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Abstract: The effect of measurement error on the performance of two control chart

schemes, derived from the sample generalized variance and an unbiased likelihood

ratio test for monitoring multivariate process variability, is investigated. It is

demonstrated that the performance of the sample generalized variance chart based

on surrogate quality characterisics is not proportionally invariant to changes in the

covariance matrix of the true quality characteristics, even though it is proportion-

ally invariant when no measurement error exists. Further, it is shown that for the

sample generalized variance chart, the power to detect a change in the covariance

matrix under measurement error could be larger than that under no measurement

error. On the other hand, the control chart obtained from the unbiased likelihood

ratio test does not seem to have this undesirable property. For this chart, under

certain assumptions, measurement error results in reduced power to detect changes

in the covariance matrix of the true quality characteristics. Bivariate examples of

both charts are considered to demonstrate the possible scenarios.
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1. Introduction

Many applications in industrial quality control concern the monitoring of

several correlated quality characteristics. Suppose that we can observe a random

sample of p×1 vectors X1, . . . ,Xn, n ≥ p, from a process at regular time intervals.

Here each of the p elements in the vector X represents an observation of one

of p quality characteristics being monitored. From now on we assume that the

Xi, i = 1, . . . , n, follow a p−dimensional normal random vector with mean vector

µx and positive definite covariance matrix Σx.

In practice, the true quality characteristics that we are interested in moni-

toring are not easy to observe, but we instead observe surrogates of them which

are the true quality characteristics plus measurement errors. In the following

discussion, we assume the measurement error model

Yi = Xi + εi, i = 1, . . . , n, (1)
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where εi are p × 1 normal random vectors, independent of the Xi, with mean

vector 0 and known covariance matrix Σε. Here Σε is assumed to be a positive

semidefinite matrix, i.e., some elements of Xi are observed exactly and the rest

are not. It is also assumed that Σε does not change during the monitoring period.

The Yi, usually obtained from some physical measurements, are surrogate quality

characteristics which are independent and identically distributed normal random

vectors with mean vector µx and covariance matrix Σx + Σε. When p = 1,

Kanazuka (1986) used the model at (1) to study the effect of measurement error

on the performance of an X̄ − R chart. Mittag (1995) and Mittag and Stemann

(1998) investigated how the measurement error affects the X̄−S chart under (1).

Linna and Woodall (2001) assumed a linear relationship between the surrogate

and the true quality characteristics to study the effect of measurement error on

the performance of X̄ and S2 charts. As for p ≥ 2, Linna, Woodall and Busby

(2001) considered a multivariate linear relationship between the surrogate and

true quality characteristics to show that the usual χ2 chart is not directionally

invariant to shifts in the mean vector of the true quality characteristics.

In this paper, we consider two control charts derived, respectively, from the

sample generalized variance and an unbiased likelihood ratio test for monitor-

ing multivariate process variability under model (1). The sole purpose is to

study the effect of measurement error on the performance of these two charts

in detecting shifts in the covariance matrix of the true quality characteristics.

It parallels the paper of Linna, Woodall and Busby (2001), who investigated the

performance of multivariate control charts for monitoring the process mean of

the true quality characteristics in the presence of measurement error. As for the

comparison of the signal detecting capability of the sample generalized variance

and the unbiased likelihood ratio test charts for monitoring process variability

when no measurement error exists, one may refer to Chan and Zhang (2001).

The unbiased likelihood ratio test chart usually gives better results, especially

when the determinants of the in-control and out-of-control covariance matrices

are not appreciably different.

It is shown that the sample generalized variance chart based on surrogate

quality characteristics does not possess the property of proportional invariance

with respect to the true quality characteristics. Namely, the power of the sam-

ple generalized variance chart under measurement error is not a function of the

ratio of out-of-control to in-control generalized variances of the true quality char-

acteristics, even though it is when no measurement error exists. Further, for a

given value of the ratio of out-of-control to in-control generalized variances of the

true quality characteristics, the power to dectect shifts in the covariance matrix

of the true quality characteristics in the presence of measurement error could

be larger than that when no measurement error exists. This counter-intuitive
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phenomenon contradicts the perception that measurement error diminishes the

power of control methods to detect process shifts, and indicates that the sample

generalized variance chart is not an appealing control chart scheme for moni-

toring multivariate process variability in the presence of measurement error. As

for the control chart derived from the unbiased likelihood ratio test, measure-

ment error makes the power to detect shifts in the covariance matrix of the true

quality characteristics harder to calculate. When the out-of-control covariance

matrix of the true quality characteristics is proportional to its in-control covari-

ance matrix, or the measurement error covariance matrix is proportional to the

in-control covariance matrix of the true quality characteristics, it is shown that

the power in the presence of measurement error is always less than or equal to

that when no measurement error exists. Two bivariate examples of both control

charts considered in this paper are presented as illustrations.

2. The Sample Generalized Variance Chart

The sample generalized variance chart is a commonly used control chart

for monitoring multivariate process variability. Under the measurement error

model (1), the sample generalized variance is defined by |Sy|, where |Sy| is the

determinant of Sy =
∑n

i=1(Yi − Ȳ )(Yi − Ȳ )′/(n − 1). When the process is in

control, it is assumed that the covariance matrix of Xi, Σx, is Σ0, known. Thus,

after an appropriate transformation, we can take Σ0 = Ip, a p×p identity matrix.

For p = 2, if the covariance matrix of Xi does not change, 2(n−1)(|Sy|/|Σ0+

Σε|)1/2 has a chi-square distribution with 2(n − 2) degrees of freedom (see, for

example, Anderson (1984, p.264). Consequently, the control limits for the |Sy|1/2

chart are

UCL =
|Σ0 + Σε|

1
2

2(n − 1)
χ2

2(n−2), α

2
and LCL =

|Σ0 + Σε|
1
2

2(n − 1)
χ2

2(n−2),1−α

2
, (2)

where χ2
γ,ν represents the upper ν quantile of a χ2

γ distribution. An out-of-control

signal is generated on this chart if the computed value of |Sy|
1
2 falls outside the

interval defined by the UCL and LCL. If the covariance matrix of Xi changes

from Σx = Σ0 to Σx = Σ1, then the probability of a signal on this chart is

Pr

(

|Sy|
1
2 <

|Σ0+Σε|
1
2

2(n−1)
χ2

2(n−2),1−α

2
or |Sy|

1
2 >

|Σ0+Σε|
1
2

2(n−1)
χ2

2(n−2), α

2
|Σx = Σ1

)

= 1−Pr

(

χ2
2(n−2) <

( |Σ1+Σε|
|Σ0+Σε|

)− 1
2
χ2

2(n−2), α

2

)

+Pr

(

χ2
2(n−2) < (

|Σ1+Σε|
|Σ0+Σε|

)−
1
2 χ2

2(n−2),1−α

2

)

. (3)
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For p ≥ 3, if the covariance matrix of Xi does not change, the determinant |Sy| is

distributed as |Σ0+Σε|(
∏p

i=1 χ2
n−i)/(n−1)p, where the p chi-square distributions

in the product are independent. As a result, the usual control limits for the |Sy|
chart are

UCL=E0(|Sy|)+zα

2

√

Var 0(|Sy|) and LCL=E0(|Sy|)−z1−α

2

√

Var 0(|Sy|), (4)

where zν represents the upper ν quantile of a standard normal distribution and

E0(|Sy|) and V ar0(|Sy|) are, respectively, the expectation and variance of |Sy|
when Σx = Σ0,

E0(|Sy|) =
|Σ0 + Σε|

∏p
i=1(n − i)

(n − 1)p
,

Var 0(|Sy|) =
|Σ0 + Σε|2[

∏p
i=1(n − i + 2) −∏p

i=1(n − i)]
∏p

i=1(n − i)

(n − 1)2p
.

Basically, the control limits in (4) are obtained by treating |Sy| as a normal

random variable. Thus, the value of zα

2
is usually taken to be 3 to adopt a six-

sigma length interval. If the covariance matrix of Xi changes from Σx = Σ0 to

Σx = Σ1, the power of the control chart (4) is

Pr

(

|Sy| < E0(|Sy|) − z1−α

2

√

Var 0(|Sy|)

or |Sy| > E0(|Sy|) + zα

2

√

Var 0(|Sy|)|Σx = Σ1

)

= 1−Pr

(

p
∏

i=1

χ2
n−i <

( |Σ1+Σε|
|Σ0+Σε|

)−1{
p
∏

i=1

(n−i)

+zα

2

√

√

√

√

[

p
∏

i=1

(n−i+2)−
p
∏

i=1

(n − i)
]

p
∏

i=1

(n−i)
}

)

+Pr

(

p
∏

i=1

χ2
n−i <

( |Σ1 + Σε|
|Σ0+Σε|

)−1{
p
∏

i=1

(n−i)

−z1−α

2

√

√

√

√

[

p
∏

i=1

(n−i+2)−
p
∏

i=1

(n−i)
]

p
∏

i=1

(n−i)
}

)

. (5)

Note that the signal probabilities in (3) and (5) only depend on, and are

increasing functions of the ratio of, the generalized variances |Σ1 +Σε|/|Σ0 +Σε|.
For convenience, we define

rε =
|Σ1 + Σε|
|Σ0 + Σε|

. (6)
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If there is no measurement error at (1), the ratio rε reduces to r0 = |Σ1|/|Σ0|,
the ratio of the out-of-control to in-control generalized variances of the true
quality characteristics. For a given value of r0, the probability of a signal on
the control chart (2) or (4) is a constant in the absence of measurement error.
In other words, the power of the control chart based on the sample generalized
variance is proportionally invariant to changes in the covariance matrix of the
true quality characteristics when no measurement error exists. One way to assess
the performance of the control chart (2) or (4) under measurement error is to
identify the minimum and maximum values of rε achieved for a given value of
r0. Using these values, one can compute the minimum and maximum signal
probabilities on the control chart to detect changes in the covariance matrix Σx

of a particular quantity.
As shown in the Appendix, for a given value of r0, the value of rε is bounded

below but not above under (1) for any positive definite covariance matrix Σε.
Using this result in the signal probability (3) or (5), one can conclude that for a
given value of r0, the probability of a signal on the control chart (2) or (4) can
be arbitrarily close to 1 for any positive definite Σε. This implies that the prob-
ability of a signal on the control chart (2) or (4) in the presence of measurement
error could be larger than the counterpart probability when no measurement
error exists. However, it is known that the true quality characteristics without
measurement errors contain more precise information about their own covariance
matrix than the surrogate quality characteristics with measurement errors. This
undesirable property reveals that the sample generalized variance chart may not
be suitable for monitoring multivariate process variability when the measurement
error is not negligible. Also note that this unexpected phenomenon of the sample
generalized variance chart in the presence of measurement error does not only
occur for uncorrelated processes, as shown in the following example.

Example 1. Suppose we have (1) with n = 10, p = 2,

Σ0 =

(

5
4 −3

4

−3
4

5
4

)

, Σ1 =

( λ1+λ2
2

λ2−λ1
2

λ2−λ1
2

λ1+λ2
2

)

and Σε =

(

3
2 −1

2

−1
2

3
2

)

,

where λ1 and λ2 are two positive constants satisfying λ1λ2 = 3. Also suppose
that we choose the false alarm rate to be 0.05, yielding an in-control average run
length of 20. Figure 1 represents curves of the power of the sample generalized
variance chart (2) with and without measurement error for this case versus the
value of λ1. Note that the power of the sample generalized variance chart (2)
without measurement error is 0.409 because it only depends on the ratio

r0 =
|Σ1|
|Σ0|

=

|A||
(

λ1 0

0 λ2

)

||A′ |

|A||
(

2 0

0 1
2

)

||A′ |
= λ1λ2 = 3,
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which is a fixed value in λ. Here

A =

(

1√
2

1√
2

− 1√
2

1√
2

)

.

In contrast, the power of the sample generalized variance chart (2) with mea-

surement error only depends on the ratio

rε =
|Σ1 + Σε|
|Σ0 + Σε|

=

|A||
(

λ1 0

0 λ2

)

+

(

2 0

0 1

)

||A′ |

|A||
(

2 0

0 1
2

)

+

(

2 0

0 1

)

||A′ |

=
(2 + λ1)(1 + λ2)

6
=

(2 + λ1)(1 + 3
λ1

)

6
=

λ1

6
+

1

λ1
+

5

6
.

This first decreases and then increases to ∞ in λ1 . As a result, the associated

power first decreases, then increases to 1.

Figure 1. Plot of the power of the control chart (2) with and without mea-
surement error for Example 1 versus the value of λ1 for the case when p = 2.

3. The Likelihood Ratio Test Chart

When no measurement error exists, the control chart based on the likelihood

ratio test for monitoring multivariate process variability is equivalent to repeated

tests of significance of the form H0 : Σx = Σ0 vs. H1 : Σx 6= Σ0. The likelihood

ratio statistic derived from a random sample X1, . . . ,Xn is

Λ(X1, . . . ,Xn) =
( e

n

)
np

2
( |A|
|Σ0|

)
n

2
e−

1
2
tr(Σ−1

0 A),
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where A = (n − 1)Sx, Sx =
∑n

i=1(Xi − X̄)(Xi − X̄)′/(n − 1), and tr is the

trace operator. It is known that the likelihood ratio test based on the statistic

Λ(X1, . . . ,Xn) is not an unbiased test. Sugiura and Nagao (1968) showed that

the modified likelihood ratio test based on the statistic Λ∗(X1, . . . ,Xn), obtained

by substituting n− 1 for the sample size n in Λ(X1, . . . ,Xn), is an unbiased test.

Subsequently, the critical region for the unbiased likelihood ratio test is

{(X1, . . . ,Xn) : Λ∗(X1, . . . ,Xn) < cα}, (7)

where the critical value cα is determined by the significance level α. It is well

known that the power of the test (7) at Σx = Σ1 only depends on the eigenvalues

λ1, · · · , λp of the matrix Σ
−1/2
0 Σ1Σ

−1/2
0 . Nagao (1967) also showed that the power

of the test is a nondecreasing function in |λi − 1|, i = 1, . . . , p. Anderson (1984)

showed that −2 log Λ∗(X1, . . . ,Xn) is asymptotically distributed as χ2
p(p+1)/2.

Consequently, the control limit for the −2 log Λ∗(X1, . . . ,Xn) chart can be taken

as UCL=χ2
p(p+1)/2,α (there is only one control limit). However, it is worth noting

that there is an appreciable discrepancy between the real in-control average run

length and the value of 1/α for the −2 log Λ∗(X1, . . . ,Xn) chart when the sample

size n is not large enough. For any finite sample n, an easy way to accurately

calculate the in-control and out-of-control average run lengths of (7) is to use

Monte-Carlo simulation.

Under (1), the control chart derived from the unbiased likelihood ratio test

to detect changes in Σx is equivalent to repeated tests of significance of the form

H0 : Σy = Σ0 + Σε vs. H1 : Σy 6= Σ0 + Σε. Subsequently, the critical region for

the unbiased likelihood ratio test is given by

{(Y1, . . . , Yn) : Λe(Y1, . . . , Yn) < fα}, (8)

where

Λe(Y1, . . . , Yn) =
( e

n − 1

)

(n−1)p
2
( |B|
|Σ0 + Σε|

)
n−1

2
e−

1
2
tr[(Σ0+Σε)−1B],

B = (n − 1)Sy, and fα is determined by the significance level α. Strictly speak-

ing, the test based on the statistic Λe(Y1, . . . , Yn) for testing H0 : Σy = Σ0 + Σε

vs. H1 : Σy 6= Σ0 + Σε is not a likelihood ratio test under the condition that

Σε is known because the maximum likelihood estimator of Σx under the unre-

stricted parameter space equals Sy − Σε only when Sy − Σε is positive definite

with probability 1 (this is not always true). To avoid complexity and apply

the previous (no measurement error) results to the current situation, in the test

statistic Λe(Y1, . . . , Yn) we always employ the estimator Sy −Σε to estimate Σx.

If the covariance matrix of Xi changes from Σx = Σ0 to Σx = Σ1, transforming to
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Σ
−1/2
0 Y has the matrices Σ0,Σ1, and Σε as I,Σ

−1/2
0 Σ1Σ

−1/2
0 , and Σ

−1/2
0 ΣεΣ

−1/2
0 ,

respectively. Since Σ
−1/2
0 ΣεΣ

−1/2
0 is symmetric and positive semidefinite, there

exists an orthogonal matrix P such that P ′Σ
−1/2
0 ΣεΣ

−1/2
0 P = D, where D =

diag(d1, . . . , dp) is a diagonal matrix with d1 ≥ 0, . . . , dp ≥ 0 the eigenvalues

of Σ
−1/2
0 ΣεΣ

−1/2
0 . Thus, after a further transformation of Y (P

′

Σ
−1/2
0 Y ), the

matrices I,Σ
−1/2
0 Σ1Σ

−1/2
0 , and Σ

−1/2
0 ΣεΣ

−1/2
0 become I, P ′Σ

−1/2
0 Σ1Σ

−1/2
0 P , and

D, respectively. Hence we use I, P ′Σ
−1/2
0 Σ1Σ

−1/2
0 P , and D to represent the

in-control, out-of-control covariance matrices of Xi, and the measurement error
covariance matrix, respectively.

Now, is it possible that at the out-of-control matrix Σx = Σ1 the power of the
test (8) with measurement error be larger than the power of the test (7) without
measurement error, as could happen with the sample generalized variance chart
discussed in Section 2. It turns out that this question is too difficult to answer.
However, under certain assumptions, the power of the test (8) with measurement
error is always less than or equal to the power of the test (7) without measurement
error.

Based on earlier remarks, the power of the test (8) with measurement error

only depends on the eigenvalues of (I+D)−1/2(P ′Σ
−1/2
0 Σ1Σ

−1/2
0 P+D)(I+D)−1/2

after the transformation of Y or, equivalently, (Σ0+Σε)
−1/2(Σ1+Σε)(Σ0+Σε)

−1/2

before the transformation of Y . Under the assumption that P ′Σ
−1/2
0 Σ1Σ

−1/2
0 P is

a diagonal matrix, since the diagonal elements are the eigenvalues of P ′Σ
−1/2
0 Σ1

Σ
−1/2
0 P and the matrices P ′Σ

−1/2
0 Σ1Σ

−1/2
0 P and Σ

−1/2
0 Σ1Σ

−1/2
0 have the same

eigenvalues, we conlude that P ′Σ
−1/2
0 Σ1Σ

−1/2
0 P = diag(λ1, . . . , λp), where λ1, . . .,

λp are the eigenvalues of Σ
−1/2
0 Σ1Σ

−1/2
0 . Subsequently, the matrix

(I + D)−
1
2 (P ′Σ

− 1
2

0 Σ1Σ
− 1

2
0 P + D)(I + D)−

1
2

= (I + D)−
1
2 [diag(λ1, . . . , λp) + D](I + D)−

1
2

= diag
(λ1 + d1

1 + d1
, . . . ,

λp + dp

1 + dp

)

has the eigenvalues (λi + di)/(1 + di), i = 1, . . . , p. Since di ≥ 0, i = 1, . . . , p, we
have

∣

∣

∣

λi + di

1 + di
− 1
∣

∣

∣
=
∣

∣

∣

λi − 1

1 + di

∣

∣

∣
≤ |λi − 1|.

Therefore, based on the result of Nagao (1967), the power of the test (7) at
Σx = Σ1 without measurement error is always greater than or equal to the power
of the test (8) at Σx = Σ1 with measurement error. Note that P ′Σ

−1/2
0 Σ1Σ

−1/2
0 P

is a diagonal matrix if Σ1 = cΣ0, where c > 0 is a constant. Namely, the out-of-
control covariance matrix Σ1 is proportional to its in-control covariance matrix
Σ0.
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As the power of the test (7) at Σx = Σ1 without measurement error only

depends on the eigenvalues of Σ
−1/2
0 Σ1Σ

−1/2
0 , it remains unchanged for any other

form of the out-of-control Σ1 as long as the matrix Σ
−1/2
0 Σ1Σ

−1/2
0 gives the same

set of eigenvalues. On the other hand, the matrix (I+D)−1/2(P ′Σ
−1/2
0 Σ1Σ

−1/2
0 P+

D)(I + D)−1/2 may have a different set of eigenvalues for different forms of the

out-of-control Σ1 although the matrix Σ
−1/2
0 Σ1Σ

−1/2
0 gives the same eigenvalues

λ1, . . . , λp. Therefore, the test (8) with measurement error may give different

power at different forms of the out-of-control Σ1 although the test (7) without

measurement error gives the same power as long as the out-of-control Σ1 has

Σ
−1/2
0 Σ1Σ

−1/2
0 with the same eigenvalues. Now, if the assumption Σε = kΣ0

holds, where k ≥ 0 is a constant, then the matrix D = P ′Σ
−1/2
0 ΣεΣ

−1/2
0 P =

kIp for any orthogonal matrix P . Hence, we can choose an orthogonal ma-

trix P such that P ′Σ
−1/2
0 Σ1Σ

−1/2
0 P = diag(λ1, . . . , λp), where λ1, . . . , λp are

the eigenvalues of Σ
−1/2
0 Σ1Σ

−1/2
0 since the diagonal elements and eigenvalues of

P ′Σ
−1/2
0 Σ1Σ

−1/2
0 P are the same and P ′Σ

−1/2
0 Σ1Σ

−1/2
0 P and Σ

−1/2
0 Σ1Σ

−1/2
0 have

the same eigenvalues. As a result, the matrix (I + D)−1/2(P ′Σ
−1/2
0 Σ1Σ

−1/2
0 P +

D)(I + D)−1/2 = (I + D)−1/2[diag(λ1, . . . , λp) + D](I + D)−1/2 has the eigenval-

ues (λ1 + k)/(1 + k), . . . , (λp + k)/(1 + k). This shows that at any out-of-control

Σ1, as long as the matrix Σ
−1/2
0 Σ1Σ

−1/2
0 gives the same eigenvalues, both the

powers of the test (7) without measurement error and the test (8) with mea-

surement error are constant under the assumption Σε = kΣ0. Further, due to

|(λi + k)/(1 + k) − 1| = |(λi − 1)/(1 + k)| ≤ |λi − 1|, the power of the test (7)

without measurement error is always greater than or equal to the power of the

test (8) with measurement error under this assumption, based on the result of

Nagao (1967).

Example 2. Suppose at (1) that Σ0 = I2,Σ1 = P diag(λ1, λ2)P
′, and Σε =

diag(ν1, ν2), where P is a 2 × 2 orthogonal matrix and λ1, λ2, ν1, and ν2 are

positive constants. Then the power of the test (7) at Σ1 without measurement

error depends on the values of λ1 and λ2, which are the two eigenvalues of

Σ
−1/2
0 Σ1Σ

−1/2
0 for any orthogonal matrix P . It is well known that the 2 × 2

nontrivial orthogonal matrices (up to transposition) are

[

cos θ sin θ

− sin θ cos θ

]

(rotation) and

[

cos θ sin θ

sin θ − cos θ

]

(reflection).

Substitute either of them for P in Σ1 to get

Σ1 =

[

λ1 cos2 θ + λ2 sin2 θ (λ1 − λ2) sin θ cos θ

(λ1 − λ2) sin θ cos θ λ1 sin2 θ + λ2 cos2 θ

]

.
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Subsequently,

(Σ0 + Σε)
− 1

2 (Σ1 + Σε)(Σ0 + Σε)
− 1

2

=

[

1+ν1 0

0 1+ν2

]− 1
2
[

λ1 cos2 θ+λ2 sin2 θ+ν1 (λ1−λ2) sin θ cos θ

(λ1−λ2) sin θ cos θ λ1 sin2 θ+λ2 cos2 θ+ν2

]

×
[

1+ν1 0

0 1+ν2

]− 1
2

=





λ1 cos2 θ+λ2 sin2 θ+ν1
1+ν1

(λ1−λ2) sin θ cos θ√
(1+ν1)(1+ν2)

(λ1−λ2) sin θ cos θ√
(1+ν1)(1+ν2)

λ1 sin2 θ+λ2 cos2 θ+ν2
1+ν2



 .

Hence, the power of the test (8) at Σx = Σ1 with measurement error depends on

the values of λ∗
1 and λ∗

2, which are the eigenvalues of (Σ0 +Σε)
−1/2(Σ1+Σε)(Σ0 +

Σε)
−1/2. Assuming λ1 = 5, λ2 = 4, ν1 = 2, and ν2 = 1.5, in Figure 2 we draw the

curves of |λ∗
1 − 1| and |λ∗

2 − 1| versus the value of θ. From the figure, the values

of |λ∗
1 − 1| and |λ∗

2 − 1| do not increase or decrease simultaneously in θ and this

causes difficulty in evaluating power. However, the values of |λ∗
1 − 1| and |λ∗

2 − 1|
with measurement error are respectively less than the counterparts |λ1 − 1| = 4

and |λ2 − 1| = 3 when no measurement error exists. As a result, at Σx = Σ1, the

power of the test (8) with measurement error is less than the power of the test

(7) without measurement error, based on the result of Nagao (1967).

Figure 2. Plot of the distance of the two eigenvalues λ∗

1
and λ∗

2
of (Σ0 +

Σε)
−

1

2 (Σ1 +Σε)(Σ0 +Σε)
−

1

2 to 1 for Example 2 versus the value of θ for the

case when p = 2.

Remark. In this paper we have not considered the case where the measurement

error covariance matrix also changes during the monitoring period. Such changes

clearly add complexity to the issue of control chart performance. Additionally,
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we have assumed that the in-control covariance matrix of the true quality char-

acteristics is known. In practice, this must be estimated from some preliminary

data. The effect of the estimation of the covariance matrix of the true quality

characteristics will affect the performance of the control chart schemes considered

here.

Appendix

Lemma. Assume that (1) holds. Then, for a given value of r0 = |Σ1|/|Σ0|, the

value of rε = |Σ1 +Σε|/|Σ0 +Σε| is bounded below, but not above, for any positive

definite Σε.

Proof. After an appropriate transformation of Y , we can take Σ0 = I and sup-

pose both Σ1 and Σε are positive definite. Hence, the ratio r0 = |Σ1|/|Σ0| =

|Σ1|. Since Σ1 is positive definite, there exists a nonsingular matrix B such

that B′Σ1B = I. Further, there exists an orthogonal matrix T such that

T ′(B′ΣεB)T = A, where A = diag(a1, . . . , ap) is a diagonal matrix with di-

agonal elements a1 > 0, . . . , ap > 0 as the eigenvalues of B′ΣεB. Note that

|A| =
∏p

i=1 ai = |Σε||B′||B| = |Σε|/|Σ1| is a positive constant for any positive

definite Σε. We have both

|Σ1 + Σε| = |B′−1||B′Σ1B + B′ΣεB||B−1| = |I + B′ΣεB||Σ1|
= |I + T ′B′ΣεBT ||Σ1| = |I + A||Σ1|,

|I + A| = (1 + a1)(1 + a2) · · · (1 + ap)

= a1 · · · ap+(a1 · · · ap−1+· · ·+a2 · · · ap)+· · ·+(a1+a2+· · ·+ap)+1.

Since for a given value of r0 = |Σ1|, and hence a given positive value of |A| =
∏p

i=1 ai for positive definite Σε, we can choose some ai > 0, 1 ≤ i ≤ p, large and

some aj > 0, 1 ≤ j 6= i ≤ p, small, the determinant |I + A| and hence |Σ1 + Σε|
is not bounded above. Subsequently, for a given value of r0, the ratio rε is not

bounded above for any positive definite Σε. On the other hand, for a given value

of r0 = |Σ1|, it is obvious that the minimum value of rε is at a1 = · · · = ap.
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