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Abstract: For many problems of statistical inference in regression modelling, the

Fisher information matrix depends on certain nuisance parameters which are un-

known and which enter the model nonlinearly. A common strategy to deal with

this problem is to construct maximin optimal designs, that maximize the minimum

value of a real-valued (standardized) function of the Fisher information matrix,

where the minimum is taken over a specified range of the unknown parameters.

The maximin criterion is not differentiable and the construction of the associated

optimal designs is therefore difficult to achieve in practice. In the present paper

the relationship between maximin optimal designs and a class of Bayesian optimal

designs for which the associated criteria are differentiable is explored. In particu-

lar, a general methodology for determining maximin optimal designs is introduced

based on the fact that in many cases these designs can be obtained as weak limits

of appropriate Bayesian optimal designs.

Key words and phrases: Bayesian optimal designs, least favourable prior, maximin

optimal designs, nonlinear regression models, parameter estimation.

1. Introduction

In many practical problems in regression modelling, the Fisher information
for the parameters of interest depends on certain unknown nuisance parameters.
Within the context of design this problem translates into that of maximizing
a concave function of the information matrix which depends on the unknown
parameters, and clearly this cannot be achieved directly. Over the last forty
years a number of strategies have been developed to address this design problem.
Specifically, in 1953, Chernoff (Chernoff (1953)) suggested the simple but elegant
expedient of adopting a best guess for the unknown parameters and termed the
resultant designs locally optimal. The main disadvantage with such an approach
is that if the unknown parameters are misspecified, the resulting optimal designs
can be highly inefficient within the true model setting.

A more robust approach to this problem is to, in some sense, quantify the un-
certainty in those parameters and to incorporate this additional information into
the formulation of suitable optimality criteria. This has been achieved in practice
through the introduction of the concepts of Bayesian and of maximin optimality.
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In particular Bayesian optimality criteria are based on criteria in classical design
theory and many of the results from that theory, such as those related to equiv-
alence theorems and numerical procedures, can immediately be transferred into
the Bayesian context (see e.g., Pronzato and Walter (1985), Chaloner and Larntz
(1989), Chaloner (1993) and Chaloner and Verdinelli (1995)). For maximin op-
timality, designs that maximize the minimum of a function of the Fisher in-
formation matrix over a range of parameter values are sought (see e.g.,
Pronzato and Walter (1985), Müller (1995), Dette (1997) and Müller and Pázman
(1998)). The resultant designs, termed maximin optimal designs, are particularly
attractive from a practical point of view in that the experimenter is only required
to specify an appropriate range for the unknown parameters. The major problem
lies in the construction of these designs in the sense that the maximin optimality
criterion is not differentiable and results, both algebraic and numeric, are elusive.
Indeed there have been few reports of maximin optimal designs in the literature
and strategies for their construction are somewhat ad hoc (see e.g., Wong (1992),
Haines (1995) and Imhof (2001)).

In the present study a general approach to obtaining maximin optimal de-
signs as the limits of a particular class of Bayesian optimal designs is introduced
and explored. Roughly speaking, the powerful tools for constructing Bayesian
optimal designs for which the associated criteria are differentiable can be used to
obtain maximin optimal designs for which the corresponding criteria are not dif-
ferentiable. In particular the approach avoids the calculation of a least favourable
prior distribution. Although interest is centered primarily on the construction of
maximin optimal designs for nonlinear regression models, the approach is quite
general and can be applied to other optimal design problems with a similar struc-
ture.

The paper is organized in the following way. In Section 2 some prelimi-
nary definitions are given, and Bayesian optimality criteria analogous to Kiefer’s
(1974) Φp-criteria are introduced. The main results of the study are then pre-
sented in Section 3. In particular it is shown that under fairly general conditions,
the weak limit of Bayesian optimal designs is a maximin optimal design, a result
that mirrors the limiting relationship of the corresponding optimality criteria.
Furthermore, the relationship between Bayesian and maximin optimal designs
is explored, and powerful equivalence theorems and other associated results are
presented. Several applications of this methodology are illustrated in Section 4
and some broad conclusions are given in Section 5. For ease of reading, the proofs
of all lemmas and theorems in the paper are included in an appendix.

2. Preliminaries

Consider a regression model which depends, possibly nonlinearly, on the pa-
rameters θ from a parameter space Θ ⊂ R

k, and on explanatory variables x vary-
ing in a compact design space X ⊂ R

ℓ equipped with a σ-field, that contains all
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one point sets. An approximate design ξ for this model is a probability measure

on the design space X with finite support x1, . . . , xn and weights w1, . . . , wn, rep-

resenting the relative proportion of total observations taken at the corresponding

design points (see e.g., Kiefer (1974)). Let Ξ denote the class of all approximate

designs and ∆ ⊂ Ξ some subset of that class. Then, very broadly, an optimality

criterion can be specified as

ψ : ∆ × Θ → [0,∞) ,

where the function ψ(ξ, θ) is continuous in the sense that, if a sequence of designs

ξn ∈ ∆ converges weakly to a design ξ ∈ ∆ as n→ ∞, then

lim
n→∞

ψ(ξn, θ) = ψ(ξ, θ)

for all θ ∈ Θ. Additionally, for fixed ξ ∈ ∆, the function ψ(ξ, θ) is assumed

to be continuous in θ. Examples of such a criterion include, inter alia, D- and

c-optimality (Pukelsheim (1993)).

In the present study attention is focussed on optimality criteria which ac-

commodate uncertainty in the unknown parameters and, specifically, on criteria

based on functions of the form ψ(ξ, θ). To this end it is first necessary to consider

a single, fixed parameter value θ ∈ Θ, and to introduce a locally ψ-optimal design

over the class of designs ∆ as a design ξ∗θ ∈ ∆ for which the condition

ψ(ξ∗θ , θ) ≥ ψ(ξ, θ)

holds for all ξ ∈ ∆. A standardized maximin ψ-optimal design in the class ∆

can then be defined as a design which maximizes the criterion

Ψ−∞(ξ) = inf
θ∈Θ

ψ(ξ, θ)

ψ(ξ∗θ , θ)
(2.1)

over all ξ ∈ ∆ (see Dette (1997)), and a Bayesian ψ-optimal design with respect

to a prior distribution π on the parameter space Θ as a design which maximizes

Ψ0(ξ) = exp

∫

Θ
logψ(ξ, θ)dπ(θ) (2.2)

over the set ∆ (see e.g., Pronzato and Walter (1985) or Chaloner and Larntz

(1989)). More generally, for fixed q such that −∞ < q < 0, a Bayesian Ψq-

optimal design for a prior distribution π on Θ can be defined as a design ξ ∈ ∆

maximizing the criterion

Ψq(ξ) =

[
∫

Θ

{

ψ(ξ, θ)

ψ(ξ∗θ , θ)

}q

dπ(θ)

]
1

q

(2.3)
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over the subclass of designs ∆ (see Dette and Wong (1996)). Note that the

Bayesian ψ-optimality criterion (2.2) is obtained from (2.3) in the limit as q → 0

and that the standardized maximin criterion (2.1) is recovered as q → −∞,

provided the support of the prior π coincides with the parameter space Θ, i.e.

supp(π) = Θ.

Remark 2.1. Note that a “relative” metric is used in the definition of the op-

timality criteria (2.1) and (2.3), because for different values of θ the values of

the criteria ψ(ξ, θ) may not be comparable. For example if ψ(ξ, θ) ≥ ψ(ξ, θ0) for

all θ ∈ Θ and any design ξ, a non-standardized maximin approach would always

yield the locally optimal design ξ∗θ0
. Indeed the advantages of standardization are

emphasized in Silvey (1980, pp.57-61) and clearly illustrated in Dette (1997). On

the other hand all the results of this paper remain true for non-standardized cri-

teria by simply omitting the terms ψ(ξ∗θ , θ) from the corresponding standardized

criteria. An application of the non-standardized case is given in Example 4.5.

3. Bayesian and Standardized Maximin Optimal Designs

For every fixed design ξ, the criterion value Ψq(ξ) converges to the value of

the maximin criterion Ψ−∞(ξ) as q → −∞. It is therefore tempting to surmise

that this convergence is mirrored in the corresponding optimal designs them-

selves. The main result of the present study shows that, under fairly general

conditions, standardized maximin ψ-optimal designs can indeed be obtained as

weak limits of Bayesian Ψq-optimal designs as q → −∞. Although it often turns

out that a maximin optimal design is also Bayesian optimal with respect to a

least favourable prior distribution, the approach does not require that such a dis-

tribution be known. Moreover, no convexity assumption, either on the criterion

or on the set of designs, is made.

Theorem 3.1. Let Θ be compact and let π denote an arbitrarily chosen prior

distribution on Θ with supp(π) = Θ. Suppose that the optimality criterion ψ :

∆ × Θ → (0,∞) is continuous in each argument. Suppose that for every q < 0,

ζq is a Bayesian Ψq-optimal design in the class of designs ∆ with respect to the

prior π, and suppose also that the designs ζq converge weakly to some design

ζ∗ ∈ ∆ as q → −∞. Then the design ζ∗ is standardized maximin ψ-optimal.

Remark 3.2. For an efficient application of the results in this section it is

important to note that Theorem 3.1 does not depend on the particular prior in

the Bayesian optimality criterion. Therefore specific priors, which either allow

an explicit calculation of the Bayesian Ψq-optimal designs and the corresponding

limit as q → −∞ or which simplify the numerical construction of the Bayesian

designs, can be used.
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Note that Theorem 3.1 requires a convergent sequence of Bayesian Ψq-

optimal designs. Usually in applications it is easily seen that the Bayesian Ψq-

optimal designs converge, so that this assumption appears to be rather mild. This

will be demonstrated in the following section, where several explicit solutions for

the standardized maximin optimal design are constructed. Further examples can

be found in the paper by Biedermann and Dette (2005), in which the procedure

based on Theorem 3.1 has been successfully applied to the numerical calculation

of standardized maximin D-optimal designs with a two-dimensional parameter

space.

In practice it may well be possible to use Theorem 3.1 to construct a maximin

ψ-optimal design over a class of designs ∆ that is not necessarily convex such as,

for example, a class of designs based on a fixed number of support points. Then

the global optimality or otherwise of this design over a class of designs which

is convex and which contains ∆, such as the class of all approximate designs

Ξ, can be confirmed by invoking the general equivalence theorem formulated in

Theorem 3.3 below.

Suppose that the Fisher information matrix for the parameter θ ∈ Θ of a

design ξ ∈ ∆ can be expressed as

M(ξ, θ) =

∫

X

f(x, θ)fT (x, θ)dξ(x) ∈ R
ℓθ×ℓθ ,

where f(x, θ) ∈ R
ℓθ is a vector-valued function appropriate to the specified re-

gression model and the dimension lθ may depend on θ. Then the criterion of

interest has the form

ψ(ξ, θ) = φθ{Cθ(ξ)}, (3.1)

where φθ(·) is an information function in the sense defined by Pukelsheim (1993,

p.119) and

Cθ(ξ) = CKθ
(ξ, θ) =

{

KT
θ M

−(ξ, θ)Kθ

}−1
.

Here Kθ ∈ R
ℓθ×sθ represents a matrix of full column rank sθ ≤ ℓθ, M

−(ξ, θ)

denotes a generalized inverse of M(ξ, θ), and it is assumed that ξ ∈ ∆ is feasible,

that is R(Kθ) ⊂ R(M(ξ, θ)) for all θ ∈ Θ.

An equivalence theorem for Bayesian Ψq-optimal and standardized maximin

ψ-optimal designs based on criteria of the form (3.1) is now introduced and holds

strictly for classes of designs ∆ which are convex. The formulation adopted here

is that of Pukelsheim (1993) and relies on the definition of the polar function of

φθ(·) given by

φ∞θ (D) = inf
C

{tr(CD)

φθ(C)

∣

∣

∣
C > 0

}

,
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where C and D are nonnegative definite matrices. The proof of the next theorem
follows essentially the same arguments as those presented in Pukelsheim (1993,
Chap.11), and is therefore omitted. An alternative formulation of a similar result
using directional derivatives can be found in Fedorov (1980).

Theorem 3.3. Assume that the criterion ψ(ξ, θ) has the form (3.1) and that the

class of designs ∆ is convex. Assume also that a design denoted ξ∗ ∈ ∆ satisfies

the condition R(Kθ) ⊂ R(M(ξ∗, θ)) for all θ ∈ Θ.

(a) The design ξ∗ is Bayesian Ψq-optimal in the class ∆ with respect to a prior π
on Θ if and only if for each θ ∈ Θ there exists a nonnegative definite matrix

Dθ which solves the polarity equation

φθ{CKθ
(ξ∗)}φ∞θ (Dθ) = tr{CKθ

(ξ∗)Dθ} = 1, (3.2)

and a generalized inverse of M(ξ∗, θ), say Gθ, such that the inequality

∫

Θ

{

ψ(ξ∗, θ)

ψ(ξ∗θ , θ)

}q

tr{M(η, θ)B(ξ∗, θ)}dπ(θ) −
∫

Θ

{

ψ(ξ∗, θ)

ψ(ξ∗θ , θ)

}q

dπ(θ) ≤ 0

(3.3)
holds for all η ∈ ∆, where B(ξ∗, θ) = GθKθCθ(ξ

∗)DθCθ(ξ
∗)KT

θ Gθ.
(b) Let

N (ξ∗) :=
{

θ ∈ Θ | Ψ−∞(ξ∗) =
ψ(ξ∗, θ)

ψ(ξ∗θ , θ)

}

denote the set of all parameter values in Θ, for which the minimum in (2.1) is

attained. Then the design ξ∗ is standardized maximin ψ-optimal in the class

∆ if and only if there exists a prior πω on the set N (ξ∗), for each θ ∈ supp(πω)
a nonnegative definite matrix Dθ satisfying (3.2), and a generalized inverse

of M(ξ∗, θ), say Gθ, such that the inequality
∫

N (ξ∗)
tr{M(η, θ)B(ξ∗, θ)}dπω(θ) − 1 ≤ 0 (3.4)

holds for all η ∈ ∆.

Note that in the case of differentiability, the left side of the inequality (3.3)
is the directional derivative of the optimality criterion at the point ξ∗ in the
direction of η (see Silvey (1980)). The more general formulation of Theorem
3.3 is required for non-differentiable criteria and singular information matrices.
Morover, the second part of this theorem in effect states that the standardized
maximin ψ-optimal design ξ∗ coincides with the Bayesian Ψ0-optimal design for
the prior distribution πw defined on the set N (ξ∗). The prior πw is usually re-
ferred to as the least favourable or “worst” prior, a term borrowed from Bayesian
decision theory (see Berger (1985, p.360)). The next result provides insight into
the nature of the set N (ξ∗).
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Lemma 3.4. Suppose that the parameter space Θ comprises at least two points

and that the class of designs ∆ is convex. Then, for the standardized maximin

ψ-optimal design ξ∗ ∈ ∆, the cardinality of the set N (ξ∗) defined in Theorem 3.3
is at least 2.

In summary therefore, suppose that a candidate standardized maximin D-
optimal design, say ξ∗c , is available. Then the global optimality or otherwise of
this design over a class of designs ∆ that is convex can be confirmed by invoking
Theorem 3.3 together with Lemma 3.4. The next two results follow directly from
Theorem 3.3 and Lemma 3.4. The proofs are straightforward and are therefore
omitted.

Lemma 3.5. The Bayesian Ψq-optimal design ξ∗ with respect to the prior π is

Bayesian Ψq′-optimal with respect to the prior π̃′, where

dπ̃′(θ) =

( |M(ξ∗, θ) |
|M(ξ∗θ , θ) |

)q−q′

dπ(θ)

and q and q′ are such that −∞ < q, q′ ≤ 0.

Theorem 3.6. The standardized maximin ψ-optimal design ξ∗ is Bayesian Ψq-

optimal with respect to the least favourable prior πw on the set N (ξ∗), for all

q ≤ 0. Conversely, if the design ξ∗ is Bayesian Ψq-optimal for all q such that

−∞ < q ≤ 0, then it is standardized maximin ψ-optimal.

Note that Theorem 3.6 is closely related to results in Section 5.4 of
Pshenichnyi (1971) that show that in cases for which optimization can be per-
formed over a finite dimensional space, a maximin optimal design is also optimal
with respect to a compound criterion of the form

∑N
i=1 λiψ(ξ, θi). Here the quan-

tities λi and θi are not known and correspond to the least favourable prior distri-
bution (see also Cook and Fedorov (1995) for a similar relation in the context of
constrained optimization). The applicability of Theorem 3.6, or the correspond-
ing equivalent formulation in Pshenichnyi (1971), is limited because in practice
it is not easy to construct the unknown least favourable prior distribution. How-
ever, in cases for which optimization can be performed over a finite-dimensional
space, these results can be used to derive bounds on the number of support points
of this distribution (see Example 4.5).

4. Applications

4.1 Nonlinear models

Consider a nonlinear model for which the response variable y follows a dis-
tribution from an exponential family with

E(y|x) = η(x, θ) and Var(y|x) = σ2(x) , (4.1)
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where x represents an explanatory variable in the design space X ⊂ R
ℓ, and θ is

a vector of unknown parameters in the space Θ ⊂ R
k. If η(x, θ) is continuously

differentiable with respect to θ, then the Fisher information matrix for θ at a

single point x is given by

I(x, θ) =
1

σ2(x)

{

∂η(x, θ)

∂θ

}{

∂η(x, θ)

∂θ

}T

,

and the information matrix for a design ξ belonging to a specified class of designs

∆ can be expressed as M(ξ, θ) =
∫

X
I(x, θ) dξ(x) (see e.g., Silvey (1980)). For

this model setting it is usual to consider criteria φ{M(ξ, θ)} that are concave

functions of the Fisher information matrix. Then the Bayesian Ψq-optimality

criterion with respect to a prior π on Θ and the standardized maximin optimality

criterion may be seen to the special cases of (2.1) and (2.3) and the general

theory, with Kθ = Ik and ψ(ξ, θ) = φ(M(ξ, θ)). The following corollary specifies

the fairly general conditions under which Theorem 3.1 holds for the nonlinear

models considered in this section. Note that, in the statement of the theorem,

the set of all nonnegative definite matrices of order k × k is denoted NND(k).

Corollary 4.1. Consider the nonlinear model specified by (4.1) and a local

optimality criterion of the form ψ(ξ, θ) = φ{M(ξ, θ)}, where φ(·) is a continuous

function from NND(k) to [0,∞). Let Θ be compact and let π represent any prior

distribution on Θ for which supp(π) = Θ. Suppose that ψ(ξ, θ) > 0 on ∆ × Θ,

and that I(x, θ) is bounded and continuous on X × Θ. If, as q → −∞, the

Bayesian Ψq-optimal designs in ∆ with respect to the prior π converge weakly

to some design in ∆, then the limit design is a standardized maximin φ-optimal

design.

Example 4.2. Consider the one-parameter logistic regression model with prob-

ability of success 1/{1 + exp(−(x − θ))} and x ∈ IR. Note that the information

on θ at an observation x is given by

I(x, θ) =
exp(−(x− θ))

{1 + exp(−(x− θ))}2
,

and is bounded and continuous. Note also that the locally D-optimal one-point

design is located at x∗θ = θ with I(x∗θ, θ) = 1/4. Suppose now that a parameter

space of the form Θ = [−a, a] with a > 0 is of interest, and that single-point

standardized maximin D-optimal designs over that space are to be constructed.

For a uniform prior on Θ, the one-point Bayesian Ψq-optimal design, say xq,

maximizes the criterion

Ψq(x) =

{

1

2a

∫ a

−a

[

4 exp(−(x− θ))

{1 + exp(−(x− θ))}2

]q

dθ

}
1

q

for −∞ < q < 0,



MAXIMIN AND BAYESIAN OPTIMAL DESIGNS 471

and it is straightforward to show, either algebraically or by symmetry arguments,

that xq = 0 for all such q. Thus, since the conditions specified in Corollary 4.1

are satisfied for this example, it follows trivially that the one-point standardized

maximin D-optimal design is given by x∗ = 0.

Consider now invoking Theorem 3.3 in order to determine whether or not

the design putting all observations at the point x∗ = 0 is globally maximin D-

optimal. The efficiency of this design relative to the locally optimal design x∗θ = θ

is given by 4 exp (θ)/(1 + exp (θ))2 with minima at the end points of the interval

[−a, a] and thus the set N (ξ⋆) comprises the points −a and a. Consider a worst

prior that puts equal weights on these points. Then the left side of (3.4) reduces

to

1

2

{

exp(−x)
(

1 + exp(a)

1 + exp(−(x− a))

)2

+ exp(−x)
(

1 + exp(−a)
1 + exp(−(x+ a))

)2
}

− 1,

and it can be shown numerically that this derivative is less than or equal to

zero for all x ∈ IR provided 0 < a ≤ ln(2 +
√

3). It therefore follows that the

single-point design x∗ = 0 is globally standardized maximin D-optimal on the

parameter space [−a, a] provided a satisfies this inequality, a result in accord

with the finding of Haines (1995).

4.2 Model robust and discrimination designs

It is not uncommon for a practitioner to identify a set of plausible models,

rather than a single model, as being appropriate for a particular data set. In order

to accommodate such model uncertainty within the context of optimal design,

criteria that are robust to the choice of model have been developed (see e.g.,

Läuter (1974)) and certain of these are explored here. To be specific, consider a

class of linear models with means

E(y|x) = g(x, θ) = β0f0(x, θ) + . . .+ βℓθ
fℓθ

(x, θ)

and with constant variances, σ2. Here x belongs to some design space X and the

regression functions fi(x, θ), i = 0, . . . , ℓθ, are known. Each model is indexed by

a parameter θ taken from a finite set of indices Θ, and the class of such models is

denoted by F = {g(x, θ) | θ ∈ Θ}. Note that in many applications the models in

the set F are nested, but this is not necessary for the development of the robust

design criteria described here.

The Fisher information matrix for the regression parameters (β0, . . . , βℓθ
) in

the model specified by g(x, θ) at a design ξ ∈ ∆ can be expressed as

M(ξ, θ) =
1

σ2

(

∫

X

fi(x, θ)fj(x, θ)dξ(x)
)ℓθ

i,j=0
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for θ ∈ Θ. Thus an optimal design which is robust to the choice of model

over the class F should maximize an appropriate real-valued function of the

matrices {M(ξ, θ) | θ ∈ Θ} over the set of designs ∆ (see e.g., Läuter (1974)).

In particular, suppose that a prior π on the index set Θ puts probability π(θ)

on the parameter θ, where π(θ) ≥ 0 and
∑

θ∈Θ π(θ) = 1. Suppose also that for

each model g(x, θ) in the class F , a criterion of the form ψ(ξ, θ) = φθ{M(ξ, θ)},
where φθ(·) is an information function, is of interest, and that ξ∗θ is the locally

φθ-optimal design associated with this criterion. Then, following Läuter (1974),

a Ψq-optimal robust design with respect to the prior π for the class of models F
maximizes the criterion

Ψq(ξ) =

[

∑

θ∈Θ

π(θ)

{

φθ{M(ξ, θ)}
φθ{M(ξ∗θ , θ)}

}q
]

1

q

(4.2)

over the set of designs ∆. Furthermore, following Dette (1997), a standardized

maximin optimal robust design for the class F maximizes the function

min
θ∈Θ

{ φθ{M(ξ, θ)}
φθ{M(ξ∗θ , θ)}

}

,

again over the set ∆. In view of Theorem 3.1, the standardized maximin robust

designs can be found as weak limits of Ψq-optimal robust designs. These ideas

are illustrated by means of the following example, which discusses the problem

of identifying the degree of a polynomial regression.

Example 4.3. Consider the class of nested polynomial models with means

g(x, θ) = β0 + β1x+ . . .+ βθx
θ,

where x ∈ X = [−1, 1] and θ ∈ Θ = {1, . . . , d}. Note that the regression functions

are given by fi(x, θ) = xi, i = 0, . . . , θ, and that the information matrix for the

model of degree θ can be expressed as M(ξ, θ) = (
∫

X
xi+jdξ(x))θi,j=0. In order to

obtain efficient designs for identifying the appropriate degree of the polynomial

regression, Spruill (1990) proposed that a function of the criteria

ψ(ξ, θ) = φθ{M(ξ, θ)} =
|M(ξ, θ)|

|M(ξ, θ − 1)|

for θ ∈ {1, . . . , d} should be maximized. Suppose now that a uniform prior π

is placed on the index set Θ, i.e. π(θ) = 1
d for θ ∈ {1, . . . , d}. Then the Ψq-

optimal (discrimination) design with respect to the prior π, say ξ∗q , maximizes

(4.2), and can be characterized explicitly in terms of its canonical moments (see

Dette and Studden (1997)). In particular, by using results in Dette (1994), it
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can be shown that the canonical moments (p1, . . . , p2d) of the Ψq-optimal dis-

crimination design ξ∗q are given by p2d = 1, p2j−1 = 1/2 for j = 1, . . . , d, and by
the system of equations

22(d−ℓ)

{

d−1
∏

i=ℓ+1

p
1+ 1

q

2i q
1− 1

q

2i

}

(1 − p2ℓ)
1− 1

q (2p2ℓ − 1)
1

q = 1 , ℓ = 1, . . . , d− 1 ,

where q2i = 1−p2i and
∏d−1

d is interpreted as unity. As q → −∞ this latter sys-

tem reduces to the recursion p2ℓ = 1−2−2(d−ℓ)
∏d−1

i=ℓ+1(p2iq2i)
−1 and consequently

ξ∗q converges weakly to the design ξ∗ with canonical moments p2d = 1, p2j−1 = 1/2
for j = 1, . . . , d, and

p2ℓ =
d− ℓ+ 2

2(d− ℓ) + 2

for ℓ = 1, . . . , d − 1. It now follows immediately from Theorem 3.1 that the

design ξ∗ is standardized maximin optimal. Moreover, by invoking Corollary

4.3.3 in Dette and Studden (1997), it is readily shown that the design ξ∗ puts

equal masses at the zeros of the ultraspherical polynomial C
(2)
d−1(x) (see Szegö

(1975)) and masses 1.5 times larger at the boundary points +1 and −1.

The Ψq-optimal and the maximin optimal discrimination designs described
here are in fact globally optimal in the sense that they are optimal over the

class of all approximate designs, Ξ. Thus there exists a least favourable prior
πw on the index set Θ for which ξ∗ is Ψ0-optimal. Furthermore this prior can

be obtained explicitly from the canonical moments of the optimal design ξ∗ by

invoking Theorem 6.2.3 of Dette and Studden (1997), and it puts weights

πw(θ) =
2(d − θ + 1)

d(d + 1)

on the parameters θ ∈ {1, . . . , d}. For example, consider the case of d = 4. Then

the standardized maximin optimal discrimination design has masses 1/4, 1/6,
1/6, 1/6 and 1/4 at the points −1,

√

3/8, 0,
√

3/8 and 1, respectively. The least

favourable prior associates weights 2/5, 3/10, 1/5 and 1/10 with the polynomial

models of degree 1, 2, 3 and 4, respectively.

4.3. Designs for estimating nonlinear functions

Consider the homoscedastic linear regression model with mean

E(y|x) = β0f0(x) + β1f1(x) + . . .+ βdfd(x) . (4.3)

Suppose that the parameters β belong to a space B and that a nonlinear

function of those parameters, denoted h(β), is of interest. Then the approxi-

mate asymptotic variance of the estimate of such a function is proportional to
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θ(β)TM−(ξ)θ(β), where θ(β) represents the vector of derivatives of h(β) with

respect to β, M−(ξ) is a generalized inverse of the information matrix and

θ(β) ∈ R(M(ξ)). Optimal designs which in some sense minimize this variance

are now sought. For ease of notation, consider the induced parameter space

Θ = {[θ(β)T θ(β)]−1/2θ(β) : β ∈ B}. Then an appropriate optimality criterion

can be formulated as

ψ(ξ, θ) =

{

{

θTM−(ξ)θ
}−1

for θ ∈ R(M(ξ))

0 otherwise,

and the locally optimal design ξ∗θ maximizes this criterion. The design problem so

described occurs, for example, when the turning point of a quadratic regression

function is of interest (see e.g., Chaloner (1989)) and also in the context of con-

structing optimal extrapolation designs for an interval (see e.g., Spruill (1987)).

The definitions of Bayesian Ψq-optimal and of standardized maximin ψ-optimal

designs based on the above criterion follow directly from the general formula-

tions given in Section 2. Furthermore, Theorem 3.1 holds under the conditions

specified in the following corollary.

Corollary 4.4. Let π denote any prior distribution on Θ with supp(π) = Θ.

Suppose that the functions f0(x), . . . , fd(x) in model (4.3) are continuous and

bounded, and that the locally optimal criterion value ψ(ξ∗θ , θ) is continuous in θ.

If, as q → −∞, the Bayesian Ψq-optimal designs in ∆ converge weakly to some

design in ∆, then the limit design is a standardized maximin ψ-optimal design

provided the limit design is non-singular, i.e., its Fisher information matrix is

non-singular.

Example 4.5. Consider the polynomial regression model β0+β1x+. . .+βdx
d on

the interval [−1, 1] and suppose that interest centres on estimating the function

h(β) = (β2
d−1 +β2

d)/2. It is well known (see Pukelsheim (1993)) that there always

exists a symmetric optimal design relating to this problem. The asymptotic

variance of the estimate of h(β) for such a design is given by δ−1(ξ, β), where

δ(ξ, β) = δ(ξ, βd−1, βd) =
(

β2
d−1v1(ξ) + β2

dv2(ξ)
)−1

,

and v1(ξ) and v2(ξ) are the diagonal elements of the inverse of the information

matrix M−1(ξ) =
{(∫

[−1,1] x
i+jdξ(x)

)d

i,j=0

}−1
corresponding to βd−1 and βd,

respectively. Suppose now that a prior distribution π defined on a compact set

B ⊂ R
2\{0} is placed on the parameters βd−1 and βd. If no standardization is

used, a Bayesian Ψq-optimal design for this prior maximizes the criterion

Ψq(ξ) =
{

∫

B

{δ(ξ, βd−1, βd)}q dπ(βd−1, βd)
}

1

q
. (4.4)
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Moreover, it is well known that there exists an optimal design with at most d+1

support points. Therefore it follows from Pshenichnyi (1971) that there exists

a least favourable distribution associated with the maximin design that is based

on at most 2d + 2 support points. The following two examples involve differ-

ent parameter sets B, and are introduced in order to demonstrate the potential

applications of Theorem 3.1.

(a) Suppose that the prior π on the parameters βd−1 and βd is defined on the

upper half of the unit circle, i.e. B = {(βd−1, βd) | β2
d−1 + β2

d = 1, βd ≥ 0}.
Then the maximin criterion of interest reduces to

min
β2

d−1
+β2

d
=1,βd≥0

δ(ξ, βd−1, βd). (4.5)

Note that no standardization is used in (4.5) since it is implicit in the defi-

nition of the set B. The Bayesian Ψq-optimality criterion (4.4) can be max-

imized by invoking arguments similar to those presented in Studden (1989).

Specifically, the resultant optimal design has canonical moments of odd order

given by p2i−1 = 1/2 for i = 1, . . . , d, while those of even order maximize

Ψq(ξ) =

d−1
∏

j=1

q2j−2p2j

{

∫ 1

0

(

1 − β2
d +

β2
d

q2d−2p2d

)−q
dπ(βd)

}
1

q
. (4.6)

Suppose now that the prior distribution on βd is taken to be dπ(βd) = 2βddβd.

Then the integral in (4.6) can be evaluated explicitly and it follows that

p2i = 1
2 for i = 1, . . . , d − 2, p2d = 1, and that p2d−2 is given by the unique

solution of the equation

1 − z − q(1 − 2z) = (1 − q(1 − z))(1 − z)−q+1

in the interval (0, 1). It is easy to see that this solution converges to 1/2

as q → −∞, and consequently that the required maximin optimal design,

i.e., the design ξ∗ maximizing (4.5), has canonical moments pi = 1/2 for

i = 1, . . . , 2d − 1 and p2d = 1. Then it follows immediately from Corollary

4.3.3 of Dette and Studden (1997) that ξ∗ puts masses 1/d at the roots of

the Chebyshev polynomial of the second kind Ud−1(x), and masses 1/2d at

the points −1 and 1. Thus the maximin optimal design in fact coincides with

the D1-optimal design for polynomial regression of degree d on the interval

[−1, 1].

(b) This second example illustrates the application of Theorem 3.1 to the numer-

ical construction of maximin optimal designs and also involves no standard-

ization of the criterion. Specifically, suppose that the set B is chosen to be

[1, 2]× [2, 3] and that the prior distribution on B has density proportional to
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βd−1βddβd−1dβd. In this case the Bayesian Ψq-optimality criterion relating
to (4.4) can be maximized numerically in terms of canonical moments. It

follows algebraically that pi = 1/2 for i = 1, . . . , 2d−3, p2d−1 = 1/2, p2d = 1,
while the canonical moment p2d−2 depends on the parameter q and can easily

be obtained numerically. Values of p2d−2 for selected values of q are given in
the following table.

q −5 −10 −20 −50 −100 −200 −∞
p2d−2 0.5834 0.5776 0.5801 0.5834 0.5846 0.5852 0.5858

The Bayesian Ψq- and the maximin optimal designs corresponding to these
canonical moments can then be obtained from the results in Studden (1989).

In particular the support points −1 = x0 < x1 < . . . < xd−1 < xd = 1 of
these designs correspond to the roots of the polynomial (x2 − 1){Ud−1(x) +

(2p2d−2−1)Ud−3(x)}, the masses are given by p2d−2/[2(1 + p2d−2(d− 2))] for
the points −1 and 1, and by

ξ∗(xj) =
[

d− 1 − 2p2d−2Ud−2(xj)

Ud(xj) + (2p2d−2 − 1)Ud−2(xj)

]−1

for the interior support points xj , j = 1, . . . , d − 1. For example, for poly-

nomial regression of degree 5 on the interval [−1, 1], the requisite maximin
optimal design can be obtained numerically, and puts masses 0.1885, 0.2053

and 0.1062 on the points ±0.2880,±0.7900 and ±1, respectively.

5. Conclusions

This study provides a cohesive approach to the construction of maximin
optimal designs for a broad range of nonlinear model settings. It is demonstrated
that under fairly general conditions the limit of Bayesian Ψq-optimal designs is

a standardized maximin optimal design. Before the results can be implemented
however, Bayesian Ψq-optimal designs for the model, the optimality criterion

and the class of designs of interest must be constructed. In some cases such
designs are available in the literature. Then, in implementing Theorem 3.1, it

is necessary to find the requisite maximin optimal design as the limit of the
appropriate Bayesian Ψq-optimal designs.

On the other hand for many nonlinear model settings it is possible that
Bayesian Ψq-optimal designs cannot be obtained in an explicit algebraic form. In

such cases these Bayesian optimal designs can usually be calculated numerically
for a range of increasingly negative q values and the limiting, and hence the

standardized maximin optimal design, identified, at least approximately. Specific
choices of the prior distribution, as for example discrete approximations of the

uniform distribution, can simplify this numerical construction substantially.
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A secondary but nevertheless important feature of the present study is the

suite of results for convex classes of designs presented in Section 3 and based on

Theorem 3.3. These results provide considerable insight into the nature of stan-

dardized maximin optimal designs and their relation to the Bayesian Ψq-optimal

designs and, in addition, provide tools for confirming the global optimality or

otherwise of candidate designs. However it should immediately be emphasized

that, while a standardized maximin optimal design is globally optimal provided

it is Bayesian Ψ0-optimal for some least favourable prior, the identification of

that prior is not straightforward, especially if the dimension of the parameter

space is high and the number of support points of the standardized maximin

optimal design is large. In such cases the construction of the standardized max-

imin optimal design based on Theorem 3.1 with a large value of q will provide a

sufficiently accurate approximation to that design. In practice the calculation of

Bayesian Ψq-optimal designs for a few values of q is usually sufficient to check the

convergence to the maximin optimal design numerically, as demonstrated in the

recent work of Biedermann and Dette (2005) on the construction of standardized

maximin D-optimal designs for binary response models.
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Appendix

Proof of Theorem 3.1. Note first that the continuity of ψ implies that the

normalizing function ν(θ) := ψ(ξ∗θ , θ) , θ ∈ Θ, is lower semicontinuous. For if

θ ∈ Θ and {θj}∞j=1 ⊂ Θ is a sequence that converges to θ, then

lim inf
j→∞

ν(θj) = lim inf
j→∞

ψ(ξ∗θj
, θj) ≥ lim inf

j→∞
ψ(ξ∗θ , θj) = ψ(ξ∗θ , θ) = ν(θ).

Let ǫ > 0, and let θ0 ∈ Θ be such that

ψ(ζ∗, θ0)

ν(θ0)
≤ Ψ−∞(ζ∗) + ǫ.
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Then, since ν is lower semicontinuous and ψ is continuous, there is a relatively
open neighborhood U ⊂ Θ of θ0 such that

ψ(ζ∗, θ)

ν(θ)
≤ Ψ−∞(ζ∗) + 2ǫ for all θ ∈ U.

As supp(π) = Θ, π(U) > 0. Since ζq converges weakly to ζ∗,

ψ(ζq, θ)

ν(θ)
→ ψ(ζ∗, θ)

ν(θ)

for every θ ∈ Θ. It therefore follows from Egorov’s theorem (see e.g., Hewitt
and Stromberg (1965, p.158)) that there exist a measurable set V ⊂ Θ with

π(V ) > 1 − π(U)/2, and a number q0 < 0 such that
∣

∣

∣

∣

ψ(ζq, θ)

ν(θ)
− ψ(ζ∗, θ)

ν(θ)

∣

∣

∣

∣

≤ ǫ for all θ ∈ V and all −∞ < q ≤ q0.

Thus for all −∞ < q ≤ q0,

{Ψq(ζq)}q ≥
∫

U∩V

{

ψ(ζq, θ)

ν(θ)

}q

dπ(θ) ≥ {Ψ−∞(ζ∗) + 3ǫ}q π(U ∩ V ).

Obviously, π(U ∩ V ) > 0, and it follows that

lim sup
q→−∞

Ψq(ζq) ≤ {Ψ−∞(ζ∗) + 3ǫ} lim sup
q→−∞

{π(U ∩ V )}
1

q = Ψ−∞(ζ∗) + 3ǫ.

As ǫ > 0 was arbitrary, one has lim supq→−∞ Ψq(ζq) ≤ Ψ−∞(ζ∗). Consequently,
if ξ ∈ ∆ is any competing design, then

Ψ−∞(ξ) = lim
q→−∞

Ψq(ξ) ≤ lim sup
q→−∞

Ψq(ζq) ≤ Ψ−∞(ζ∗).

This proves that ζ∗ is indeed a standardized maximin optimal design in the class

∆.

Proof of Lemma 3.4. Let ξ∗ denote the standardized maximin optimal design
and assume that N (ξ∗) = {θ0} is a singleton. Then the Equivalence Theorem
3.3 for standardized maximin optimality shows that ξ∗ is locally D-optimal for

the parameter θ0 in the class ∆. Therefore

1 =
ψ(M(ξ∗, θ0))

ψ(M(ξ∗θ0
, θ0))

= min
{ψ(M(ξ∗, θ))

ψ(M(ξ∗θ , θ))

∣

∣

∣
θ ∈ Θ

}

≤ 1,

which implies N (ξ∗) = Θ, contradicting the hypothesis that #N (ξ∗) = 1.

Proof of Corollary 4.1. The assumption that I(x, θ) is continuous and bounded

implies that for every fixed θ, the criterion ψ(ξ, θ) = φ{M(ξ, θ)} is continuous
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in ξ. The assumption also implies by Lebesgue’s Convergence Theorem that, for

every ξ, ψ(ξ, θ) is continuous in θ. The assertion now follows from Theorem 3.1.

Proof of Corollary 4.4. Let ζq be the Ψq-optimal designs in the class ∆,

so that as q → −∞, ζq converges weakly to a non-singular design ζ∗. Then

limq→−∞M(ζq) = M(ζ∗). In particular M(ζq) is non-singular for q ≤ q0, say.

Hence ψ(ζq, θ) converges to ψ(ζ∗, θ) for each θ. Thus for q ≤ q0,

ψ(ζq, θ)

ψ(ξ∗θ , θ)

is continuous and, for q → −∞, converges to

ψ(ζ∗, θ)

ψ(ξ∗θ , θ)
.

An inspection of the proof of Theorem 3.1 shows that this is sufficient to ensure

that ζ∗ is a standardized maximin optimal design.
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