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Abstract: In this paper, we discuss a novel class of skewed multivariate distributions

and, more generally, a method of building such a class on the basis of univariate

skewed distributions. The method is based on a general linear transformation of

a multidimensional random variable with independent components, each with a

skewed distribution. The proposed class of multivariate skewed distributions has

a simple form for the pdf, and moment existence only depends on that of the

underlying symmetric univariate distributions. In addition, we can freely allow

for any mean and covariance structure in combination with any magnitude and

direction of skewness. In order to deal with both skewness and fat tails, we introduce

multivariate skewed regression models with fat tails based on Student distributions.

We present two main classes of such distributions, one of which is novel even under

symmetry. Under standard non-informative priors on both regression and scale

parameters, we derive conditions for propriety of the posterior and for existence

of posterior moments. We describe MCMC samplers for Bayesian inference and

analyse an application to biomedical data.

Key words and phrases: Asymmetric distributions, Bayesian inference, heavy tails,

Mardia’s measure of skewness, orthogonal matrices, posterior propriety.

1. Introduction

The contribution of this article is twofold. We start by introducing a general

method for the definition of multivariate skewed distributions. Then we use

this new class of distributions in a multivariate regression context and propose

Bayesian inference procedures.

So far, the literature on skewed distributions has mainly dealt with uni-

variate cases. Azzalini and Dalla Valle (1996) is one of the first multivariate

proposals. Based on the univariate skew-Normal distribution analysed in detail

by Azzalini (1985), this method can be interpreted as defining a multivariate

skew-Normal density by conditioning on an unobserved argument. Such con-

ditioning models, also known as hidden truncation models (Arnold and Beaver

(2000)), have been generalised further. Still conditioning on one unobserved vari-

able, Branco and Dey (2001) introduced a class of multivariate skew-elliptical
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distributions, and Arnold and Beaver (2002) made these models more general by

allowing for non-elliptical skew distributions. Within the class of hidden trun-

cation models, but conditioning on as many arguments as observed variables,

Sahu, Dey and Branco (2003) (SDB, hereafter) generated a very general class

of multivariate skew-elliptical distributions. A different approach to multivari-

ate skewed distributions was proposed by Jones (2002): starting from spherical

symmetry, this replaces the marginal distribution of some of the variables by a

skewed distribution.

The class that we discuss in this article is based on a general linear trans-

formation of a multidimensional random variable with independent components,

each having a skewed distribution, with probability density function (pdf) con-

structed using the method introduced in Fernández and Steel (1998), hereafter

denoted by FS. Our proposal for multivariate skewed distributions has a simple

form for the pdf, and moment existence is only dependent on the existence of the

moments of the underlying symmetric univariate distributions. In addition, we

can freely allow for any mean and covariance structure in combination with any

magnitude and direction of skewness.

Despite focusing on this class, we highlight that it is possible to use any

other general method for generating univariate skewed distributions for the inde-

pendent components, such as the univariate distributions introduced in Azzalini

(1985), Azzalini and Capitanio (2003), or Jones and Faddy (2003).

A proposal for multivariate skewed distributions using a linear combina-

tion of independent univariate skewed distributions has appeared before in

Bauwens and Laurent (2005). However, the one we present here is fundamentally

different, as will be explained in the sequel.

Subsequently, we introduce multivariate skewed regression models with fat

tails, by considering a linear regression structure with skewed and heavy-tailed

error terms. In order to allow for heavy tails we use skewed versions of Student-t

distributions. We consider standard non-informative priors on both regression

and scale parameters. Skewness and tail behaviour are not fixed, but are inferred

from the data. We derive conditions that make Bayesian analysis feasible (i.e.,

lead to a proper posterior) under the improper prior structure. In addition, we

provide results on the existence of posterior moments of the regression coefficients

and the determinant of the scale matrix.

We introduce two different Student-based multivariate regression models.

One can be represented as a scale mixture of multivariate Normals and is, thus,

characterized by a single mixing variable. Therefore, this leads to the skewed

analogue of the multivariate Student-t regression model in Fernández and Steel

(1999). In the latter symmetric model, there is no need to use the orthogonal

transformations that we introduce in this paper, since the model is based on a
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multivariate Normal which is spherical. The moment we introduce skewness, such

an orthogonal transformation becomes crucial as a means of specifying the direc-

tions of the skewness. The other class of heavy-tailed models that we introduce

here is based on a transformation of independent Student-t distributed random

variables. As this class of distributions is no longer based on a spherical class, we

need to use the orthogonal transformations introduced in the sequel, even under

symmetry. Thus, the present paper also introduces an as yet unexplored class of

symmetric heavy-tailed distributions and sheds light on its properties regarding

Bayesian inference.

Inference in our regression setup is performed through hybrid Markov chain

Monte Carlo (MCMC) samplers using data augmentation. We illustrate the

flexibility of the proposed framework in a regression problem using biomedical

data from the Australian Institute of Sport.

Section 2 briefly recalls the univariate skewed distributions of FS, while Sec-

tion 3 introduces the multivariate skewed distributions, together with some prop-

erties. Section 4 provides a useful parameterisation of these distributions, and

Section 5 presents key examples. Section 6 develops the Bayesian multivari-

ate skewed regression models, studies the effect of skewness on the existence of

posterior moments, and assesses the feasibility of inference under asymmetric,

heavy-tailed sampling. Section 7 is devoted to the numerical implementation

employed to conduct inference. In Section 8 we present the application. Fi-

nally, Section 9 provides some concluding remarks. Proofs can be obtained upon

request from the authors.

2. Skewed Distributions: The Univariate Case

FS propose a method for introducing skewness into a unimodal distribution

symmetric around zero. The basic idea is to introduce inverse scale factors in

the positive and negative half real lines. Let f(·) be a univariate pdf that is

symmetric around zero, such that f(s) is decreasing in |s|. Let γ be a scalar in

ℜ+. Then, the skewed distribution on the real line is given by the pdf

p(ǫ|γ, f)=
2

γ+ 1
γ

{

f
( ǫ

γ

)

I[0,∞)(ǫ)+f(γǫ)I(−∞,0)(ǫ)
}

=
2

γ+ 1
γ

f
(

ǫγ−sign(ǫ)
)

, (1)

where IS(·) is the indicator function on S, and sign(·) is the usual sign function

in ℜ.

If the skewness parameter γ is unity, then we retrieve the original symmetric

density. The mode of the density is unchanged, remaining at zero irrespective of

the particular value of γ. Also, the probability mass assigned to each side of the

mode is independent of f(·) and given by P (ǫ > 0|γ, f) = γ2/(1 + γ2), allowing

γ to parameterise the complete range of mass on each side of the origin. The



508 JOSÉ T. A. S. FERREIRA AND MARK F. J. STEEL

existence of moments of p(ǫ|γ, f) does not depend on γ, but only on the existence

of moments of the initial, symmetric density f(·). Furthermore, the rth moment

(r ∈ ℜ) is obtained as

E(ǫr|γ, f) = Mr

γr+1 + (−1)r

γr+1

γ + 1
γ

where Mr(f) =

∫

∞

0
sr2f(s)ds. (2)

Finally, simple manipulation reveals that p(ǫ|γ, f) = p(−ǫ|1/γ, f).

3. Skewed Distributions: The Multivariate Case

3.1. Definition

The construction of multivariate skewed distributions presented here is based

on linear transformations of univariate skewed distributions. Let m be the dimen-

sion of the random variable ǫ = (ǫ1, . . . , ǫm)′ ∈ ℜm and γ = (γ1, . . . , γm)′ ∈ ℜm
+ .

Further, let f = (f1(·), . . . , fm(·))′ denote a vector of m unimodal and symmetric

univariate pdfs. The pdf of the multivariate skewed distribution with indepen-

dent components is given by

p(ǫ|γ, f) =

m
∏

j=1

p(ǫj |γj, fj), (3)

where each p(ǫj |γj, fj) is as in (1).

Following an affine linear transformation, given a vector µ = (µ1, . . . , µm)′

and a non-singular matrix A ∈ Rm×m, the variable η = (η1, . . . , ηm)′ ∈ Rm,

defined as

η = A′ǫ+ µ (4)

has a general multivariate skewed distribution, with parameters µ, A, γ and f ,

denoted by Skm(µ,A, γ, f). The pdf for η is given by

p(η|µ,A, γ, f) = ‖A‖−1
m
∏

j=1

p[(η − µ)′A−1
·j |γj , fj ], (5)

where A−1
·j denotes the jth column of A−1, ‖A‖ denotes the absolute value of the

determinant of A, and p(·|γj , fj) is as in (1). The distribution of η is unimodal

with mode µ, A introduces the dependence between the components of η, while

γ determines the skewness of the independent components of ǫ. The distribution

in (5) is intended as a flexible (yet parametric) tool for modelling multivariate

data, but is not based on any underlying physical interpretation, such as can be

assigned to hidden truncation models (see Arnold and Beaver (2002) and SDB).
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Figure 1 presents contour plots for four different bivariate skewed distribu-
tions, with both f1(·) and f2(·) equal to φ(·), the univariate standard Normal pdf,
and µ set to the zero vector. Figure 1 (a) represents the density of a distribution
with independent components, where only one of these is (positively) skewed.
The remaining three plots were all obtained using the same values for the skew-
ness components, namely γ = (0.5, 1.5)′ . By varying the transformation matrix
A it is possible to obtain a diverse set of shapes for the density. If A equals the
identity matrix, then the effect of γ is evident (see Figure 1 (b)). In the context
of skewed distributions with independent components, γ values larger than one
always correspond to a positively skewed marginal, and the reverse happens for
values of γ ∈ (0, 1). Figures 1 (c) and (d) represent skewed distributions with
dependent components. It can be seen that the shape of the contours varies
extensively, even with the same γ, highlighting the flexibility of the method we
introduce. To further illustrate the role of the matrix A, we have generated plots
(c) and (d) with the same matrix A′A = [1/2 − 1/2; − 1/2 1]. As discussed
in Subsection 3.3, A′A is all that would matter without skewness.

Figure 1. Contour plots of four different bivariate distributions. Plots (a)
and (b) correspond to A = I, whereas A for plots (c) and (d) was chosen to
lead to the same A′A matrix.

3.2. Moments

Calculation of the moments of η can be based on the moments of the univari-
ate pdfs fj(·), j = 1, . . . ,m. Further, as in the univariate case, the existence of
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the moments of η depends only on fj(·) and not on the skewness parameters. Due
to the linear transformation used in (4), the existence of the rth positive moment

of η depends exclusively on the existence of the first r moments of the distribu-
tions with density fj(·). As an illustration, assuming a common fj(·) = f(·),
j = 1, . . . ,m, the mean vector and the covariance matrix of η are given by

E(η) = µ+M1A
′







γ1 − 1
γ1

...

γm − 1
γm






, and

V ar(η) = A′

{

Diag
[

(M2 −M2
1 )
(

γ2
j +

1

γ2
j

)

+ 2M2
1 −M2

]

j=1,...,m

}

A,

as long as M1 and M2, given by (2), both exist.
Thus, even though E(η) and V ar(η) depend on γ directly, their values are

not restricted by it. We can obtain any desired mean and covariance values for the
distribution even after setting γ, simply by choosing µ and A appropriately. We

feel this is an advantage of this class of skewed distributions, when compared to
proposals such as the ones introduced by Azzalini and Dalla Valle (1996) or SDB.

In these, the set of covariances obtainable after setting the skewness parameters
is restricted. In contrast, our framework allows for independent modelling of

mean, covariance and skewness.
Figure 2 illustrates how we can fix the covariance and generate quite differ-

ent distributions by changing both A and γ. All the contour plots in Figure 2
represent distributions with identity covariance matrix, but with quite different

shapes.
This ability of our class of skewed distributions to cover all possible mean

and covariance structures is linked with one potential drawback, and that is the
fact that the class of distributions is not closed under marginalisation. This

results from the fact that a linear combination of random quantities with pdf as

in (1) does not necessarily have a density of the same form. In a bivariate context,
Moran (1967) remarks that a necessary condition for classes of distributions with

fixed marginals to cover the entire range of values for the correlation coefficient
is that the marginals are symmetric.

Not many measures of multivariate skewness have been proposed in the lit-
erature. One measure of multivariate skewness is β1,m, introduced by Mardia

(1970) and given by

β1,m(η) =
m
∑

r,s,t

m
∑

r′,s′,t′

σrr′σss′σtt′E
[

(ηr − αr)(ηs − αs)(ηt − αt)
]

×E
[

(ηr′ − αr′)(ηs′ − αs′)(ηt′ − αt′)
]

,



A NEW CLASS OF SKEWED MULTIVARIATE DISTRIBUTIONS 511

(a) (b)

(c) (d)

0

0

0

0

0

0

0

0

5

5

5

5

5

5

5

5

-5
-5

-5
-5

-5
-5

-5
-5

γ
2

=
0
.7

γ
2

=
1

γ
2

=
0
.5

γ
2

=
0
.5

γ1 = 1

γ1 = 1

γ1 = 0.5

γ1 = 0.9

Figure 2. Contour plots of four pdfs with identical covariance matrix (equal
to the identity matrix).

where αj and σjj′, j, j′ = 1, . . . ,m denote the elements of the mean vector and

precision matrix of η, respectively. Two main characteristics of β1,m make it

interesting for use: it equals zero for any symmetric distribution, with unimodal

asymmetric distributions being characterised by values of the measure larger than

zero, and it is invariant under non-singular affine transformations.

As β1,m is invariant under non-singular affine transformations, the calcu-

lation of its value for a multivariate skewed distribution generated using the

construction we propose is trivial. Let η ∼ Skm(µ,A, γ, f), then by making use

of an alternative affine transformation of the original variables ǫ it is possible

to obtain a set of variables ψ ∼ Skm(µ∗, A∗, γ, f), with A∗ diagonal, such that

V ar(ψ) equals the identity matrix and E(ψ) is zero. Now, as A∗ is diagonal,

by (5), the components of ψ are independent and Mardia’s skewness measure is

given by

β1,m(η) = β1,m(ψ) =
m
∑

j=1

[E(ψ3
j )]2 (6)

which, from (2), is straightforward to calculate and does not depend on µ or A.

This ease of calculating Mardia’s measure of skewness for any pdfs fj(·) is not

shared by any of the methods based on conditioning on unobserved arguments or

marginal replacement. The expression in (6) also shows that each particular γj

has a contribution to the measure that is independent of the remaining elements
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of γ. As a consequence, if γj is set to one, its contribution to (6) vanishes. The

existence of β1,m depends exclusively on the existence of M3(fj), j = 1, . . . ,m

defined in (2).

Figure 3 plots β1,2 as a function of γ ∈ (0, 1] × (0, 1] with fj(·) = φ(·),
j = 1, 2. As expected, β1,2 is a continuous, strictly decreasing function of γj in

(0, 1], j = 1, 2. Other values of γ are covered by the fact that the value of β1,2 is

unaffected by inverting either γ1, γ2 or both. The value of β1,2 is bounded below

by zero (symmetric case) and

lim
γ→0

β1,2 = 4
(4 − π)2

(π − 2)3
≈ 1.96. (7)

These same bounds are obtained in SDB for their definition of the skew-Normal

distribution. For the skew-Normal distribution of Azzalini and Dalla Valle (1996),

the upper bound is half the value in (7).
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Figure 3. Plot of β1,2 for a bivariate skew-Normal distribution as a function

of γ.

3.3. The importance of orthogonal transformations

In the sequel, we make use of the following result on the decomposition of

nonsingular matrices.

Lemma 1. If A is any m×m real non-singular matrix, there exists an orthogonal

matrix OU such that A = OUU , where U is a real upper triangular matrix with

positive diagonal elements. Likewise, there exists another orthogonal matrix OL

such that A = LOL, where L is a real lower triangular matrix with positive

diagonal elements. Both representations are unique.

In order to gain further insight, suppose that A = LO (as in Lemma 1) and,

for simplicity, assume that µ = 0. From (4) we then have η = O′L′ǫ, indicating
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that ǫ is first subjected to a linear transformation, and then to a rotation if

|O| = 1, or a rotoinversion if |O| = −1. If O is the identity matrix, the jth

component of η is a linear combination of the last m − j + 1 components of ǫ.

The effect of O is that it rotates and/or reflects the axes along which the joint

distribution is a linear combination of the last m− j+1 components of ǫ. Figure

4 exemplifies the effect of O using bivariate skewed distributions. In Figure 4 (a)

A = LOa, while in Figure 4 (b) A = LOb, with µ = 0 and

L =

(

1 0
1
4 1

)

, Oa =

(

1 0

0 1

)

, Ob =
1√
2

(−1 1

1 1

)

and γ =

(

3
4
3
2

)

.

Along the axis e1 the distribution is given as a linear combination of two inde-

pendent univariate skewed distributions with skewness parameters 3/4 and 3/2.

Similarly, along the axis e2 the distribution is a univariate skewed distribution

with skewness parameter equal to 3/2. The contours in Figure 4 (b) can be ob-

tained from the ones in Figure 4 (a) by reflecting them about any of the axes and

rotating them. Inspired by the representation A = LO, we define the basic axis

ej, j = 1, . . . m as the axis along which the distribution is a linear combination of

m− j+1 independent univariate skewed distributions with skewness parameters

γk, k = j, . . . ,m. Changing the orthogonal matrix O is then equivalent to per-

forming a rotation of the basic axes, possibly after performing a reflection about

some of them. As is evident from Figure 4 these axes define the direction of the

skewness of the distribution.
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Figure 4. Contour plots of two bivariate skewed pdfs, together with their

basic axes.

A well-known fact from the theory of multivariate distributions is that if

η is given by (4) and the distribution of ǫ belongs to the spherical class (e.g.,

the Normal distribution), then A only needs to be known up to Σ = A′A or,

equivalently, A can be either upper or lower triangular. Sphericity can be defined

as distributional invariance with respect to orthogonal transformations (see e.g.,
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Fang, Kotz and Ng (1990), p.27), so that ǫ
d
=Oǫ for any orthogonal matrix O

under spherical ǫ. It is then obvious that for A = OU the transformed variable η

in (4) has the same distribution as U ′ǫ+ µ, so that the choice of O is irrelevant.

Equivalently, continuous spherical distributions on ǫ are characterised by a pdf

that only depends on ǫ′ǫ, so it is clear that the induced pdf on η will only depend

on (η−µ)′Σ−1(η−µ), and only Σ = A′A = U ′U matters. However, if ǫ is outside

the spherical class then knowledge of Σ alone is no longer sufficient. For example,

this is the case when the components of ǫ have independent Student distributions,

or if their distributions are skewed. Thus, the orthogonal matrix O plays an

important role. Not taking O into account (e.g., by implicitly taking O = I)

in skewed cases would imply favouring specific directions for the asymmetry of

the distribution. When defining a general class of skewed distributions, we feel

it is important to also introduce parameters that specify the direction of the

skewness, in our case by specifying the basic axes through A.

The skewed distribution of SDB introduces skewness into symmetric distri-

butions along the coordinate axes. Bauwens and Laurent (2005) use a regression

framework with a linear transformation as in (4), where ǫ has a similar distri-

bution as in (3), but fix A = Σ1/2, the spectral decomposition of Σ. The latter

formulation does not allow for a separate choice of the directions of the asymme-

try of the distribution, and fixes it to be a function of Σ.

4. Unique Parameterisation of Skewed Distributions

Subsection 3.3 shows that defining A via Σ is no longer sufficient for the

class of distributions that we introduce in this article. Here we provide a unique

parameterisation of our skewed distributions. However, even if the components

of γ are set to unity, the parameterisation is still suitable, i.e., is unique if the

distribution of ǫ in (4) is not spherical.

Let η ∼ Skm(µ,A, γ, f). Recall that A is a non-singular matrix, and that

γ ∈ ℜm
+ . However, this parameter space is not fully adequate in the sense that

the same distribution of η can be defined using different sets of parameter values,

an undesirable feature for inference.

Let r = (r1, . . . , rm)′ be a permutation of the first m positive integers,

Ar be the m × m matrix where the jth row is the rjth row of A, let γr be

the m-dimensional vector where the jth element is the rjth element of γ, and

define fr similarly. Then, it follows directly from (4) that Skm(µ,A, γ, f) =

Skm(µ,Ar, γr, fr). There are m! different permutations r.

Also, let s = (s1, . . . , sm)′ be a vector whose components are in {−1, 1},
As be the m × m matrix where the jth row equals the jth row of A times

sj, and let γs be the m-dimensional vector where component j is given by the

jth element of γ to the power sj. Then, it follows directly from the property
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of the univariate skew distributions stated at the end of Subsection 2.1 that

Skm(µ,A, γ, f) = Skm(µ,As, γs, f). The number of different vectors s is 2m.

Combining both transformations gives all the m!2m parameter values that

define the same distribution. These values are distinct if the components of γ

are all distinct and different from unity.

There are several ways of reducing the parameter space in order to achieve a

one-to-one parameterisation of the class of skewed distributions. Here we present

one that is valid except for a set that, under most commonly used probability

measures, will have zero mass. Using Lemma 1, through A = OU , we first

reparameterise from (µ,A, γ, f) to (µ,O,U, γ, f) where O is an orthogonal matrix

and U an upper triangular matrix with strictly positive diagonal elements. We

can now create a one-to-one parameterisation by restricting the matrix O = (Oij),

i, j = 1, . . . ,m to have

O11 > −Om1 > −O(m−1)1 > · · · > |O21| > 0 and |O| = (−1)m+1, (8)

and by adjusting γ and f accordingly. The set of all such matrices O will be

denoted by Om. This set of restrictions provides a one-to-one parameterisation

for all distributions with distinct components of γ and matrices A without zeros

in the first column. Indeed, if A1 and A2 differ by a signed permutation of rows

(i.e., are equivalent), then A1 = O1U and A2 = O2U , where O1 and O2 differ by

the same signed permutation of rows. The two conditions above ensure that one

and only one of such signed permutations is allowed in the parameter space.

In the special case where we fix all skewness parameters to unity and, in

addition, we choose a spherical distribution for ǫ (so we simply have an elliptical

distribution for η), our parameterization will be too rich and we will be able to

update all parameters but O, for which we will simply retrieve the (proper) prior

distribution. Thus inference is still possible in this case that will, moreover, not

occur under continuous priors on γ.

5. Examples of Multivariate Skewed Distributions

Even though it is possible to use symmetric, unimodal pdfs fj(·), j =

1, . . . ,m, from different parametric families, we mainly focus on cases where for

any j = 1, . . . ,m, fj(·) can be written as fνj
(·), with νj in some set N . We then

identify the multivariate skewed distribution generated by (5) with the name of

the multivariate distribution that would result if γj = 1, j = 1, . . . ,m.

5.1. Skew-Normal

The multivariate skew-Normal distribution is obtained when fνj
(·) = φ(·),

j = 1, . . . ,m, i.e., the pdf of the univariate standard Normal distribution. In this
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case νj, j = 1, . . . ,m, is vacuous.

5.2. Skew-Independent student

The multivariate skew-Independent Student (skew-IStudent) with degrees of

freedom (df) vector ν = (ν1, . . . , νm)′ is generated when fνj
(·) is the univariate

Student pdf with νj ∈ ℜ+ df, given by

fνj
(x) =

Γ(
νj+1

2 )

Γ(
νj

2 )(πνj)1/2

[

1 +
x2

νj

]−
νj+1

2

. (9)

5.3. Skewed mixture of Normals

Mixtures of Normals are an important class of distributions. Using a slight

extension of the framework in (4), scale mixtures of Normals can be created by

taking

η = λ−
1

2A′ǫ+ µ, (10)

where ǫ follows a multivariate standard Normal distribution and a mixing distri-

bution is assigned to λ. Skewed mixtures of Normals are defined in a similar way

by taking ǫ as in (3), with fj(·) = φ(·), j = 1, . . . ,m. A particular case that will

be used in the sequel is the skew-Student distribution with ν∗ df, obtained if λ

has a Gamma distribution with both shape and precision parameter set to ν∗/2.

6. Regression Modelling

We assume that we have n observations from an underlying process, given

by pairs (xi, yi), i = 1, . . . , n, where xi ∈ ℜk is a vector of explanatory variables

and yi ∈ ℜm is the variable of interest. Throughout, we condition on xi without

explicit mention. The n observations are grouped in X ∈ ℜn×k and Y ∈ ℜn×m,

with each row corresponding to one observation.

Let us assume the observables yi ∈ ℜm, i = 1, . . . , n, are generated from

yi = gi(B) + λ
−

1

2

i A′ǫi, (11)

where gi(·) is a known measurable function in ℜm, B parameterises the location,

A = OU is the transformation matrix for yi, with U ∈ Um, the set of upper

triangular m×m matrices with positive diagonal elements, and O ∈ Om, the set

of m×m orthogonal matrices that satisfy (8). λi, i = 1, . . . , n, are independently

drawn from some distribution Pλ on L. We assume ǫi = (ǫi1, . . . , ǫim)′, i =

1, . . . , n, to be i.i.d. conditionally on parameters ν ∈ Nm, and γ = (γ1, . . . γm)′

in ℜm
+ , with pdf as in (3).
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Whenever we mention “tail behaviour” in models generated through (11),

we refer to the tails of the latent quantities λ
−1/2
i ǫi, rather than the tails of the

observables.

6.1. Existence of moments under improper priors

We now consider the impact of introducing skewness into the multivariate

sampling distribution on the existence of the posterior distribution and moments

in the context of this general regression model.

Let λ = (λ1, . . . , λn)′. We adopt the prior product structure

PB,O,U,λ,γ,ν = PB,O,U × Pλ × Pγ × Pν . (12)

The usual non-informative prior for regression modelling with elliptically dis-

tributed errors is an improper prior on B, and Σ = A′A given by

p(B,Σ) = p(B)p(Σ) ∝ |Σ|−m+1

2 . (13)

We define a non-informative prior on B,O and U that is compatible with (13).

From (13) and transforming from Σ = A′A = U ′U to U , we have that p(Σ) ∝
|Σ|−(m+1)/2 ⇔ p(U) ∝∏m

j=1 u
m−j
jj |U |−m. In addition, we take p(O) such that its

distribution on Om is invariant to linear orthogonal transformations (see (20)-

(21) and Appendix A.4). The prior on B is as in (13). Finally, we assume that

Pλ and Pγ and Pν are proper distributions on Ln, ℜm
+ and Nm, respectively. The

full prior distribution is given by (12) with PB,O,U corresponding to

p(B,O,U) ∝ p(O)

m
∏

j=1

um−j
jj |U |−m. (14)

Theorem 1. Consider n independent replications from the sampling distribution

given in (11) and the prior in (12) and (14). If the lth element of B is Bl,

l = 1, . . . , p, and given r1, . . . , rp and r ≥ 0, we obtain that for any Pγ ,

E

(

|Σ| r
2

p
∏

l=1

|Bl|rl

∣

∣

∣
Y

)

<∞

if and only if the same holds for inference with symmetrically distributed distur-

bances.

The result in Theorem 1 states that the existence of posterior moments of B

and of non-negative posteriors moment of |Σ| is unaffected by the extra vector of

unknowns γ under any proper prior Pγ . Propriety of the posterior distribution

is therefore not influenced by incorporating skewness in the sampling, as can be
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assessed by setting r = r1 = · · · = rp = 0. This result extends Theorem 1 in FS

to the case of multivariate skewed distributions.

We now specify two Bayesian models that account for both skewness and

fat tails. Further, we provide results on posterior inference for these models.

We define gi(B) = B′xi, where B ∈ ℜk×m (so p = mk, and we now denote

the elements of B by Blj, l = 1, . . . , k, j = 1, . . . ,m). This corresponds to

the commonly used linear regression model. The complete design matrix X =

(x1, . . . , xn)′ will always be assumed to be of full column rank, implying that

n ≥ k.

6.2. Inference under skew-Student sampling

The first of the models that we introduce is the linear regression model,

with errors having the skew-Student distribution defined in Subsection 5.3. In

particular, we consider the special case of the model in (11), (12) and (14) that

has fνj
(·) = φ(·), j = 1, . . . ,m, and for i = 1, . . . , n, λi, given a positive parameter

ν∗ ∈ N ∗, has a Gamma distribution with both parameters equal to ν∗/2. The

prior distribution on ν∗, Pν∗ , is proper.

Thus, we assume n independent replications of the sampling density

p(yi|B,O,U, ν∗, γ)= |U |−1
m
∏

j=1

2

γj +
1
γj

∫

ℜ+

λ
m
2

i φ
(

λ
1

2

i dijγ
−sign(dij)
j

)

pG

(

λi

∣

∣

∣

ν∗

2
,
ν∗

2

)

dλi,

(15)

with dij = [O(U ′)−1]j·(yi −B′xi).

The sampling distribution given in (15) is denoted as m-dimensional skew-

Student with location B′xi, transformation OU , skewness parameter γ and ν∗ df.

Matrix B is usually of primary interest as it represents the regression coefficients.

Also of practical importance is Σ = U ′U , as it contains information about the

dispersion of y. The remaining parameters have a well-defined purpose. Skewness

is controlled jointly by γ and OU , while ν∗ ∈ ℜ+ determines the thickness of the

tails of the multivariate distribution.

This subsection again extends results from FS to the multivariate case.

Theorem 2. Consider n independent replications from the sampling model in

(15) under the prior in (12) and (14). Then the posterior distribution is proper

if and only if n ≥ m+ k, for any Pν∗ and Pγ.

The extra model flexibility introduced by modelling tail behaviour and skew-

ness is thus seen not to affect the propriety of the posterior distribution. As a

consequence, the well-known result under Normal sampling holds in our much

more general framework. Throughout, we assume n ≥ m+ k.
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The following definition from Fernández and Steel (2000), concerning the de-

sign matrixX, is required to adequately characterise the existence of the marginal

posterior moments of B.

Definition 1. Given an n× k full column-rank matrix X, the singularity index

for column l = 1, . . . , k is defined as the largest number pl (0 ≤ pl ≤ n− k) such

that there exists a (k− 1 + pl)× k submatrix of X of rank k− 1 that remains of

rank k − 1 after removing its lth column.

If X contains rows of zeros, then pl is at least equal to the number of such

rows for all l = 1, . . . , k. Furthermore, max{pl, l = 1, . . . , k} = 0 if and only if

every k × k submatrix of X is non-singular.

Theorem 3. Consider the Bayesian model given in (12), (14) and (15) and take

r > 0. Let N ∗ = (ν∗0 ,∞), ν∗0 ≥ 0. Then E(|Blj |r|Y ) < ∞ if r < min{n −m −
k+1,m(n−k−pl)+ν∗0}, with pl the singularity index for column l of the design

matrix X.

We can also show that, if r ≥ n −m− k + 1, there is no possibility for the

moment to exist, regardless of the properties of the design matrix or the prior

Pν∗ . Such a result is due to the uncertainty about B and Σ. However, both X

and Pν∗ intervene in the sufficient condition stated in Theorem 3.

We now turn our attention to the posterior moments of |Σ| of order r/2 ≥ 0.

For this, the order up to which the posterior moments are finite does not depend

on the design matrix or the distributions of Pγ and Pν∗ , as is stated in the

following theorem.

Theorem 4. Consider the Bayesian model given in (15) under the prior in (12)

and (14) and take r ≥ 0. Then, E(|Σ| r
2 |Y ) <∞ if and only if r < n−m− k+1.

Note that if λi = 1, i = 1, . . . , n, we obtain a regression model with skew-

Normal disturbances. The results above apply to this model in the limit as

ν∗0 → ∞. Also, if we set the components of γ equal to one, we obtain the

symmetric versions of the distributions. We know from Theorem 1 that the

results derived here also apply to the case of symmetric Student sampling. In

that case, as explained in Subsection 3, the matrix O is no longer necessary for

inference, and therefore we can take it to be the m×m identity matrix, Im.

6.3. Inference under skew-IStudent sampling

The regression framework introduced in the previous subsection implies a

common tail behaviour for ǫ along all directions. Here we relax that assumption

by allowing fνj
(·), j = 1, . . . ,m, to have different tail behaviour. In particular,

we adopt the Bayesian regression model in (11)-(12) and (14) with fνj
(·) the
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univariate Student distribution with νj df for j = 1, . . . ,m, λi = 1, i = 1, . . . , n,

and Pν =
∏m

j=1 Pνj
. The sampling distribution is then given by

p(yi|B,O,U, ν, γ) = |U |−1
m
∏

j=1

2

γj + 1
γj

fνj

(

dijγ
−sign(dij)
j

)

, (16)

where fνj
(·) is given in (9) and dij is as in (15). This defines the m-dimensional

skew-IStudent with location B′xi, transformation OU , skewness parameter γ,

and df vector ν = (ν1, . . . , νm)′.

Theorem 5. Consider n independent replications from the sampling model in

(16) under the prior in (12) and (14). If for any j = 1, . . . ,m, P (νj ≤ m−1) = 0

and n ≥ m+ k, then the posterior distribution is proper for any Pγ .

The requirement that P (νj ≤ m − 1) = 0 can be restrictive, especially if

the dimension of the problem is large. However, for reasonably small m, the

restriction is unlikely to cause much harm, as only distributions with extremely

heavy tails are excluded. In addition, if we also want the existence of third

moments, required for the calculation of the Mardia measure of skewness, then

we need νj > 3, implying no extra restriction for problems up to and including

dimension 4. In what follows, we always assume that Pν complies with the

sufficient condition in Theorem 5.

Theorem 6. Consider the Bayesian model given in (12), (14) and (16) and take

r > 0. Let N = (ν0,∞) be the common support of Pνj
, j = 1, . . . ,m. Then we

obtain that E(|Blj |r|Y ) <∞ if r < min{n−m−k+1,m(n−k−pl−1)+ν0 +1},
where pl is the singularity index for column l of X.

Theorem 7. Consider the Bayesian model given in (16), under the prior in (12)

and (14), and take r ≥ 0. Then E(|Σ| r
2 |Y ) <∞ if r < n−m− k + 1.

If we consider the special case where the components of γ are set to one, we

obtain sampling under the Independent Student (IStudent) distribution. How-

ever, as the product of univariate Student distributions is not in the spherical

class, it is still necessary to consider the orthogonal matrix O. To our knowledge,

this sampling model has not been analysed in the literature even under symme-

try. Thus, this subsection also introduces a novel class of symmetric heavy-tailed

distributions and analyses its properties in a Bayesian regression context.

6.4. Completing the prior specification

Having already specified the prior structure and the prior distributions for

B, O and U , the Bayesian models become fully specified by assigning proper

prior distributions for γ, ν∗ and ν.
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We assume that the components of γ ∈ ℜm
+ are independently distributed

according to a common logNormal distribution, i.e., log(γj) ∼ N(0, s2), j =
1, . . . ,m. This centers the prior over symmetry and implies that for any two
constants such that 1 < γa < γb, we have P [γj ∈ (γa, γb)] = P [γj ∈ (γb

−1, γa
−1)],

thus treating positive and negative skewness symmetrically in the prior.
For ν∗ and the components of ν we use an Exponential prior with parameter

d > 0, restricted to N ∗ = N = (max{3,m − 1},∞), allowing at the same time
the use of improper priors and calculation of the third moments necessary to
calculate the Mardia measure of skewness. In addition, it will, in most practical
situations, avoid the problems of posterior nonexistence with point observations
that were pointed out in Fernández and Steel (1999) for symmetric multivariate
Student regression models.

Finally, we choose s = 1, corresponding to a rather vague prior on γ, and
d = 0.1 as in FS.

7. Numerical Implementation

Inference with the Bayesian models introduced in Section 6 requires nu-
merical methods. Here we conduct inference using Markov chain Monte Carlo
(MCMC) methods, in particular hybrid samplers with both Metropolis-Hastings
and Gibbs components.

As the univariate Student-t distribution can be expressed as a mixture of
Normals, (16) can be written as

p(yi|B,O,U, ν, γ)= |U |−1
m
∏

j=1

2

γj +
1
γj

∫

ℜ+

λ
1

2

ijφ
(

λ
1

2

ijdijγ
−sign(dij)
j

)

pG

(

λij

∣

∣

∣

νj

2
,
νj

2

)

dλij .

(17)
This illustrates a fundamental difference between the skew-Student and the skew-
IStudent sampling models. In the skew-Student in (15), each observation yi has
its corresponding mixing parameter λi, i = 1, . . . , n, pairwise i.i.d. given ν∗. For
the skew-IStudent model, each observation yi has its vector of independent mixing
parameters λi = (λi1, . . . , λim)′, with different distributions for each element.
Thus, even if νj = ν∗, j = 1, . . . ,m, the two models are quite different. For
the skew-IStudent model we conduct inference on (B,O,U, γ, λ, ν|Y ), where λ =
(λ1, . . . , λn)′, while for skew-Student sampling we merely replace ν by ν∗.

Most steps in the sampler are fairly standard with the exception of the step
to draw O, as will be explained below. For both models, the components of λ
are independent given the other parameters, and can directly be sampled from
Gamma distributions. Drawings from the conditional posterior distributions for
ν and ν∗ are generated using a rejection sampler. We use individual random-
walk Metropolis-Hastings samplers for B,O,U and γ, common to both models.
For the components of B, the off-diagonal elements of U , and the logarithm of
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the components of γ, we use a Normal proposal, while we use a half-Normal

proposal distribution for the diagonal elements of U . Throughout, we update

one component at a time.

7.1. Sampling O

Sampling orthogonal matrices O ∈ Om directly is complicated. Thus, we

use a reparameterisation of O, more suitable for sampling. We first define

(θ2, . . . , θm)′ ∈ Θ2 × . . .Θm, where θj = (θj
1, . . . , θ

j
j−1), and Θj is as defined

in Appendix A.4.

The appendix shows that if vj = (vj
1, . . . v

j
j )

′ are such that vj
1 = sin(θj

1),

vj
i =

∏i−1
l=1 cos(θj

l ) × sin(θj
i ), i < j, and vj

j =
∏j−1

l=1 cos(θj
l ), Hθj = Ij − 2vj(vj)′,

and

Om
θj =

(

Im−j 0

0 Hθj

)

,

then we can express anym×m orthogonal matrix O ∈ Om as O = Om
θm×. . .×Om

θ2.

We can then sample O easily by sampling in turn each component of each

θj, j = 2, . . . ,m. For each of those, we sample from a Normal random walk pro-

posal distribution, restricted so that θj ∈ Θj and, thus, the proposed orthogonal

matrix is in Om.

8. An Example Using Biomedical Data

Along with the most general models, incorporating both skewness and fat

tails - skew-Student and skew-IStudent - we also consider simpler alternatives:

Student, IStudent, skew-Normal and Normal. The Student, IStudent and the

Normal models assume symmetry (γ = 1), while the latter model and the skew-

Normal do not allow for heavy tails. The prior distributions for the parameters

of these models are compatible with those in the more general ones.

We do not present any comparison with regression models based on other

classes of skewed distributions. To our knowledge, no other method has been

shown to allow for inference under an improper prior structure compatible with

(12) and (14). We refer the interested reader to Ferreira and Steel (2004), where

a comparison between our methodology and the one in SDB is presented under

a proper prior using firm size data.

Inference was conducted using every tenth of 100,000 realisations from the

Markov chain described in Section 4, after discarding the first 20,000 samples

(a burn-in sufficient for convergence in all cases). Model comparison is provided

through Bayes factors. Estimates of marginal likelihoods are obtained using the

p4 measure in Newton and Raftery (1994), with their δ set to 0.1. As pointed

out by a referee, this method can be less precise than e.g., bridge sampling, as

in Meng and Wong (1996) and DiCiccio, Kass, Raftery and Wasserman (1997).
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However, the latter is hard to implement in our example with many, often highly
dependent parameters. We have verified the Bayes factors obtained (which are
overwhelming in most cases) through Savage-Dickey density ratios (for skewed
versus symmetric models) and plots of the sampled likelihood values (not re-
ported due to space limitations).

We use a dataset from the Australian Institute of Sport. In particular, we
study the distribution of four biomedical variables: body mass index (BMI), sum
of skin folds (SSF), percentage of body fat (PBF), and lean body mass (LBM).
The data were collected from 202 athletes at the Australian Institute of Sport
and are described in Cook and Weisberg (1994). Besides a constant term we use
information on three covariates: red cell count (RCC), white cell count (WCC)
and plasma ferritin concentration (PFC). In order to compare the influence of
the covariates, the data were normalised to have mean zero and variance one.
These data, without the covariates, have been used previously in the context of
skewed distributions in Azzalini and Capitanio (2003).

Figure 5 (a) presents the marginal posterior pdfs of the elements of γ for
the model that proved to be most adequate - the skew-IStudent model, together
with the prior pdf. For all but one component of γ, the pdfs have low mass near
unity, implying that the data require that at least three components in the linear
transformation are skewed. Figure 5 (b) exhibits the posterior pdf of Mardia’s
measure of skewness for the skew-IStudent and also the prior distribution for that
quantity. The posterior pdf of β1,4 has most of its mass concentrated away from
zero, implying that the distribution of the quantities of interest is asymmetric.
We note that by assuming our fairly uninformative prior on γ, the prior on β1,4

puts substantial mass on asymmetric distributions, but also retains mass on low
values corresponding to symmetry. The posteriors of γ and β1,4 are fairly robust
to changes of the prior.
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Figure 5. (a) marginal posterior pdfs for the components of γ for the skew-
IStudent model (solid) together with the prior pdf (dashed); (b) posterior
pdf of Mardia’s measure of skewness for the skew-IStudent (solid) and the
prior pdf for the same quantity (dashed).
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Figures 6 (a)-(d) present the posterior distributions of the coefficients of B

for the intercept, RCC, WCC and PFC, respectively. In most cases, the covari-

ates are shown to have an effect on the distribution of the variables, particularly

for RCC. BMI does not seem to need any of the covariates, but all regressors

intervene crucially in modelling SSF. The posterior distribution of the regres-

sion coefficients is quite different from the prior distribution, which is improper

uniform.
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Figure 6. (a)-(d) posterior distributions of the coefficients of B for the

intercept, RCC, WCC and PFC, respectively, corresponding to BMI (solid),

SSF (dotted), PBF (dashed) and LBM (dot-dashed), evaluated for the skew-

IStudent model.

The distribution of the biomedical measurements has heavier than Normal

tails. Figure 7 presents the posterior density for the df for the skew-IStudent

model, together with the prior distribution. Some components (of ǫ) require

much heavier tails than others with the medians of νj given by 10.7, 16.2, 5.7 and

13.4, j = 1, . . . , 4. The skew-Student model leads to a median value of ν∗ equal

to 15.8. Both models lead to heavier tails when we impose symmetry. Thus, if

we (wrongly) impose symmetry, the skewness in the data is partly misinterpreted

as fat tails.
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Table 1 compares the models using Bayes factors. We conclude that the

skew-IStudent model is the most favoured model for these data, with the skew-

Student model a distant second. A large difference exists between the adequacy

of the skewed models and the others. There is also strong evidence in favour of

heavy tails, but interestingly, the IStudent tails receive a lot more support from

the data than the Student tails. This is partly due to the differences between the

νj’s in Figure 7 but, as explained in Section 7, other differences exist between

these models. In summary, both skewness and heavy tails are strongly supported,

which is in line with the findings of Azzalini and Capitanio (2003) in the context

of a location-scale model.
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Figure 7. Posterior density for ν1, . . . , ν4 for the skew-IStudent model (solid

line), together with the prior pdf (dashed). Note the truncation at 3.

Table 1. Bayes factors for Australian Institute of Sport data. Entries indicate

support in favour of the model in the row versus that in the column.

skew-Student Student skew-Normal Normal skew-IStudent IStudent

skew-Student 1 > 1000 2.6 > 1000 < 0.001 > 1000

Student 1 < 0.001 26 < 0.001 < 0.001

skew-Normal 1 > 1000 < 0.001 > 1000

Normal 1 < 0.001 < 0.001

skew-IStudent 1 > 1000
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9. Conclusion

In this article we present a novel general method for the construction of

skewed multivariate distributions. Based on linear transformations of univariate

skewed distributions, the method we introduce is quite flexible, i.e., it imposes

few restrictions on the form of the distribution.

In particular, we use linear transformations of independent and univariate

random quantities with skewed distributions as in FS. The generated class of

distributions has a number of appealing characteristics. Moment calculation is

always straightforward if the moments of the underlying univariate distribution

are available, and mean, variance and skewness can be modelled independently.

Also, unlike other classes of skewed distributions proposed in the literature, our

method makes no use of conditioning arguments, which require the calculation of

cumulative distributions functions. This aspect can be quite relevant, especially

for certain distributions and for high dimensions. A drawback of our proposal

is that the class of skewed distributions is in general not closed under linear

transformations or marginalisation.

We provide results on inference with these skewed distributions in a Bayesian

regression model, under commonly used improper priors, and show that the

extra flexibility induced by skewness does not have any impact on the existence

of the posterior distribution, or even on the existence of posterior moments of

the parameters. Further, we introduce two classes of skewed and heavy-tailed

multivariate regression models, skew-IStudent and skew-Student, and establish

results on posterior propriety and existence of posterior moments. One of these

classes (the skew-IStudent) is novel even under symmetry.

Acknowledgement

We thank the editors, an associate editor and a referee for constructive com-

ments. Ferreira was supported by grant SFRH BD 1399 2000 from Fundação

para a Ciência e Tecnologia, Portugal, and was affiliated to the University of

Warwick during this research.

A. Orthogonal Matrices

In the sequel, O denotes an m × m orthogonal matrix with determinant

(−1)m+1. The set of all such matrices is denoted as Om.

A.1. Householder matrices

Definition 2. Let v be a vector in ℜm. Then H(v) = Im − 2((vv′)/(v′v)) is

an m-dimensional Householder matrix (e.g., Golub and van Loan (1989), p.38)).

For any v ∈ ℜm, H(v) is an orthogonal, symmetric matrix of determinant −1
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for which H(v) = H(−v) = H(av), where a is a scalar. The latter property

implies that if v ∈ S
1/2
m , a unit half-sphere in ℜm, then v provides a one-to-

one parameterisation of the set of m-dimensional Householder matrices. Writing

vθ = (v1, . . . , vm)′ in polar coordinates as

v1 = sin(θ1), vj =

j−1
∏

l=1

cos(θl) × sin(θj), j < m and vm =

m−1
∏

l=1

cos(θl),

and selecting θ = (θ1, . . . , θm−1)
′ to be in Θm defined as (−π

2 ,
π
2 ) if m = 2 and

(0, π/2) × (−π/2, π/2)m−3 × (−π, π) if m > 2, implies that vθ ∈ S
1/2
m . Thus,

by taking Hθ = H(vθ) we can uniquely parameterise the set of m-dimensional

Householder matrices using θ ∈ Θm.

A.2. Decomposing O using Householder matrices

We now use Householder matrices to decompose any orthogonal matrix O,

with |O| = (−1)m+1. Let θj = (θj
1, . . . , θ

j
m−1)

′ ∈ Θj, and for j = 1, . . . ,m define

Om
θj as

Om
θj =

(

Im−j 0

0 Hθj

)

. (18)

Lemma 2.(Golub and Van Loan (1989)) Any matrix O ∈ Om can be written

uniquely as

O = Om
θm × . . .×Om

θ2 , (19)

where θj ∈ Θj, j = 2, . . . ,m.

Thus, O ∈ Om can be parameterised uniquely by a set of m − 1 vectors

θj ∈ Θj , j = 2, . . . ,m.

A.3. Distribution on O
m invariant to linear orthogonal transforma-

tions

Stewart (1980) uses the decomposition in (19) to describe an algorithm for

generating random orthogonal matrices from the invariant (with respect to linear

orthogonal transformations) distribution on Om (i.e., the Haar measure with

respect to the orthogonal group). Using similar arguments, we can write the

invariant distribution of O on Om as

p(O) = p(θ2, . . . , θm) =

m
∏

j=2

p(θj), (20)

where p(θj) is the pdf on θj ∈ Θj that generates Hθj with first column uniformly

distributed on Sj, j = 2, . . . ,m. Calculation reveals that the ith element of the
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first column of Hθj is given by cos(2θj
1) if i = 1, − sin(2θj

1)
∏i−1

l=2 cos(θj
l ) sin(θj

i ) if

2 < i ≤ j − 1, and − sin(2θj
1)
∏m−1

l=2 cos(θj
l ) if i = j.

Variable transformation shows that, if

p(θj) ∝ | sin(2θj
1)

j−2
j−3
∏

l=1

cos(θj
l+1)

j−2−l|, j = 2, . . . ,m, (21)

then the first column of Hθj has an uniform distribution on the j-dimensional

unit sphere Sj.

Equations (20)-(21) provide the necessary distribution of θj, j = 2, . . . ,m,

such that the distribution on O defined as in (19) is invariant on Om.

A.4. Invariant distribution on O
m

The invariant distribution on Om is easily obtained as a restriction of the

invariant distribution on Om. Let O be an orthogonal matrix belonging to Om as

defined in (8). Using O = Om
θm×. . .×Om

θ2, all the restrictions in (8) are translated

into restrictions on θm. Manipulation of the first column of Hθm shows that θm

has to meet the following requirements:

if m = 2, θ2 ∈
(

− π

8
,
π

8

)

;

if m > 2, θm ∈
{

(θm
1 , . . . , θ

m
m−1)

′ : θm
m−1 ∈ (a, π/4) ∧ θm

j ∈
(

0, atan[sin(θm
j+1)]

)

,

j = 2, . . . ,m− 2 ∧ θm
1 ∈

(

0,
acot

[

∏m−1
j=2 cos(θm

j )
]

2

)}

,

a = −π
4

if m = 3, a = 0 otherwise.

For j = 2, . . . ,m − 1, θj ∈ Θj as defined previously. As a consequence, the

parameter space of θ2, . . . , θm is always connected, which facilitates inference.
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