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Abstract: This paper studies a general problem of making inferences for functions

of two sets of parameters where, when the first set is given, there exists a statistic

with a known distribution. We study the distribution of this statistic when the first

set of parameters is unknown and is replaced by an estimator. We show that under

mild conditions the variance of the statistic is inflated when the unconstrained max-

imum likelihood estimator (MLE) is used, but deflated when the constrained MLE

is used. The results are shown to be useful in hypothesis testing and confidence-

interval construction in providing simpler and improved inference methods than do

the standard large sample likelihood inference theories. We provide three applica-

tions of our theories, namely Box-Cox regression, dynamic regression, and spatial

regression, to illustrate the generality and versatility of our results.
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1. Introduction

In a variety of econometric problems, the models for the data y={y1, . . . , yn}
often involve two sets of parameters: θ and λ. A distinct feature is that when λ is

known, model inferences are simple. Examples include the following: (i) Weibull

duration analysis, where knowing the shape parameter reduces the model to an

exponential; (ii) Box-Cox regression, where knowing the transformation param-

eter reduces the model to standard linear regression; (iii) dynamic regression,

where knowing the coefficients of the lagged dependent variables and the serial

correlation coefficients reduces the model to weighted linear regression; and (iv)

spatial regression, where knowing the coefficients of spatial effects reduces the

model to either standard or weighted linear regression. We call λ the vector of

index parameters. In each of the examples, exact inference methods are usually

available when λ is given.

When λ is unknown, a naive approach is to conduct model inference by

substituting an estimate λ̃ for λ in the inferential statistic. To clarify the idea,

we consider first a simple case where inference concerns the parameter θ. Suppose

there is a statistic T (y;λ, θ) with a known distribution, so that inference for θ
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can be conducted when λ is known. When λ is unknown, it is replaced by λ̃
to give T (y; λ̃, θ). This raises the following questions. What is the distribution
of T (y; λ̃, θ)? How does one adjust T (y; λ̃, θ) so as to allow inference for θ to
proceed in the same manner as when λ is known? Some related questions include
the following. Which estimator of λ should one use: constrained (for given θ) or
unconstrained? Does it make a difference?

This paper develops general theories to deal with these issues in the broader
set up where inference concerns a general (vector-valued) parametric function
ψ = g(λ, θ). We show that, under mild conditions, the asymptotic variance of
T (y; λ̃, ψ) is inflated over that of T (y;λ,ψ) when λ̃ is the unconstrained estimator
of λ, but deflated when λ̃ is the constrained estimator for a given θ. In either
case, the standardized statistic using the correct asymptotic variance can be used
for inference. More importantly, when the finite sample distribution of T (y;λ,ψ)
is known, T (y; λ̃, ψ) can be corrected using the exact first and second moments
of T (y;λ,ψ), along with the variance inflation/deflation factor. Then, referring
the corrected T (y; λ̃, ψ) to the exact distribution of T (y;λ,ψ) gives procedures
with an improved finite sample performance.

Our approach is related to the delta method and the likelihood ratio method,
but with clear distinctions: our approach is simpler and is able to take advan-
tage of exact inference methods when λ is given, resulting in inferences with an
improved finite sample behavior.

The rest of the paper is organized as follows. Section 2 presents an exam-
ple to further motivate our ideas and to shed light on the type of results we
are expecting. Section 3 presents the main results. Section 4 contains three
applications of the theorems.

2. A Motivating Example: The Weibull Duration Model

For illustrative purpose, we consider the simple situation where y1, . . . , yn
are independent and identically distributed (i.i.d.) Weibull random variables
with probability density function λθ−λyλ−1 exp[−(y/θ)λ], λ > 0. The Weibull
distribution is one of the most popular models for modeling economic durations
(Kiefer (1988)).

The simple set-up. We first consider inference for the scale parameter θ, when
λ is treated as the index parameter. Define

T (y;λ, θ) =
1

n

n
∑

i=1

(yi
θ

)λ
− 1.

Then
√
nT (y;λ, θ)

D→ N(0, 1) and the finite sample distribution of 2
∑n

i=1(yi/θ)
λ

is chi-squared with 2n degrees of freedom. Thus, if λ is known, exact inference
about θ can be conducted based on 2

∑n
i=1(yi/θ)

λ.
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Denote the unconstrained maximum likelihood estimator (MLE) by λ̂ and

the constrained (for a given θ) MLE of λ by λ̂θ. Define

T (y; λ̂, θ) =
1

n

n
∑

i=1

(yi
θ

)λ̂
− 1,

T (y; λ̂θ, θ) =
1

n

n
∑

i=1

(yi
θ

)λ̂θ − 1.

Here, the standard asymptotic results of the maximum likelihood theory ap-

ply. Furthermore, as shown in Appendix A.1,
√
nT (y;λ, θ) and

√
n (λ̂ − λ) are

asymptotically independent with

√
nT (y; λ̂, θ)

D−→ N(0, 1 + c21), (1)

and
√
nT (y; λ̂θ, θ) is asymptotically independent of

√
n (λ̂θ − λ) with

√
nT (y; λ̂θ, θ)

D−→ N(0, 1 − c22), (2)

where c21 = 6(1−γ)2/π2 = 0.1087, c22 = (1−γ)2/[(1−γ)2 +(π2/6)] = 0.0980, and

γ = 0.5772 is Euler’s constant. As we shall see, these results can also be obtained

as direct applications of Theorems 1 and 2 below. Hence, the use of λ̂ inflates the

asymptotic variance of T , whereas the use of λ̂θ deflates the asymptotic variance.

In either case, it is very easy to adjust the statistic to give a limiting standard

normal distribution. In particular, the statistics

T ∗(y; λ̂, θ) =

√
nT (y; λ̂, θ)
√

1 + c21
and T ∗(y; λ̂θ, θ) =

√
nT (y; λ̂θ, θ)
√

1− c22
are both asymptotically N(0, 1). To test H0 : θ = θ0, both adjusted statistics are

equally simple to use, but to construct a confidence interval for θ, it is simpler

to use the former. Specifically, a two-sided 100(1− α)% large sample confidence

interval (CI) for θ based on T ∗(y; λ̂, θ) takes the following explicit form







(

n−
1

2

∑n
i=1 y

λ̂
i√

n+ zα
2

√

1 + c21

)
1

λ̂

,

(

n−
1

2

∑n
i=1 y

λ̂
i√

n− zα
2

√

1 + c21

)
1

λ̂







, (3)

whereas the same interval based on T ∗(y; λ̂θ , θ) is defined implicitly by the set

{

θ : −zα
2

≤ T ∗(y; λ̂θ , θ) ≤ zα
2

}

, (4)

which has to be solved numerically.
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The general set-up. Suppose now inference concerns ψ ≡ g(λ, θ), a smooth

function of both parameters, representing a survivor-related quantity such as (i)

the kth moment, where g(λ, θ) = θkΓ(1 + k/λ), (ii) the survivor function, where

g(λ, θ) = exp[−(y/θ)λ], (iii) the hazard function, where g(λ, θ) = θ−λλyλ−1, and

(iv) the p-quantile, where g(λ, θ) = θ[1− log(1 − p)]1/λ. Note that y in (ii) and

(iii) is a given constant. Suppose the function g is invertible in θ as are the cases

above. Let θ = g−1(λ,ψ) ≡ f(λ,ψ). Define

T (y;λ,ψ) =
1

n

n
∑

i=1

(

yi
f(λ,ψ)

)λ

− 1,

which is T (y;λ, θ) given above, and hence has a limiting standard normal distri-

bution. The difference is that T (y;λ,ψ) is now considered as the statistic used

for inference concerning ψ and that λ, the index parameter to be substituted,

also appears in the function f . When λ is unknown, define

T (y; λ̂, ψ) =
1

n

n
∑

i=1

(

yi

f(λ̂, ψ)

)λ̂

− 1,

T (y; λ̂ψ , ψ) =
1

n

n
∑

i=1

(

yi

f(λ̂ψ, ψ)

)λ̂ψ

− 1,

where λ̂ is the unconstrained MLE of λ, and λ̂ψ is the constrained MLE of λ for

a given ψ.

It can be shown (see Appendix A.1) that
√
nT (y;λ,ψ) and

√
n (λ̂− λ) are

asymptotically independent with

√
nT (y; λ̂, ψ)

D−→ N(0, 1 + c21(λ,ψ)), (5)

and that
√
nT (y; λ̂ψ , ψ) and

√
n (λ̂ψ − λ) are asymptotically independent with

√
nT (y; λ̂ψ, ψ)

D−→ N(0, 1− c22(λ,ψ)), (6)

where

c21(λ,ψ) = 6
π

(

1− γ + λ2fλ(λ,ψ)
f(λ,ψ)

)

,

c22(λ,ψ) =
(

1−γ
λ −

λfλ(λ,ψ)
f(λ,ψ)

)2
(

π2

6λ2 +
(

1−γ
λ −

λfλ(λ,ψ)
f(λ,ψ)

)2
)−1

.

Thus, as before, the use of the unconstrained estimator results in variance

inflation, and the use of the constrained estimator results in variance deflation.
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Both statistics can easily be adjusted to give asymptotic N(0, 1) statistics

T ∗(y; λ̂, ψ) =

√
nT (y; λ̂, ψ)

√

1 + c21(λ̂, ψ̂)
and T ∗(y; λ̂ψ , ψ) =

√
nT (y; λ̂ψ, ψ)

√

1− c22(λ̂ψ, ψ)
,

which can be used to conduct inferences for ψ. In testing H0 : ψ = ψ0, both

statistics are equally simple to use, but to construct confidence interval, it is

again simpler to use the statistic based on λ̂, which gives a two-sided 100(1−α)%

large-sample CI for ψ with explicit lower and upper limits as follows:

{g[λ̂, L(λ̂)], g[λ̂, U(λ̂)]}, (7)

where L(λ̂) and U(λ̂) are the lower and upper confidence limits given in (3), with

c1 replaced by c1(λ̂, ψ̂). Using the statistic with λ̂ψ substituting for λ, however,

the CI for ψ has to be defined implicitly in a similar way as in (4), i.e.,
{

θ : −zα
2

≤ T ∗(y; λ̂ψ , ψ) ≤ zα
2

}

, (8)

which again has to be solved through numerical iterations.

The improved inferences. The idea of simplicity is clearly illustrated by the

above developments: implementation of suggested methods does not need the

calculation of the information matrix whereas the implementation of the delta

method does. Furthermore, in CI constructions, it is simpler to use T ∗(y; λ̂, ψ)

than T ∗(y; λ̂ψ , ψ) as the former does not involve numerical iterations. We now

illustrate the idea that the above developments also lead to improved finite sample

inferences.

Note that
√
nT (y;λ, θ) = (2

√
n)−1χ2

2n −
√
n, where χ2

2n is a chi-squared

random variable with 2n degrees of freedom. As the exact mean and variance of√
nT (y;λ, θ) are 0 and 1, all the T ∗ statistics defined above do not need to be

further adjusted (otherwise they do, as explained in Sec. 3.4). However, finite

sample performance of inference procedures based on these T ∗ statistics will be

improved if they are referred to the distributions of (2
√
n)−1χ2

2n −
√
n instead

of N(0, 1). In particular, in the CIs defined in (3), (4), (7) and (8), replace

−zα/2 by (2
√
n)−1χ2

2n(1−α/2)−
√
n, and zα/2 by (2

√
n)−1χ2

2n(α/2)−
√
n, where

χ2
2n(1 − α/2) and χ2

2n(α/2) are, respectively, the lower and upper 100(α/2)%

points of the χ2
2n distribution. Monte Carlo results confirming the better finite

sample performance of this CI are available from the first author upon request.

The above example clearly illustrates the simplicity and improved finite sam-

ple properties of the proposed inference methods. It shows that (i) the effect of

estimating the index parameter cannot be ignored; (ii) the variance of the infer-

ential statistic is inflated when using the unconstrained estimator, but deflated
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when using the constrained estimator; (iii) in either case, the statistic can be

easily adjusted to account for index parameter estimation; and (iv) both ad-

justed statistics provide simple tests for the parameter of interest, but only the

statistic with unconstrained estimator provides explicit solutions for confidence

interval construction. To our knowledge, the results above (equations (1), (2),

(5) and (6)) are new. They can be applied to economic duration analysis and are

extendable to the case of censored data. Motivated by this example, we provide

some general results in the next section.

3. The Main Results

We give a general treatment of the problem by considering the parameter of

interest to be ψ = g(λ, θ), a general smooth function of all parameters. Interest-

ing special cases include (i) all the elements of θ are the parameters of interest,

i.e., ψ = θ, (ii) some elements of θ are the parameters of interest, i.e., ψ = θ1,

and (iii) there are no parameters of interest, i.e., ψ is an empty vector, as in

goodness of fit tests and residual-based diagnostics. It is desired to find the lim-

iting distribution of T (y; λ̃, ψ) with λ̃ denoting a general estimator of λ that may

be the constrained MLE given ψ, or the unconstrained MLE. As in the earlier

example about the different behaviors of T (y; λ̃, ψ) when using unconstrained or

constrained estimator for λ, we treat the two cases separately.

3.1. Assumptions and preliminaries

Throughout the paper, we assume that the usual regularity conditions for

maximum likelihood (ML) estimation holds (See, for example, Godfrey (1988)

and Davidson and MacKinnon (1993)). We also assume that
√
nT (y;λ,ψ) fol-

lows exactly, or asymptotically, a normal distribution with mean vector zero and

variance-covariance matrix V , where V may be parameter dependent but can be

consistently estimated. Also, V is nonsingular (for variance correction purposes).

As our formulation starts with the case of a known λ, T should have the same

dimension as ψ (one needs as many equations as unknowns) and ψ should have

a dimension less than or equal to θ.

We denote the log likelihood function by L(λ, θ), the score function by

U(λ, θ), and the Fisher information matrix by I(λ, θ). Write U(λ, θ)=(Uλ(λ, θ)
′,

Uθ(λ, θ)
′)′ = (∂L(λ, θ)/∂λ′, ∂L(λ, θ)/∂θ′)′. Let

A = lim
n→∞

(

1

n
I(λ, θ)

)

,

which is partitioned according to (λ, θ) into sub-blocks Aij , i, j = 1, 2. The

following is a generic assumption that applies to both the unconstrained and

constrained cases.
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Assumption I. There is a matrix B = limn→∞ E[∂T (y;λ, θ)/∂λ′], such that

√
nT (y; λ̃, ψ) =

√
nT (y;λ,ψ) +B

√
n (λ̃− λ) + op(1),

for any consistent estimator λ̃ of λ.

This assumption ensures the validity of the Taylor expansion of
√
nT (y; λ̃, ψ).

It is clearly not restrictive. In certain situations such as when λ̃ is the uncon-

strained estimator, the condition on B can be further relaxed to require T to be

only asymptotically smooth.

3.2. Substituting the unconstrained estimator

Assumption II. T (y;λ,ψ) = k(n−1/2Uθ(λ, θ)) + op(1), where k is a measurable

function of Uθ(λ, θ), the score component corresponding to θ.

Assumption II holds for the score statistic, and hence for the Wald as well

as the likelihood ratio statistics as the latter two are asymptotically equivalent

to the score statistic (see Godfrey (1988) and Cox and Hinkley (1974)). An

intuitive interpretation of this assumption is as follows. When λ is known, to

make inference about ψ, one has to estimate the model (the parameters θ) by

solving the first-order conditions Uθ(λ, θ) = 0. Then, one sets up the statistic

based on this estimating equation for testing and confidence interval construction

for ψ. As a result, the statistic becomes a measurable function of Uθ(λ, θ) or an

asymptotically equivalent version of it.

Lemma 1. Under the usual regularity conditions of ML estimation, n−1/2Uθ(λ, θ)

and
√
n(λ̂− λ) are asymptotically independent.

The result of Lemma 1 depends critically on the information equality. It

says that in the ML estimation framework the conditional estimation of θ (given

λ) is asymptotically independent of the unconditional estimation of λ. As shown

below, this lemma leads to an important result regarding the limiting distribution

of T (y; λ̂, ψ). From Lemma 1, it follows immediately that θ̂λ (the constrained

estimator of θ given λ) is asymptotically independent of λ̂.

Theorem 1. Under the usual regularity conditions of ML estimation and As-

sumptions I and II,
√
nT (y;λ,ψ) and λ̂ are asymptotically independent, and

√
nT (y; λ̂, ψ)

D−→ N(0, V +BA−1
11.2B

′),

where A−1
11.2 = (A11 −A12A

−1
22 A21)

−1 is the upper-left-corner block of A−1.

Theorem 1 says that the consequence of using the unconstrained estimator

λ̂ in place of λ causes the variance of T to be inflated. With a simple adjustment
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to the variance of T , Theorem 1 allows inference about ψ to be carried out in

the same manner as when λ is known, provided the variance inflation factor,

BA−1
11.2B

′, can be consistently estimated. This is often an easy task since B can

be consistently estimated by (∂/∂λ)T (y; λ̂, ψ̂), andA−1
11.2, the asymptotic variance

of
√
n(λ̂ − λ), can be consistently estimated by nI−1

11.2(λ̂, ψ̂), or by nĨ−1
11.2(λ̂, ψ̂),

or simply by

−n
(

∂2

∂λ∂λ′
Lmax(λ̂)

)−1

, (9)

where Ĩ is the observed information matrix, Lmax(λ) is the concentrated or par-

tially maximized (over θ) log likelihood of λ, and I11.2 and Ĩ11.2 are defined in

the same way as A11.2. The last method is particularly simple as the second

derivative can be calculated numerically (see Carroll and Ruppert (1988, p.129).

It makes the application of Theorem 1 more handy when a simple expression for

the concentrated log likelihood for λ is available (see the applications in Section

4).

3.3. Substituting the Constrained Estimator

The case of substituting the constrained MLE λ̂ψ (given ψ) for λ is more

complex. The reason is that λ̂ψ is subject to constraints imposed on the pa-

rameters through H0 : ψ = ψ0. To overcome this difficulty, we reparameterize

the model by defining a one-to-one transformation (λ, θ) ←→ (λ,ψ, φ), where

ψ ≡ g(λ, θ) is of dimension less than or equal to that of θ, φ represents (loosely

speaking) the remaining components of θ, and λ remains the index parameter.

In this context, φ is the vector of nuisance parameters. Note that λ has to be

estimated jointly with φ. Thus, the estimation process involves only the score

functions for λ and φ. As ψ is specified under the null hypothesis, it is suppressed

from the notation. Denote the scores for λ and φ by U◦
λ(λ, φ) and U◦

φ(λ, φ) and

the corresponding information sub-matrix by I◦(λ, φ), where the superscript ◦

indicates that the corresponding quantity is obtained under reparameterization

and constrained estimation. Let A◦ = limn→∞

(

1
nI

◦(λ, φ)
)

.

Assumption III. For every λ, there is joint convergence in law to normality:

[√
nT (y;λ,ψ)√
n (λ̂ψ − λ)

]

D−→ N

[

0,

(

V11 V12

V21 V22

)]

,

where V11 = V , and V22 = A◦−1
11.2, the upper-left-corner block of A◦−1. The

dispersion matrix is assumed to be nonsingular.
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Assumption IV. E[T (y;λ,ψ)] is free of λ, and there is an integrable function

h(y) such that, in a neighborhood of (λ,ψ, φ), the following conditions hold:

(a) |[ ∂∂λT (y;λ,ψ)]p(y;λ,ψ, φ)| ≤ h(y), |T (y;λ,ψ)[ ∂∂λp(y;λ,ψ, φ)]| ≤ h(y),

(b) |[ ∂∂φT (y;λ,ψ)]p(y;λ,ψ, φ)| ≤ h(y), |T (y;λ,ψ)[ ∂∂φp(y;λ,ψ, φ)]| ≤ h(y),

where p(y;λ,ψ, φ) is the joint probability density function of y.

Note that the first part of (b) in Assumption IV always holds as the quantity

is actually zero due to the fact that T (y;λ,ψ) is free of φ.

Theorem 2. Under the usual regularity conditions of ML estimation and As-

sumptions I, III and IV,
√
nT (y; λ̂ψ , ψ) and

√
n(λ̂ψ − λ) are asymptotically in-

dependent and
√
nT (y; λ̂ψ , ψ)

D−→ N(0, V −BA◦−1
11.2B

′).

Theorem 2 shows that using the constrained estimator λ̂ψ in place of λ causes

the variance of the statistic to be deflated. The deflation factor BA◦−1
11.2B

′ and

the original variance-covariance matrix V can be consistently estimated, resulting

in a properly standardized statistic to be used for testing and confidence-interval

construction for ψ. One of the key quantities in the estimation of the deflation

factor is the information sub-matrix under the new parameterization, which can

be found through the relationship I◦(λ,ψ, φ) = J(λ,ψ, φ)I(λ, θ)J ′(λ,ψ, φ), where

J(λ,ψ, φ) = ∂(λ′, θ′)/∂(λ′, ψ′, φ′)′. Then, the desired quantity I◦(λ, φ) is just the

sub-matrix of I◦(λ,ψ, φ) without its second row and second column.

Certain special cases of Theorem 2 are worthy of mention. When ψ = θ,

φ disappears and the result of Theorem 2 reduces to T (y; λ̂θ , θ)
D−→ N(0, V −

BA−1
11 B

′), which is given in Pierce (1982). Bera and Zuo (1996) used this result

to derive a test for ARCH models. Bera and Kim (2002) used it to obtain a

test for constant correlation in a bivariate conditional heteroscedasticity model.

See also Tse′s (2002) application to residual-based diagnostics for univariate and

multivariate conditional heteroscedasticity models.

When ψ and θ are of the same dimension, φ disappears and the transforma-

tion: (λ, θ) ←→ (λ,ψ) becomes one-to-one. The result of Theorem 2 thus be-

comes T (y; λ̂ψ , ψ)
D−→ N(0, V − BA◦−1

11 B
′). To calculate A◦

11, note that J(λ,ψ)

has rows (I, fλ) and (0, fψ), where fλ = ∂
∂λf(λ,ψ), fψ = ∂

∂ψf(λ,ψ), f(λ,ψ) =

θ = g−1(λ,ψ), I is an identity matrix, and 0 is a rectangular matrix of zeros. The

dimensions of I and 0 are implicitly defined. Thus, I◦λλ = Iλλ+2fλIθλ+ fλIθθf
′
λ,

which leads to A◦
11.

Finally, for the case where ψ has dimension less than θ, write θ = (θ′1, θ
′
2)

′

with θ1 and ψ having the same dimension. Define ψ = g(λ, θ1, θ2), and φ = θ2,



826 Z. L. YANG, Y. K. TSE AND Z. D. BAI

so that θ1 = g−1(λ,ψ, φ) ≡ f(λ,ψ, φ). Then

J(λ,ψ, φ) =

(

I fλ 0
0 fψ 0
0 fφ I

)

,

where I and 0 in different positions are of different dimensions. The desired

quantity I◦(λ, φ) is the submatrix of I◦(λ,ψ, φ) = J(λ,ψ, φ)I(λ, θ1, θ2)J
′(λ,ψ, φ)

obtained by deleting the second row and second column.

3.4. Improved finite sample inference

As illustrated in Section 2, finite sample performance of the proposed infer-

ence procedures can be improved by referring to the exact distribution of the

λ-known statistic
√
nT (y;λ,ψ) if it exists. We now generalize this idea. Let µn

and Vn be the finite sample mean and variance of
√
nT (y;λ,ψ). Clearly, µn → 0

and Vn → V as n → ∞. Consider first the case of unconstrained substitution.

Under Assumption I, we have
√
nT (y; λ̂, ψ) =

√
nT (y;λ,ψ)+B

√
n(λ̂−λ)+op(1).

Following Lemma 1, and assuming that a quantity bounded in probability has a

finite expectation, we have E[
√
nT (y; λ̂, ψ)] = µn+o(1) and Var[

√
nT (y; λ̂, ψ)] =

Vn + BA−1
11.2B

′ + o(1). These suggest that the statistic
√
nT (y; λ̂, ψ) should be

adjusted according to,

T ∗(y; λ̂, ψ) = (Vn +BA−1
11.2B

′)−
1

2

(√
nT (y; λ̂, ψ) − µn + (Vn +BA−1

11.2B
′)

1

2µn

)

,

which matches V −1/2√nT (y;λ,ψ) on its first and second moments with an er-

ror of o(1). More importantly, the adjusted statistic should refer to the exact

distribution of
√
nT (y;λ,ψ) for an improved finite sample performance. Similar

arguments apply to the case of constrained substitution.

4. Applications

In this section, we consider three applications to illustrate the generality

and versatility of our theories. Some results turn out to be new and some are

alternative derivations (using our theorems) of certain existing results.

4.1. Box-Cox regression

The Box-Cox regression model (Box and Cox (1964)) is perhaps one of the

models that best exemplify the applications of our methods, in particular Theo-

rem 1. The usual Box-Cox transformation model has the form

h(y, λ) = Xβ + σe,

where y is an n × 1 vector of original observations, h(y, λ) is a vector of trans-

formed observations, and X is an n×k matrix, the columns of which contain the
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values of the explanatory variables X1, . . . ,Xk, β is a k × 1 vector of regression

coefficients, σ is the error standard deviation, e is an n × 1 vector of N(0, 1)

variates, and h(·, λ) is a general monotonically increasing function, known ex-

cept for λ. Note that the popular Box-Cox power transformation is incompatible

with the model assumption as e cannot be exactly normal unless λ = 0. For the

choices of h that do satisfy the model assumption, see Yeo and Johnson (2000).

It is clear that in this application, knowing the value of λ greatly simplifies

the inferences concerning β or some functions of β and σ. When λ is known,

exact inference methods are usually available. We demonstrate in this application

how our theories can extend the λ-known inference methods to account for the

estimation of λ. The MLEs of β and σ2 for a given λ are, respectively,

β̂(λ) = (X′X)−1X′h(y, λ) and σ̂2(λ) = n−1‖Mh(y, λ)‖2,

where ‖ · ‖ is the Euclidian norm and M = In−X(X′X)−1X′, with In being the

n×n identity matrix. The unconstrained MLE λ̂ of λmaximizes the concentrated

log likelihood Lmax(λ) = −(n/2) log σ̂2(λ)+
∑n

i=1 log hy(yi, λ), where hy(yi, λ) =

∂h(yi, λ)/∂yi. Likewise, the unconstrained MLEs of β and σ2 are, respectively,

β̂(λ̂) and σ̂2(λ̂). Let σ̃2(λ) = (n/(n − k))σ̂2(λ) be the unbiased estimator of σ2.

Likewise, we have σ̃2(λ̂).

Inferences concerning regression coefficients. We consider the inferences

for ψ = a′β, a general linear function of β for a fixed vector a. When λ is assumed

known, we look to

√
nT (y;λ,ψ) =

a′β̂(λ)− ψ
{a′(X′X)−1a} 1

2 σ̃(λ)
,

which is t distributed with degrees of freedom n− k. The statistic
√
nT (y;λ,ψ)

provides an exact t test for testing ψ. It also leads to an exact and explicit CI

for ψ. When λ is unknown and is substituted by its unconstrained MLE λ̂, we

have
√
nT (y; λ̂, ψ) =

a′β̂(λ̂)− ψ
{a′(X′X)−1a} 1

2 σ̃(λ̂)
.

It is easy to verify that the conditions of Theorem 1 are satisfied. Hence,√
nT (y; λ̂, ψ) is asymptotically normal with mean zero and variance 1+B2A−1

11.2,

where

B = lim
n→∞

a′E[β̂λ(λ)]
√
n{a′(X′X)−1a} 1

2σ
,

and β̂λ(λ) is the derivative of β̂(λ) with respect to λ. In practice, the above

variance inflation factor, B2A−1
11.2, can be easily estimated and

√
nT (y; λ̂, ψ) can
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be corrected to have a N(0, 1) limiting distribution, so that inference about ψ
based on the corrected statistic is asymptotically valid. In particular, a 100(1 −
α)% large sample CI for ψ based on the corrected statistic

√
nT (y; λ̂, ψ)(1 +

B̂2Â−1
11.2)

−1/2 takes the form

a′β̂(λ̂)± zα/2{a′(X′X)−1a} 1

2 σ̃(λ̂)(1 + B̂2Â−1
11..2)

1

2 . (10)

Immediately following the arguments given in Section 3.4, and noting that the
finite sample distribution of

√
nT (y;λ,ψ) is an exact t with n − k degrees of

freedom with µn = 0 and Vn = (n− k)/(n− k − 2), one obtains an improved CI
for ψ

a′β̂(λ̂)± tα/2n−k{a′(X′X)−1a} 1

2 σ̃(λ̂)(Vn + B̂2Â−1
11.2)

1

2 . (11)

However, use of the constrained estimator does not lead to this simple result
even if the result of Theorem 2 is applicable. Bickel and Doksum (1981) showed
that the asymptotic variance of β̂(λ̂) is larger than that of β̂(λ), and thus it is
not valid for making inference concerning β in the usual way. However, they did
not provide ways to correct for the asymptotic variance of

√
nT (y; λ̂, ψ).

Inference for the quantile function. Suppose now we want to construct a
confidence interval for ψ = g(λ, β, σ2) ≡ h−1[(x′0β + σzp), λ], the p-quantile of
y0 at a given observation x0, where zp is the p-quantile of the standard normal
variate. Note that g now is a function of all the parameters. To state the problem
in the framework of our theory, we need to find a statistic T (y;λ,ψ) with a known
distribution. A natural choice is

√
nT (y;λ,ψ) =

x′0β̂(λ) + σ̂(λ)zp − h(ψ, λ)

{x′0(X′X)−1x0}
1

2 σ̃(λ)
,

which is distributed exactly as tn−k(−knzp) + knzp, where tn−k(−knzp) is a non-
central t with n− k degrees of freedom and noncentrality parameter −knzp, and
kn = {x′0(X′X)−1x0}−1/2. Hence, when λ is known an exact CI for h(ψ, λ) can
be constructed. Applying inverse transformations to the lower and upper confi-
dence limits for h(ψ, λ) gives the confidence limits for ψ. When λ is unknown,
substituting λ̂ for λ in the confidence limits results in a plug-in type of confidence
interval. The validity of this interval depends on whether the statistic

√
nT (y; λ̂, ψ) =

x′0β̂(λ̂) + σ̂(λ̂)zp − h(ψ, λ̂)

{x′0(X′X)−1x0}
1

2 σ̃(λ̂)

has the same limiting distribution as
√
nT (y;λ,ψ). It can be verified that this

problem fits into the framework of Theorem 1. Hence,
√
nT (y; λ̂, ψ) is asymp-

totically normal with mean zero and variance 1 +B2A−1
11.2, where

B = lim
n→∞

x′0E[β̂λ(λ)] + zpE[σ̂λ(λ)]− hλ(ψ, λ)
√
n{x′0(X′X)−1x0}

1

2σ
,
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and hλ(ψ, λ) and σ̂λ(λ) are the derivatives of h(ψ, λ) and σ̂(λ) with respect to

λ. Inference for ψ can be made based on
√
nT (y; λ̂, ψ)/

√

1 + B̂2Â−1
11.2 by simply

referring the adjusted statistic to the standard normal distribution. Following

the arguments given in Section 3.4, an improved inference for ψ can be made

based on

T ∗(y; λ̂, ψ) =

√
nT (y; λ̂, ψ)− µn + µn

√

Vn + B̂2Â−1
11.2

√

Vn + B̂2Â−1
11.2

by referring T ∗(y; λ̂, ψ) to the distribution of tn−k(−knzp) + knzp, which has a

mean µn and a variance Vn that can be obtained from the moments of a noncentral

t distribution. See Yang and Tse (2007) for the small and large sample results

for a Box-Cox regression with heteroscedasticity. See also Yang and Tsui (2004)

for a Box-Cox model in the context of modeling duration and event times.

It is clear from this application that it is much simpler to follow the uncon-

strained substitution approach to construct confidence interval for ψ and that,

even if one is concerned with hypothesis testing on ψ, the use of the constrained

estimator λ̂ψ as a replacement for λ may have some disadvantages compared to

using the unconstrained estimator λ̂, as (i) the hypothesis imposed on ψ does

not simplify the estimation of λ, and (ii) a reparameterization has to be made to

find the asymptotic variance of λ̂ψ, in particular in the case of quantiles.

Finally, as the concentrated log likelihood is available in this application,

A11.2 can be estimated using the simple method suggested in Section 3. Another

interesting inference for this model may be the test of functional form, i.e., testing

the value of λ, where the result of Theorem 2 may be applicable.

4.2. Dynamic linear regression with serial correlation

Dynamic linear regression with serial correlation is another example that

illustrates the applications of our theories, simply because knowing the dynamic

and serial correlation parameters reduces the model to a standard generalized

least squares (GLS) regression. Also, this example can be used to illustrate the

usefulness of Theorem 2, i.e., using constrained estimator does sometimes provide

a simpler testing procedure than using unconstrained estimator. The model has

the form

yt = δyt−1 + x′tβ + εt, with

εt = ρεt−1 + ut, |ρ| < 1, t = 1, . . . , n,

where xt is a k × 1 vector of independent variables and {ut} are a sequence of

normal white noise with variance σ2. For simplicity of exposition, we include
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only one lag in both {yt} and {εt} processes. The results presented below are

extendable to include more lags in both processes. Clearly in this application,

knowing the values of δ and ρ greatly simplifies the inferences concerning β. Also,

the hypothesis H0: ρ = 0 corresponds to an important test of model specification,

under which estimation of δ and β becomes much simpler.

Inference concerning the regression coefficients. Like the first application,

we first consider the inference for ψ = a′β. In this context, we have λ = (δ, ρ)′

and the other parameters besides ψ and λ are the nuisance parameters. Let X

be the matrix of the fixed regressors. Define yt(δ) = yt − δyt−1, t = 1, . . . , n, and

let y(δ) = {yt(δ)}n×1. Assume y0 is fixed and {ε1, . . . , εn} are stationary. We

have y(δ) ∼ N(Xβ, σ2Ω(ρ)), where Ω(ρ) has elements 1/(1− ρ2) in the diagonal

and ρ|i−j|/(1− ρ2) in the (i, j) position. When λ is known, the model reduces to

a GLS regression. The constrained MLEs of β (also the GLS) and σ2 are given

by

β̂(δ, ρ) = (X′Ω−1(ρ)X)−1X′Ω−1(ρ)y(δ),

σ̂2(δ, ρ) = n−1[y(δ) −Xβ̂(δ, ρ)]′Ω−1(ρ)[y(δ) −Xβ̂(δ, ρ)].

The unconstrained MLEs of δ and ρ are obtained by minimizing the concen-

trated log likelihood Lmax(δ, ρ) = −(n/2) log σ̂2(δ, ρ) − (1/2) log |Ω(ρ)|. The un-

constrained MLEs of β and σ2 are thus β̂(δ̂, ρ̂) and σ̂2(δ̂, ρ̂), respectively. Also,

β̂(δ, ρ) ∼ N [β, σ2(X′Ω−1(ρ)X)−1], which leads to an exact t statistic for ψ:

√
nT (y;λ,ψ) =

a′β̂(δ, ρ) − ψ
{a′(X′Ω−1(ρ)X)−1a} 1

2 σ̂(δ, ρ)
.

When λ is unknown and replaced by the unconstrained MLE to give the statis-

tic
√
nT (y; λ̂, ψ), we have from Theorem 1 that

√
nT (y; λ̂, ψ) is asymptotically

normally distributed with mean zero and variance 1 +BA−1
11.2B

′, where

B = lim
n→∞

a′E[∂β̂(δ,ρ)
∂(δ,ρ) ]

√
n{a′(X′Ω−1(ρ)X)−1a} 1

2σ
.

Thus, if ordinary least squares standard errors are used for the transformed re-

gression with consistently estimated δ and ρ, the standard errors are understated

and the t-ratio is inflated (see Davidson and MacKinnon (1993, Sec. 10.4)). As

the exact distribution of
√
nT (y;λ,ψ) is known, the arguments given in Section

3.4 lead to the improved inference methods.

Inference for serial correlation. We now consider inference for the serial

correlation parameter. We have the parameter of interest ψ = ρ, the parameters
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to be substituted λ = (δ, β′)′, and the nuisance parameter φ = σ2. To simplify the

derivation, we assume (without loss of generality) that σ = 1. We are interested

in testing H0 : ψ = 0. Consider the statistic

T (y;λ,ψ) =

∑n
t=1 εtεt−1
∑n

t=1 ε
2
t

− ψ, (12)

where εt = yt − δyt−1 − x′tβ. Note that
∑n

t=1 εtεt−1/
∑n

t=1 ε
2
t is the constrained

(on the index parameter λ, not H0) MLE of ψ, and the conditions of Theorems

1 and 2 are satisfied. Under H0, T (y;λ,ψ) is asymptotically distributed as a

standard normal variate. If Z = {Ly : X} is the regression matrix including the

lagged dependent vector Ly, then A11 = limn→∞ E[Z′Z/n]. Let

lim
n→∞

E
[Z′Z

n

]

=

(

Σyy Σyx
Σ′
yx σxx

)

.

It can be shown that A21 = (1, 0, . . . , 0) and A22 = 1. Furthermore, B =

(1, 0, . . . , 0) on H0. Thus if we substitute the OLS estimate of λ, λ̂ψ under

H0 : ψ = 0, into T (y;λ,ψ), we conclude from Theorem 2 that T (y; λ̂ψ , ψ) is

asymptotically normally distributed with mean 0 and variance 1− v2, where

v2 = BA−1
11 B

′ =
(

σyy − Σ′
xyΣ

−1
xxΣxy

)−1
.

This result has been proved by Durbin (1970) in a more general context.

Now suppose we substitute the unconstrained MLE of λ to obtain T (y; λ̂, ψ).

Then, from Theorem 1, on H0 the asymptotic variance of
√
nT (y; λ̂, ψ) is given

by

1 +BA−1
11.2B

′ = 1 +
1

(σyy − 1)−Σ′
xyΣ

−1
xxΣxy

. (13)

Note that T (y; λ̂, ψ) is the unconstrained MLE of ψ, say ψ̂. From standard MLE

theory, the asymptotic variance of
√
n(ψ̂ − ψ) is

(A22 −A21A
−1
11 A12)

−1 =

(

1− 1

σyy − Σ′
xyΣ

−1
xxΣxy

)−1

,

which reduces to the expression in equation (13).

It is interesting to note that, contrary to inferences concerning the β coeffi-

cients, the test for serial correlation based on constrained substitution is simpler

than that based on the unconstrained substitution, as the constrained estima-

tor λ̂ψ is much easier to calculate than the unconstrained estimator λ̂. This

phenomenon holds for many goodness-of-fit and residual-based diagnostic tests.

The two tests are asymptotically equivalent under local alternatives, due to the
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asymptotic equivalence of the Lagrange multiplier and likelihood ratio tests.

However, the estimated asymptotic variance of T (y; λ̂ψ , ψ) may be negative in

small samples, especially when the exogenous variables are highly trended (see,

for example, Tse (1985)). In contrast, the estimated asymptotic variance of

T (y; λ̂, ψ) is always positive.

The above results can be extended to cases where the residual variance is

unknown and there are multiple lags in the dependent and error variables. While

many model diagnostics are constructed based on the constrained MLE, mainly

due to its simplicity in calculation, our results provide a way to obtain the asymp-

totic distribution of a diagnostic when unconstrained MLE is used. In some cases,

such as the tests for dynamic specification suggested by Sargan (1980), uncon-

strained MLE may be more convenient. Finally, our results may be applied

to derive joint tests for the coefficients of the lags in the dependent and error

variables.

4.3. Spatial regression

Spatial econometrics has recently received much attention in the literature.

Anselin (2001) gave a concise and informative survey. We use two commonly

used spatial regression models: the spatial lag model and the spatial error model,

to illustrate the applications of our theories. The spatial lag model takes the

form

y = δWy + Xβ + ε, (14)

where δ is the spatial autoregression coefficients, W is a given n × n matrix

called the spatial weights matrix, and ε ∼ N(0, σ2In). X is the matrix of the

regressors and β is the vector of coefficients. Here λ = δ is the index pa-

rameter. Define y(δ) = (In − δW)y. Then, when δ is given, the MLEs of

β and σ2 have the same expressions as those in the Box-Cox regression, i.e.,

β̂(δ) = (X′X)−1X′y(δ) and σ̂2(δ) = n−1‖My(δ)‖2 . The concentrated log like-

lihood is Lmax(δ) = −(n/2) log σ̂2(δ) + log |In − δW|, which can be maximized

to give the unconstrained MLE δ̂ of δ. The unconstrained MLEs of β and σ2

are thus β̂(δ̂) and σ̂2(δ̂), respectively. Inference for ψ = a′β falls into the same

framework as that of the Box-Cox regression. As before, it is inconvenient to

apply Theorem 2 in this case to construct CI for ψ.

The spatial error model has the form

y = Xβ + ε, (15)

ε = ρWε+ u,

where ρ is the error autoregressive coefficient and u ∼ N(0, σ2In). Here λ = ρ is

the index parameter. It can be seen that Var(εε′) = σ2[(In−ρW′)(In−ρW)]−1 ≡
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σ2Ω(ρ). So, when ρ is known, the model (15) can be reduced to a linear regression

model by pre-multiplying the matrix In−ρW onto y and X, and the constrained

MLEs of β and σ2 are, respectively,

β̂(ρ) = [X′(ρ)X(ρ)]−1X′(ρ)y(ρ), and

σ̂2(ρ) = n−1[y(ρ) −X(ρ)β̂(ρ)]′[y(ρ) −X(ρ)β̂(ρ)],

where y′(ρ) = y−ρWy and X′(ρ) = X−ρWX are the spatially filtered variables.

Substituting β̂(ρ) and σ̂2(ρ) into the log likelihood gives the concentrated log

likelihood Lmax(ρ) = −(n/2) log σ̂2(ρ) +
∑n

i=1 log(1 − ρωi), where ωi are the

eigenvalues of W . Maximizing Lmax(ρ) gives the unconstrained MLE of ρ which,

upon substitution, gives the unconstrained MLEs of β and σ2 as β̂(ρ̂) and σ̂2(ρ̂).

When inference concerns ψ = a′β, the exact t statistic when ρ is known takes

the same form as that in the Box-Cox regression. Furthermore, it can be shown

that B = 0. Hence, estimating ρ (constrained or unconstrained) does not affect

asymptotically the distribution of the test statistic. This is consistent with the

fact that the information matrix for this model is block diagonal.

Other interesting inferences corresponding to the spatial regression model

include (i) testing δ = 0 in the spatial lag model, (ii) testing ρ = 0 in the spatial

error model, and jointly testing for both δ = 0 and ρ = 0 in a model where both

types of spatial effects may exist. In these cases, the result of Theorem 2 may

provide simpler solutions than the result of Theorem 1.
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Appendix

A.1 Derivation for section 2

(Weibull Duration Model). In what follows, AVar denotes the asymptotic

variance and ACov the asymptotic covariance. First, from the Taylor’s expansion
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and the Law of Large Numbers, we have,

√
nT (y; λ̃, θ) =

√
nT (y;λ, θ) +

1

λn

n
∑

i=1

[

(yi
θ

)λ
log
(yi
θ

)λ
]√

n(λ̃− λ) + op(1)

=
√
nT (y;λ, θ) +

1

λn

n
∑

i=1

E

[

(yi
θ

)λ
log
(yi
θ

)λ
]√

n(λ̃− λ) + op(1)

=
√
nT (y;λ, θ) +

1− γ
λ

√
n(λ̃− λ) + op(1)

for any
√
n-consistent estimator λ̃. The last equation follows from the result

E[w logw] = 1 − γ, where w is an exponential variable with mean 1 and γ is

Euler’s constant.

Now the log-likelihood function is

L(λ, θ) = n log λ− nλ log θ + (λ− 1)

n
∑

i=1

log yi −
n
∑

i=1

(yi
θ

)λ
,

which gives the score functions

Uλ(λ, θ) =
∂L(λ, θ)

∂λ
=
n

λ
+

n
∑

i=1

log
(yi
θ

)

−
n
∑

i=1

(yi
θ

)λ
log
(yi
θ

)

,

Uθ(λ, θ) =
∂L(λ, θ)

∂θ
= −nλ

θ
+
λ

θ

n
∑

i=1

(yi
θ

)λ
.

The Fisher information matrix I(λ, θ) has the following elements: Iλλ =

n[(1− γ)2 + (π2/6)]/λ2, Iλθ = Iθλ = −n(1− γ)/θ, and Iθθ = n(λ/θ)2.

For (1), the unconstrained estimator λ̂ involves both Uλ and Uθ. It can be

easily seen to have the first-order approximation

√
n (λ̂− λ) =

√
n Iλλ

[

Uλ(λ, θ) +
θ(1− γ)
λ2

Uθ(λ, θ)

]

+ op(1),

where Iλλ is the upper-left-corner block of I−1(λ, θ). This, together with the fact

that T (y, λ, θ) = θUθ(λ, θ)/(nλ), leads immediately to ACov[T (y;λ, θ),
√
n (λ̂−

λ)] = 0, and hence the result given in (1) with

AVar[
√
nT (y; λ̂, θ)] = 1 +

(

1− γ
λ

)2

AVar[
√
n (λ̂− λ)] = 1 +

6(1 − γ)2
π2

.

For (2), the constrained estimator λ̂θ involves only Uλ(λ, θ) and hence has

the first-order approximation

√
n (λ̂θ − λ) =

√
n I−1

λλ Uλ(λ, θ) + op(1).
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This gives, by noticing T (y, λ, θ) = θUθ(λ, θ)/(nλ),

ACov[
√
nT (y; λ̂θ, θ),

√
n (λ̂θ − λ)] =

θ

λ
I−1
λλ Iθλ +

1− γ
λ

nI−1
λλ = 0.

Hence
√
nT (y; λ̂θ, θ) is asymptotically independent of

√
n (λ̂θ − λ), which gives

the result in (2) with

AVar[
√
nT (y; λ̂θ, θ)] = 1−

(

1− γ
λ

)2

AVar[
√
n (λ̂θ − λ)] = 1− (1−γ)2

(1−γ)2+ π2

6

.

For the case of making inferences for ψ, we have, similar to the above,

√
nT (y; λ̃, ψ) =

√
nT (y;λ, θ) +

(

1− γ
λ

fλ(λ,ψ)

f(λ,ψ)

)√
n(λ̃− λ) + op(1).

The result in (5) follows immediately from this expansion and the asymptotic

independence between
√
nT (y; λ̂, θ) and

√
n(λ̂− λ) as shown above.

For the case of using λ̂ψ, using the results Uψ(λ,ψ) = Uθ(λ, θ)fθ(λ,ψ),

Uλ(λ,ψ) = Uλ(λ, θ) + Uθ(λ, θ)fλ(λ,ψ),
√
n(λ̂ψ − λ) =

√
nI◦−1

λλUλ(λ,ψ) + op(1),

and T (y;λ,ψ) = T (y;λ, θ) = (θ/nλ)Uθ(λ, θ), one easily shows that ACov[
√
n

T (y; λ̂ψ, ψ),
√
n(λ̂ψ − λ)] = 0. The result of (6) thus follows from I◦λλ = Iλλ +

2fλIθλ + f2
λIθθ = n

(

π2/(6λ2) +
(

(1− γ)/λ− (λfλ)/f
)2
)

.

A.2. Proof of Lemma 1

First-order Taylor expansion on the joint likelihood equation n−
1

2U(λ̂, θ̂) = 0

leads to

√
n (λ̂− λ) =

1√
n
A−1

11.2Uλ(λ, θ)−
1√
n
A−1

11.2A12A
−1
22 Uθ(λ, θ) + op(1),

It suffices to show that AVar[(λ̂ − λ)Uθ(λ, θ)
′] = 0, which follows directly from

the asymptotic expansions given above:

lim
n→∞

E[(λ̂− λ)Uθ(λ, θ)
′]

= lim
n→∞

E[
1

n
A−1

11.2(Uλ(λ, θ)−A12A
−1
22 Uθ(λ, θ))Uθ(λ, θ)

′]

= A−1
11.2(A12 −A12A

−1
22 A22) = 0.

A.3. Proof of Theorem 1

Assumption II and Lemma 1 lead immediately to the asymptotic indepen-

dence of
√
nT (y;λ,ψ) and

√
n(λ̂− λ), which together with the asymptotic nor-

mality of
√
nT (y;λ,ψ) and

√
n(λ̂− λ) give the final result of Theorem 1.
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A.4. Proof of Theorem 2.

Assumption I gives

√
nT (y; λ̂ψ , ψ) =

√
nT (y;λ,ψ) +B

√
n (λ̂ψ − λ) + op(1).

Similar to the expansion for λ̂ given in the proof of Lemma 1, we have a first-order

asymptotic expansion for λ̂ψ in terms of the new parameterization:

√
n (λ̂ψ − λ) =

1√
n
A◦−1

11.2U
◦
λ(λ, φ)− 1√

n
A◦−1

11.2A
◦
12A

◦−1
22 U

◦
φ(λ, φ) + op(1).

From the above we have

ACov[
√
nT (y; λ̂ψ , ψ),

√
n (λ̂ψ − λ)]

= ACov[
√
nT (y;λ,ψ),

√
n (λ̂ψ − λ)] +B AVar[

√
n (λ̂ψ − λ)]

= E[
√
nT (y;λ,ψ)U◦

λ (λ, φ)′]A◦−1
11.2

−E[
√
nT (y;λ,ψ)U◦

φ(λ, φ)′]A◦−1
22 A

◦
21A

◦−1
11.2 +BA◦−1

11.2 .

Under Assumption IV, we apply the Dominated Convergence Theorem to

obtain
∫

∂

∂λ′
(T (y;λ,ψ)p(y;λ,ψ, φ)) dy =

∂

∂λ′

∫

T (y;λ,ψ)p(y;λ,ψ, φ)dy = 0.

Thus, we have
∫
(

∂

∂λ′
T (y;λ,ψ)

)

p(y;λ,ψ, φ)dy +

∫

T (y;λ,ψ)

(

∂

∂λ′
p(y;λ,ψ, φ)

)

dy = 0.

As the second term on the RHS of the above equation is E[T (y;λ,ψ)U◦
λ (λ,ψ)],

it follows that

lim
n→∞

E[T (y;λ,ψ)U◦
λ (λ,ψ)′] = − lim

n→∞
E
[∂T (y;λ,ψ)

∂λ′

]

≡ −B.

Similarly, we have limn→∞E[T (y;λ,ψ)U◦
φ(λ,ψ)′] = −limn→∞E[∂T (y;λ,ψ)/∂φ′ ]

= 0, which shows ACov[
√
nT (y; λ̂ψ , ψ),

√
n (λ̂ψ − λ)] = 0, completing the proof.
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