 10 10 25 25 35 45
Bayesian ξ 0 0.4 5.3 24.0 37.4 23.6 8.2 1.2 0 13.0 (3.7) 29.6 (1.3)
# pt 3.6 4.9 5.3 6.6 5.2 2.8 0.8 0.3
Bayesian qS 0 0.5 5.6 21.1 42.4 21.9 7.5 1.0 0 13.1 (4.1) 29.6 (1.2)
# pt 3.7 4.6 5.1 7.0 5.4 2.8 0.7 0.2
CRM 0 0 4 18 35 26 13 4 0 15.9 30
# pt 3.1 3.8 4.3 6.0 6.3 4.0 1.9 0.5
BCD 0 2.2 5.6 23.4 31.1 20.3 13.6 3.8 0 14.3 (5.3) 30
# pt 3.6 4.7 5.1 6.1 4.8 3.2 1.8 0.7

Scenario 2 5 10 15 25 50 55 70 80
Bayesian ξ 0.5 4.7 21.8 60.1 11.9 1.0 0 0 0 17.8 (4.9) 29.3 (2.0)
# pt 4.9 5.9 7.5 8.0 2.7 0.3 0 0
Bayesian qS 0.5 7.2 28.2 54.7 9.1 0.3 0 0 0 17.9 (4.5) 28.8 (2.5)
# pt 4.9 6.4 7.7 7.2 2.3 0.3 0 0
CRM 0 6 29 53 11 0 0 0 0 19.7 30
# pt 4.0 5.9 7.5 9.0 3.0 0.7 0.1 0
BCD 0.3 5.6 27.4 54.2 10.6 1.7 0 0 0 18.7 (5.3) 30
# pt 5.0 6.1 7.9 7.0 3.0 0.8 0.2 0

Scenario 3 5 15 25 35 45 55 65 75
Bayesian ξ 1.3 23.7 46.5 24.7 3.6 0.2 0 0 0 19.9 (4.9) 28.4 (1.2)
# pt 5.9 9.2 8.1 4.1 1.0 0.2 0 0
Bayesian qS 1.1 27.4 45.4 21.7 4.2 0.2 0 0 0 20.0 (4.8) 28.1 (3.0)
# pt 6.0 9.2 7.8 4.0 1.0 0.2 0 0
CRM 0 25 50 21 4 0 0 0 0 21.8 30
# pt 4.2 9.5 9.5 5.1 1.4 0.3 0 0
BCD 0.9 31.6 38.8 22.8 5.2 0.4 0 0 0 20.8 (5.5) 30
# pt 7.1 8.9 7.4 4.3 1.8 0.5 0.1 0

Scenario 4 25 50 55 60 65 70 75 80
Bayesian ξ 71.2 13.2 0.9 0.3 0 0 0 0 14.4 32.0 (7.0) 22.3 (7.3)
# pt 15.6 5.8 0.8 0.1 0 0 0 0
Bayesian qS 74.7 12.2 0.4 0 0 0 0 0 12.7 31.8 (13.7) 22.1 (7.1)
# pt 16.1 5.5 0.5 0 0 0 0 0
CRM 85 9 0 0 0 0 0 0 7 30.6 29
# pt 22.4 5.9 0.5 0.1 0 0 0 0
BCD∗

90.9 8.8 0.2 0 0 0 0 0 0 35.3 (6.5) 30
# pt 18.8 8.3 2.3 0.6 0.1 0 0 0

Scenario 5 1 1 1 25 60 70 80 90
Bayesian ξ 0 0 2.3 88.1 9.5 0.1 0 0 0 18.4 (5.2) 29.8 (1.0)
# pt 3.2 3.2 7.6 11.8 3.8 0.2 0 0
Bayesian qS 0 0 2.7 87.6 9.7 0.0 0 0 0 18.2 (4.9) 29.7 (1.1)
# pt 3.2 3.2 7.7 11.7 3.7 0.2 0 0
CRM 0 0 9 80 11 0 0 0 0 22.6 30
# pt 3.1 3.2 5.3 12.8 5.0 0.6 0 0
BCD 0 0 8 84.8 6.7 0.4 0.1 0 0 17.7 (5.8) 30
# pt 0.0 0.3 10.0 13.0 5.5 1.1 0.1 0
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Table 1 (continued)
Recommendation percentage at dose level Toxicity per- Average
100(1 − α) = 70, δ1 = 0.1, δ2 = 0.15 centage (SD number of

Design 1 2 3 4 5 6 7 8 none in percentage) patients (SD)

Scenario 6 1 1 1 20 20 20 60 70 none
Bayesian ξ 0 0 1.8 32.5 29.1 31.7 4.9 0 0 13.4 (4.2) 29.7 (1.1)
# pt 3.3 3.3 6.3 8.0 4.6 3.2 0.9 0.1
Bayesian qS 0 0 1.6 32.2 26.7 35.6 3.9 0 0 13.4 (4.0) 29.7 (1.1)
# pt 3.2 3.2 6.5 7.9 4.7 3.2 0.8 0.2
CRM 0 0 1 18 27 44 11 0 0 16.9 30
# pt 3.1 3.3 3.6 5.8 6.2 5.6 2.2 0.2
BCD 0 0 3.3 30.2 21.4 38.7 6.0 0.4 0 14.7 (5.4) 30
# pt 3.1 3.2 6.5 6.2 4.9 4.2 1.6 0.2

Scenario 7 50 70 80 87 88 89 90 90
Bayesian ξ 11.5 0 0 0 0 0 0 0 88.2 51.7 (10.9) 11.5 (7.3)
# pt 10.7 0.7 0 0 0 0 0 0
Bayesian qS 12.0 0 0 0 0 0 0 0 88.0 51.6 (19.6) 11.8 (7.1)
# pt 10.9 0.8 0 0 0 0 0 0
CRM 15 0 0 0 0 0 0 0 85 51.6 15.7
# pt 15 0.7 0 0 0 0 0 0
BCD∗ 98.8 1.2 0 0 0 0 0 0 0 54.0 (7.9) 30
# pt 24.0 5.4 0.6 0 0 0 0 0

Scenario 8 1 2 3 4 5 5 6 6
Bayesian ξ 0 0 0.1 0.8 3.3 12.4 13.0 70.3 0 4.0 (3.0) 30.0 (0.2)
# pt 3.3 3.5 3.7 3.9 3.9 3.9 3.1 4.8
Bayesian qS 0 0 0.2 1.4 2.8 11.6 12.2 71.8 0 4.0 (3.5) 30.0 (0.3)
# pt 3.3 3.4 3.8 3.9 3.8 3.8 3.2 4.9
CRM 0 0 0 2 4 7 8 79 0 4.2 30
# pt 3.1 3.3 3.3 3.8 3.4 3.7 3.1 6.2
BCD 0 0 0.9 1.8 4.7 8.9 13.4 70.3 0 4.2 (3.6) 30
# pt 3.4 3.3 3.3 3.7 3.5 3.3 3.2 6.2

Scenario 9 1 2 3 5 10 20 35 45
Bayesian ξ 0 0.1 0.1 2.4 21.4 49.5 24 2.5 0 11.1 (3.5) 29.9 (0.5)
# pt 3.3 3.5 3.8 4.7 5.7 6.0 2.2 0.7
Bayesian qS 0 0 0 2.8 19.8 50.0 24.2 3.2 0 11.1 (3.7) 29.9 (0.6)
# pt 3.3 3.5 3.9 4.8 5.6 5.9 2.2 0.7
CRM 0 0 1 3 14 40 30 13 0 14.1 30
# pt 3.1 3.4 3.3 3.9 4.7 5.8 3.8 2.0
BCD 0 0 1.1 4.1 22.2 39.2 25.9 7.3 0 12.0 (5.0) 30
# pt 3.3 3.6 3.7 4.6 5.7 5.1 3.0 1.2

Scenario 10 5 10 50 60 70 75 78 80
Bayesian ξ 1.1 68.8 29.0 1 0 0 0 0 0.1 21.7 (5.6) 29.1 (3.2)
# pt 4.8 15.4 8.0 0.9 0.1 0 0 0
Bayesian qS 0.9 54.8 43.7 0.5 0 0 0 0 0.1 21.6 (5.7) 29.2 (2.3)
# pt 4.9 15.5 7.9 0.8 0 0 0 0
CRM 0 59 40 0 0 0 0 0 0 25.6 30
# pt 3.9 14.3 10.2 1.5 0.1 0 0 0
BCD 0.5 69.2 29.2 0.8 0.2 0 0 0 0 22.5 (5.3) 30
# pt 6.9 13.3 7.5 1.9 0.3 0 0 0
∗BCD does not stop the trial early and therefore is not comparable under Scenarios 4 and 7.
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slightly higher toxicity percentage than the other two Bayesian methods. In Sce-

nario 2, dose 4 is the MTD and “Bayesian ξ” has the highest selection percentage

for the MTD. The performances of the other three methods are very similar. The

CRM is the best method for Scenario 3, in which the toxicity increases at a con-

stant rate and dose 3 is the MTD. In Scenario 4, the BCD does not stop the

trial early and is thus not comparable to the other three methods. The CRM is

the best method for this scenario. In Scenario 5, dose 4 is the MTD with doses

higher being much more toxic and doses lower being much less toxic. “Bayesian

ξ” and “Bayesian qS” performed very well as they not only selected the MTD

with higher percentages, they treated fewer patients at highly toxic doses. Sce-

nario 6 is similar to 5 except that the middle three doses, dose 4, 5 and 6, are the

MTD. The two Bayesian methods are better for this scenario. All the doses are

too toxic in Scenario 7, and the BCD is not comparable here since it does not

terminate the trial early. The other three methods have similar results, although

the two Bayesian methods, on average, treated about four fewer patients in total

than the CRM. In Scenario 8, all the doses are lower than the MTD and the

CRM performs a little better than the other three methods. The two Bayesian

methods performed better than the CRM and the BCD in Scenario 9. Finally,

in Scenario 10, where dose 2 is very nontoxic and dose 3 is very toxic, “Bayesian

ξ” and the BCD are the clear winners. Overall, the new Bayesian designs with

both stopping rules have nice properties and are comparable to the CRM and

the BCD.

Table 2 presents the simulation results of the proposed “Bayesian ξ” method

under three representative prior distributions for Scenario 1. Specifically, we

varied the values of σ2 to be 2, 20 and 200. When σ2 = 2, the priors of ǫi are

informative and the induced priors of pi are unimodal and rigid, which leads to

undesirable simulation results. When the value of σ2 is large (e.g., 20 or 200),

the priors of ǫi are vague and the induced priors of pi are U-shaped, assigning a

small probability mass on most values between 0 and 1. Based on the work by

Zhu and Lu (2004), the U-shaped prior is noninformative to the Bernoulli family.

However, our model is more complicated since we are modeling the priors of d

toxicity probabilities that are order restricted. Therefore, it is not always the

case that a larger prior variance of pi will lead to better results. In Table 2,

the operating characteristics under σ2 = 20 and 200 are both reasonable, partly

because they correspond to U-shaped priors for toxicity probabilities. The design

under the σ2 = 20 prior has a better overdose control, i.e., it selects the excessive

toxic doses with smaller percentages. This is mainly because the σ2 = 200 prior

assigns more probability mass to values close to 0 than does the σ2 = 20 prior.

Therefore, the σ2 = 200 prior tends to underestimate the toxicity probabilities,

especially when most patients do not experience toxicity. Consequently, the dose
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may be considered safer than it actually is, and doses with excessive toxicity are

more likely to be selected. We see this phenomenon in Table 2 where dose 7

is selected with a larger percentage under the σ2 = 200 prior than under the

σ2 = 20 prior.

Table 2. Sensitivity analysis for the new Bayesian design using different

values of σ2.

Recommendation percentage at dose level Toxicity per- Average

100(1 − α) = 40, δ1 = 0.1, δ2 = 0.15 centage (SD number of

1 2 3 4 5 6 7 8 none in percentage) patients (SD)

Scenario 1 1 5 10 10 25 25 35 45

σ2 = 2 0.8 48.0 51.2 0 0 0 0 0 0 4.5 (1.3) 21.0 (4.4)

# pt 7.2 9.7 4.1 0 0 0 0 0

σ2 = 20 0 0.4 5.3 24.0 37.3 23.6 8.2 1.2 0 13.0 (3.7) 29.6 (1.3)

# pt 3.6 4.9 5.3 6.6 5.2 2.8 0.8 0.3

σ2 = 200 0.2 0.2 2.9 13.1 24.1 27.5 23.2 8 0 17.4 (4.9) 29.5 (1.2)

# pt 3.3 3.5 3.8 5.2 5.3 4.3 2.6 1.5

6. Discussion

We have proposed a new statistical framework and a Bayesian design for

phase I clinical trials and have demonstrated its operating characteristics based

on a real trial. Implementation of the design is straightforward. According to

the theoretical results that specify most design parameter values, we only need

to tune the values of δ1 and δ2 to achieve a desirable sample size. We also find

that the operating characteristics of the Bayesian design are not sensitive to the

values of p̂i, the prior guess of the toxicity probabilities (results not shown).

Babb, Rogatko and Zacks (1998) and Tighiouart, Rogatko and Babb (2005)

used a different set of penalties that are proportional to the distance between

the dose toxicity probabilities and pT . This type of penalty does not fit into

our proposed dose-finding strategy, in which the dose-assignment rule does not

involve estimation of toxicity probabilities for untried doses. They also imposed

larger penalties for moving toward excessive doses to achieve better overdose

control. Our new Bayesian design appears to have good control for overdosing, as

demonstrated by the simulation results, due to the configuration of the penalties.

The proposed Bayesian design only deals with phase I clinical trials con-

sidering toxicity. We are currently extending the method to accommodate both

efficacy and toxicity simultaneously. The extension involves deriving the bivariate

penalty function in the two-dimensional space of toxicity and efficacy. Current

research on combining toxicity and efficacy in phase I/II clinical trials includes

the work by Thall and Cook (2004) and Thall and Russell (1998), among others.
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Appendix

Proof of Theorem 3.1. First, note that R(D, pi) ≤ KDqSi + ND(1 − qSi) and

R(E, pi) ≤ KEqSi + ME(1 − qSi), and therefore

min [R(D, pi), R(E, pi)]

≤ max(KD,KE)qSi + max(ND,ME)(1 − qSi)

= [max(KD,KE) − max(ND,ME)] qSi + max(ND,ME).

Also, R(S, pi) ≥ min(MS , NS)(1 − qSi). Define

f(qSi) =
[max(KD,KE) − max(ND,ME)] qSi + max(ND,ME)

min(MS , NS)(1 − qSi)
.

By the above inequalities, it immediately follows that

min [R(D, pi), R(E, pi)]

R(S, pi)
≤ f(qSi).

Condition (5) in this theorem leads to ξ = f(1−α). Since f(qSi) is increasing in

qSi, if

min [R(D, pi), R(E, pi)]

R(S, pi)
≥ ξ,

then f(qSi) ≥ ξ = f(1−α). Therefore, qSi ≥ 1−α. That is, if dose i is accepted

based on the stopping region Ai, it is accepted based on {X : Pr(−δ1 ≤ pi−pT ≤

δ2|F) ≥ 1 − α} = {X : qSi ≥ 1 − α}.

Proof of Lemma 3.1. From the formula for computing ξ and the Bayesian

design, it follows immediately that when MS 6= NS, the value of ξ is larger than

that when MS = NS . Therefore, with all other penalties fixed, if the trial is

terminated and dose i is selected given data X with MS 6= NS , the trial will

always be terminated and dose i will be selected given the same data X , but

with MS = NS .

Without loss of generality, let MS = NS = 1. Under the penalties in which

KD = KE , and according to Condition 3.1, let KD = KE = 1 + β and ND =

ME = 1−β for some β ∈ (−1, 1). Under this penalty function, ξ can be expressed

in the form ξ1 = 1/α + β(1 − 2α)/α.
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If KD 6= KE, without loss of generality assume that KD > KE . Under

Condition 3.1, ND < ME. Then, for γ ∈ (0, 1), KE , ME , KD and ND can be

expressed as ME = 1 − β, KE = 1 + β, ND = γ(1 − β), and KD =

2 − γ(1 − β), for β ∈ (−1, 1), which guarantees KD > KE. Therefore, ξ can be

written as

ξ2 =
2(1 − α) − (1 + γ)(1 − α)(1 − β) + 1 − β

α
.

It can be easily shown that ξ2 converges monotonically down to ξ1 as γ → 1,

by examining the first derivative of ξ2. So ξ2 ↓ ξ1 as γ ↑ 1.

Therefore, for any trial data X , if dose i is selected as the target dose under

the penalties with KD 6= KE , the dose must be selected under the penalties with

KD = KE .

Proof of Theorem 3.2. Without loss of generality, suppose R(D, pi) ≤ R(E, pi).

Under the penalty function L(β), the stopping criterion (4) for dose i is

R(D, pi)

R(S, pi)
≥

1

α
+ β

1 − 2α

α
,

after plugging the penalties into ξ. Next, plugging the penalties L(β) into

R(D, pi) and R(E, pi) with their explicit expressions given at (2), we have

qSi + qEi

qDi + qEi

+ β
qSi − qEi

qDi + qEi

≥
1

α
+ β

1 − 2α

α
.

Since dose i is selected under the penalty function L(β) for β ≤ 0, we need

only show that

qSi − qEi

qDi + qEi

≥
1 − 2α

α
,

which is equivalent to qDi ≥ (1 − α − qSi)/α. This inequality is true since qSi ≥

1 − α and qDi ≥ 0. Therefore, dose i is also selected as the target dose under

L(β).

Proof of Theorem 3.3. Based on the proof of Theorem 3.2, given any trial

data X and under penalty function L(β), if dose i is selected as the target dose

for some β, it must be true that

min[R(D, pi), R(E, pi)]

R(S, pi)
≥

1

α
+ β

1 − 2α

α
.

Without loss of generality, suppose that R(D, pi) < R(E, pi). The inequality

above becomes

qSi + qEi

qDi + qEi

−
1

α
+ β

(

qSi − qEi

qDi + qEi

−
1 − 2α

α

)

≥ 0. (A.1)
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According to Theorem 3.1, qSi ≥ 1 − α for dose i since it is selected as

the target dose. So qDi > (1 − α − qSi)/α, under which it must be true that

(qSi − qEi)/(qDi + qEi)− (1 − 2α)/α > 0. Hence, the third term in the left hand

side of (A.1), β((qSi − qEi)/(qDi + qEi) − (1 − 2α)/α), is an increasing function

in β.

Therefore, for any β∗ ≥ β, (qSi + qEi)/(qDi + qEi) − 1/α + β∗((qSi − qEi)/

(qDi + qEi)− (1 − 2α)/α) ≥ 0. That is, for any β∗ ≥ β and any trial data X , the

dose i is accepted under the penalty function L(β∗) if it is accepted under the

loss L(β). Therefore, the average sample size under the penalty function L(β∗)

is less than or equal to the average sample size under the penalty function L(β),

completing the proof.
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