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Abstract: Identifying the cognitive capacity used by an animal to resolve its foraging

task when facing ever-changing environmental conditions is a recent, central issue

in behavioral ecology and cognitive science. Statistical confirmation of potential

capacity through analysis of individual behavioral processes becomes an important

research topic. New longitudinal data arisec as a sequence of global quality distri-

butions, representing sparsely observed environmental dynamics. Such dynamics

result from an individual animal’s decision-making process as it explores a patch

that consists of a fixed amount of hosts. Three dynamic rules having distinct de-

grees of cognitive capacities are analyzed under a time-varying Markov structure.

From the perspective of goodness-of-fit, two tests statistics are proposed for cap-

turing different aspects of dynamic changes in the environmental. It is found that

the test that best embraces the concept of distribution via the receiver operating

characteristic (ROC) curve performs quite well.
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1. Introduction

Recent research in interdisciplinary cognitive ecology, emerging from cogni-

tive science and behavioral ecology (Real (1993), Dukas (1998) and Shettleworth

(1998)), is based on the view that an animal’s dynamic behavioral process con-

sists of two interacting mechanisms: information processing and decision-making.

Statistical inference regarding these two mechanisms, based on observed animal

behavioral processes, has become an important. The information processing is

concerned with what kind of information is collected by an animal along its

searching trajectory in an experimental or natural environment, while decision-

making is aimed at how a specific decision is made. Biologically, these two

mechanisms are two inseparable aspects of the animal behavior as a whole-mate

choice, habitat selection, host or diet selection in the field or in the experimental



736 FUSHING HSIEH, SHWU-BIN HORNG, HUI-YING LIN AND YEN-CHIU LAN

study (Luttbeg (1996) and Wiegmann, Real, Capone and Ellner (1996)) and are

central issues in behavioral ecology (Krebs and Kacelnik (1991) and Real (1993)).

The two underlying mechanisms are further interpreted as follows: infor-

mation processing collects and evaluates the “potential” of experienced resource

objects pertaining to a designated biological purpose; decision making is to accept

or reject the currently encountered resource item based on a segment of poten-

tial information stored in the animal’s brain. This interpretation is advocated in

Sherman, Reeve and Pfennig (1997), and applied to mate choice in Getty (1995,

1996). Our discussion in the present paper is based on this interpretation. We

further attempt to quantify the concept of “potential”. While any quantifica-

tion might only reflect a researcher’s subjective biological reasoning, it leads to

goodness-of-fit testing rather than estimation. We focus on the development of

goodness-of-fit testing as a way to confirm individual animal cognitive capacity.

The corresponding capability on the population level is meant to be a summary

of individual-based analysis.

Considers quantitarive “potential” Horng (1997) in the female cowpea weevil,

Callosobruchus maculatus. For an -egg azuki bean, let Si be the probability of

success of one of i eggs laid on the bean. Here the success of an egg is that a

young hatched from this egg goes through several developmental stages within

the bean and merges as an adult beetle. With this definition of success, the

fitness of a bean is taken to be the expected total number of successes of the

its eggs. The potential of an i egg bean as a host to a female cowpea weevil is

defined as the following increment in fitness:

gi = (i + 1)Si+1 − iSi.

That is, gi is the gain of fitness value from one more egg on an i-egg bean. It is

speculated that a female beetle would accept an i egg to lay one more egg with

probability

Pi =
gi

g0
=

[(i + 1)Si+1 − iSi]

S1
.

In a previous experiment, fitness values were empirically observed, see Horng

(1997), and modeled through Si = α(i)−β , with α = S1, and β denoting the

larval competition coefficient. Numerically, α and β were estimated by 0.96

and 0.496, respectively. Thus a female beetle having the capacity of evaluating

the potential of a host bean would accept an i egg bean with probability Pi =

(i + 1)(i + 1)−0.496 − i(i)−0.496 i = 1, 2, 3 . . ., with P0 = 1.

We compare three dynamic rules embedded with different degrees of cognitive

capabilities upon encountering an i egg bean with probability Pi.

1. Random rule (RA): always accept.

2. Absolute rule (AB): accept with probability Pi.
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3. Relative rule (RE): if the previously encountered bean does not have higher

potential, accept this i egg with probability Pi; otherwise, reject.

Apparently these three dynamic rules have increasing cognitive capacity in

the order RA, AB , RE . Heuristically, RA uses neither information processing

nor decision-making capacities. The rule AB is limited to information of the

currently encountered bean. In contrast, RE uses the information of the currently

encountered bean and compares it with that of the previous. The rule does

require memory capacity.

At any point of temporal order of oviposition, a distribution of i egg beans,

i = 0, 1, 2, . . . describing the composition of host quality within an environment

consisting of a fixed number of host beans is called an egg-distribution. Equipped

with a random locomotion algorithm, all three rules RA, AB and RE induce a

specific time-varying Markov transition probability on egg-distributions with the

total number of oviposition as the time scale.

Due to a fixed observation schedule, only longitudinal data of egg-

distributions is available for individual females. Thus, based on each longitudinal

profile, we need to impute all missing segments to compute its corresponding

probability. The likelihood of a dynamic rule contributed by a single female is

equal to the sum of probabilities ranging over all possible trajectories subject to

the given individual longitudinal profile. Algorithmic computational complexity

in such a likelihood reconstruction is similar to that found in applications of the

hidden Markov model.

Comparing the three likelihood values, we can choose the highest among the

three dynamic rules. Such a choice might not be biologically realistic. Hence

an effective goodness-of-fit testing is a necessity. However the egg-distribution

is discrete. Summarizing such data in a scalar is an option we use to carry

out our statistical inferences. Since only one aspect of the distribution data is

brought out by a particular algorithm, and leaves behind many other aspects.

Two summarizations are considered here: error number, previously used in Horng

(1997); area under the receiver operating characteristic (ROC) curve, which has

been widely used in signal detection theory (Hsieh and Turnbull (1996)).

With a chosen summarization algorithm, martingale differences between ob-

served values and conditional expectations under a dynamic rule are natural

ingredients for the goodness-of-fit statistic. Two martingale testing statistics

are derived, and inference is based on the Martingale Central Limit Theorem

(Hall and Heyde (1980)).

As the main goal is to confirm individual cognitive capacity embedded in

observed behavioral process, we mention our biological stand here. The diversity,

of animal behavior is considerable. The variation is itself of great importance
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when evolution via natural selection is invowed. We refrain from making species-

specific conclusions on behavioral traits. In part, this is due to the issue of uneven

information content contributed by different individuals. Technical difficulties are

relecated to the Discussion section. At this stage, how to properly pool individual

data for testing hypotheses at the population level remains an open problem.

The organization of this paper is as follows. In Section 2, experimental and

observational settings are explicitly described. In Section 3 likelihood functions,

as well as conditional expectations under the three dynamic rules, are derived.

Some technical details are given in the Appendix. Two martingale testing statis-

tics are derived and shown to be approximately normal in Section 4. Two sets

of data from experiments reported in Horng (1997) are analyzed in Section 5. In

Section 6, some related issues are discussed.

2. Egg-Distribution Data and Its Conditional Expectation under Dy-

namic Rules

The experimental setting is a Petri dish containing N azuki beans on which

the female beetle carries out its cognitive processing. Beans are assumed to be

indistinguishable from outward appearance, and uniform in quality. At any point

of time, the quality level of a bean is indicated by its egg-load, 0, 1, 2 . . . , in

decreasing favor. As in mate choice, a male have mated once with a female

animal is assumed to have a lower quality than one which has not mated, other

qualities being equal (Gibson and Langen (1996)), and similar assumptions have

seen made in habitat selection studies (Manly, McDonald and Thomas (1993)

and Sutherland (1996)), and in diet selection (Stephens and Krebs (1986) and

Godfray (1994)).

Let x be the total number of egg laid by a female, and ai(x) be the observed

fraction of i-egg beans. Hence, at the time x, the egg-distribution is the vector

a(x) = (a0(x), a1(x), a2(x), . . .) with
∑k

i=0 ai(x) = 1, k some default number.

An individual longitudinal profile is denoted by (a(x1), . . . , a(xn), ) with xi being

the egg number produced by the female up to the i-th observation, with n is the

total number of observations.

With complete random locomotion and a Markov structure, conditional ex-

pectations of the egg-distribution, E[a(x + k)|a(x),H], of a(x + k) given a(x),

under a dynamic rule H ∈ {RA, AB , RE}, are given as follows.

(I) Under RA,

E[a0(x + 1)|a(x), RA] = a0(x) −
a0(x)

N

E[aj(x + 1)|a(x), RA] = aj(x) −
aj(x)

N
+

aj−1(x)

N
, for j = 1, 2, . . . ,
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(II) Under AB ,

E[a0(x+1)|a(x), AB ]=a0(x)−
a0(x)P0

N ·PAB
[a(x)]

E[aj(x+1)|a(x), AB ]=aj(x)−
aj(x)Pj

N ·PAB
[a(x)]

+
aj−1(x)·Pj−1

N ·PAB
[a(x)]

, for j = 1, 2, . . . ,

where PAB
[a(x)] is the acceptance probability per encounter, PAB

[a(x)] =
∑k

i=0 ai(x)Pi. Thus the conditional probability given a(x), under AB , that a

female beetle encounters an i-egg bean and decides to accept it as a host for

oviposition is

Pr(δAB (x + 1) = i|a(x), AB) =
ai(x) · Pi

PAB
[a(x)]

.

This is proved in the Appendix.

(III) Under RE , the probability that a female beetle encounters an i-egg and

decides to accept it is

Pr(δRE (x + 1) = i|a(x), RE) =

1

N − 1

(

N
k
∑

j=i

aj(x) − 1
)

· ai(x) · Pi

PRE
[a(x)]

,

where the acceptance probability per encounter is

PRE
[a(x)] =

1

N − 1

k
∑

i=0

(

N

k
∑

j=i

aj(x) − 1
)

· ai(x) · Pi.

Therefore,

E[a0(x + 1)|a(x), RE ] = a0(x) −
a0(x)P0

PRE
[a(x)]

,

E[aj(x + 1)|a(x), RE ] = aj(x) −

1

N−1

(

N

k
∑

i=j

ai(x) − 1
)

·aj(x)·Pj

PRE
[a(x)]

+

1

N−1

(

k
∑

i=j−1

ai(x)−1
)

·aj−1(x)·Pj−1

PRE
[a(x)]

, for j = 1, 2, . . . .

See the Appendix.
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Note that δRE (x + 1) and δAB (x + 1) are multinomial random variables

with probabilies changing with the cumulative egg number, x, as well as with

the previous egg-distribution. In this sense, both {δRE (x)} and {δAB (x)} are

inhomogeneous discrete-time Markov chains.

Let {a∗(x + 1), a∗(x + 2), . . . , a∗(x + k − 1)} be an unobserved segment of

egg-distribution trajectory leading from observed a(x) to a(x + k). Then

Pr(a∗(x + 1), . . . , a∗(x + k − 1), a∗(x + k)|a(x),H)

=
{

k−1
∏

j=1

Pr
(

a∗(x + j)|a∗(x + j − 1),H
)}

Pr
(

a∗(x + k)|a∗(x + k − 1),H
)

.

Further, let S[a(x) → a(x+k)] be the set of all possible missing segments leading

from a(x) to a(x + k). Then

Pr(a(x + k)|a(x),H)

=
∑

S[a(x)→a(x+k)]

Pr(a∗(x + 1), . . . , a∗(x + k − 1), a∗(x + k)|a(x),H).

Finally, the likelihood function of H ∈ {RA, AB , RE} given the set of resource

quality dispersion (a(x1), . . . a(xn)) is L(H) =
∏n−1

j=0 Pr(a(xj+1)|a(xj),H).

The maximum likelihood choice among H ∈ {RA, AB , RE} can be obtained

by comparing among three values, L(RA), L(AB) and L(RE). Still this choice

could be far from a realistic underlying generating mechanism for the observed

longitudinal profile (a(x1), . . . a(xn)). We turn to goodness-of-fit testing.

3. Martingale Testing Statistics

Given E[a(x + k)|a(x),H], H ∈ {RA, AB , RE}, a component of the vector

of differences between the observed and expected egg-distributions is a(x + k)−

E[a(x+k)|a(x),H]. Under the Markov structure, this component is a martingale

difference, assuming that H is the true dynamic rule. Its vector form prevents

its immediate use in goodness-of-fit testing. We consider two real-valued char-

acterizations of an egg-distribution: one is an error number,and the other is the

area under a receiver operating characteristic (ROC) curve. For the (biological)

error number, superparasitism (laying eggs into parasitized host, or accepting a

1-egg bean) by parasitoids is regarded as a mistake. This consideration was also

used in Horng (1997). The latter number is a popular characteristic for compar-

ing two distributions in signal detection, and is closely related to Mann-Whitney

statistics. See Hsieh and Turnbull (1996) for more details and related asymptotic

developments. It has also been applied to mate choice behavior, see Getty (1995,

1996). Based on the two martingale differences, testing statistics are derived.
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First, based on the idea of optimal foraging theory, the error number per-

taining to an egg-distribution, a(x), is taken to be the minimum number of

actions to remove one egg at a time from one resource item to another in or-

der to achieve a uniform egg-distribution (e.g., Messina and Mitchell (1989) and

Horng (1997)). For instance, there are two mistakes that give rise to an egg-

distribution 20 · a(10) = (12, 6, 2, 0, 0, . . . 0) with N = 20: by removing one egg

from both 2-egg beans in a(10) to two 0-egg-beans, we can arrive at a uniform

egg-distribution (10, 10, 0, . . . 0).

Let ℑ[a(x)] be the error number pertaining to a(x), and denote the increment

of error number from a(xi−1) to a(xi) as ei(xi) = ℑ[a(xui)] − ℑ[a(xi−1)]. Then

the martingale difference related to ei(xi) under the dynamic rule H is

mH
1i = ei(xi) − E[ei(xi)|a(xi−1),H]

and its predictable variation is V H
1i = Var [mH

1i |a(xi−1),H]. By applying the

Martingale Central Limit Theorem, see Hall and Heyde (1980), the statistic

MH
1 =

∑k
i=1 mH

1i

/

√

∑k
i=1 V H

1i is approximately distributed as N(0, 1) under the

hypothesis that H is the true dynamic rule.

The second characterization is the area under a receiver operating charac-

teristic (ROC) curve constructed by comparing the observed egg-distribution to

its corresponding conditional expectation.

The idea is that, under the hypothesis that H is the true dynamic rule used by

the female, the two distributions pertaining to the observed egg-distribution and

its conditional expected egg-distribution should be close to each other. Indeed the

ROC curve is simply the P-P plot of these two distributions on {0, 1, 2, 3, . . . k},

that is, the curve

(

ℓ
∑

j=0

E[aj(xi)|a(xi−1),H],

ℓ
∑

j=0

aj(xi)
)

, ℓ = 0, . . . , k.

Then the martingale difference involving a(xi) is mH
2i = the area under the

above ROC curve −1/2. In fact this area is a linear combination of compo-

nents in the vector of martingale differences a(x + k) − E[a(x + k)|a(x),H].

Correspondingly its predictable variation can be calculated, and is denoted by

V H
2i = Var [mH

2i |a(xi−1),H]. Again, by applying the Martingale Central Limit

Theorem, the testing statistic MH
2 =

∑k
i=1 mH

2i

/

√

∑k
i=1 V H

2i is approximately

distributed as N(0, 1) under the true dynamic rule H.

As far as the technical validity of the martingale central limit theory is

concerned, simulation studies conducted under different dynamic rules show sat-
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isfactory normal approximations in terms of Q-Q plots, see Lin (1998) for more

detail numerical computations.

4. Experimental Settings and Results of Data Analyses

Before describing the experimental setting from which the egg-distribution

data is observed, and our data analyses, a brief descrition of the cowpea wee-

vil, Callosobruchus maculatus, is helpful for understanding the female’s behavior

(e.g., Wilson (1988), Messina and Mitchell (1989), Mitchell (1990), Horng (1997)

and Horng, Lin, Wu and Godfray (1999)). A female beetle is seen uniformly dis-

tributing her eggs on the azuki beans available to her. The functional reason

is to reduce the extent of competition that her young could possibly face. Her

young, after hatching, will break through the surface and eat into the bean. They

remain inside the bean and grow until emerging as adults. A young grown-up

facing less competition in a bean has a higher probability of success. Thus the

capacity of uniformly distributing her eggs is considered as an adaptation to

improve offspring survival, (Mitchell (1975, 1990)), and is also speculated as an

optimization foraging mechanism (Visser (1995)).

Our longitudinal data were collected from two experiments. In the first,

nine l-day-old mated females are placed individually into 5-cm petri dishes, each

containing 100 (= N) azuki beans as resource items. In the second, each of ten

1-day-old females is given 20(= N) azuki beans. All petri dishes are placed inside

an incubator with no light, under constant temperature and humidity. On a fixed

schedule, in every 24 hour period for 7 (= m) days, petri dishes are out of the

incubator for a short time and egg-dispersion is recorded.

Table 1. Likelihood of the three dynamic rules.

Bean number = 20 Bean number = 100

Beetle # Random Absolute Relative Beetle # Random Absolute Relative

1 3.50E-12 3.32E-10 8.45E-04 1 3.70E-12 8.50E-06 8.45E-04

2 4.73E-12 2.50E-08 2.34E-06 2 6.20E-12 1.30E-06 8.37E-06

3 5.45E-16 1.85E-10 6.33E-07 3 1.30E-04 1.00E-02 8.60E-02

4 1.99E-12 2.63E-10 1.04E-06 4 3.50E-13 1.80E-06 8.90E-04

5 1.85E-16 3.53E-12 1.06E-09 5 2.00E-09 9.40E-07 2.45E-08

6 2.91E-13 6.86E-10 1.60E-10 6 9.30E-12 3.70E-08 6.35E-10

7 7.00E-14 8.48E-10 6.21E-06 7 1.30E-11 1.20E-06 4.75E-06

8 2.84E-11 6.58E-08 3.32E-05 8 5.20E-09 2.30E-06 0

9 9.17E-13 3.78E-09 1.19E-06 9 8.40E-10 1.30E-06 5.18E-06

10 3.29E-15 2.22E-11 5.26E-11

Based on individual egg-distribution profiles, our longitudinal data analyses

are reported as follows. In Table 1, the individual likelihood value of each rule is

reported for both experiments. From the experiment with 20 beans, except for
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the #6 female, the other female beetles have the relative rule RE as the MLE

choice. The #10 female is not decisive. In contrast, in the experiment with 100

beans, the #5, #6 and #8 females’ MLE choice is the absolute rule AB, while

the other six have the relative rule RE as the ML choice. An experimental factor

is speculated for this discordance in the last section. The random rule is not

likely the dynamic rule used by any female bean weevil.

In Table 2, the test statistics M1 and M2 are calculated for the experiment

with 20 beans; Table 3 does the same for 100 beans. From Table 2, by setting

the nominal level to 0.05, M1 and M2 indicate that all ten females reject the

random rule RA. The absolute rule AB is rejected by all beetles based on M1

values, but not rejected by M2 on the #2, #6, #9, and #10 female beetles. The

relative rule RE is rejected by M1 on the #3 female, and by M2 on two females

(#6 and #10).

We conclude that, except for the #6 and #10 females, the relative rule bet

fits the strategy used by female cowpea weevils. The testing statistic M1 is

not reliable to use for the particular purpose considered here, since it produces

inconsistent results.

In Table 3, the results for M2 are in complete agreement with that in Table

1, with the #5, #6 and #8 beetles rejecting the relative rule and infavor of the

absolute rule. The absolute rule is not rejected by M1 for #3, #5, #8, and #9

females. This does not quite match with that of in Table 1. The disagreement

further indicates that the error number used in M1 might not be a good choice

for summarizing egg-distributions.

In summary, M2 provides a more reliable goodness-of-fit testing result than

M1. However, research effort could be more conclusive about individual female

cognitive capacity.

Table 2. M1 and M2 martingale testing statistics for an experiment with 20 beans.

Random Absolute Relative

Beetle # M1 M2 M1 M2 M1 M2

1 -3.28 -2.10 -1.85 -1.60 -0.17 -0.049

2 -3.72 -2.12 -2.39 -1.28 -0.55 0.66

3 -4.16 -2.44 -3.16 -1.76 -1.74 -0.45

4 4.19 -2.59 -3.16 -1.87 -1.22 0.13

5 -3.68 -2.58 -2.63 -1.87 -1.24 0.12

6 -3.76 -1.72 -2.30 -0.85 -0.38 1.70

7 -4.10 -1.57 -2.75 -1.76 -1.40 0.22

8 -3.88 -2.34 -2.38 -1.73 -0.53 -0.12

9 -3.43 -2.25 -2.04 -1.57 -0.60 -0.42

10 -3.41 -1.84 -2.70 -0.92 -0.37 1.64
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Table 3. M1 and M2 martingale testing statistics for an experiment with 100 beans.

Random Absolute Relative

Beetle # M1 M2 M1 M2 M1 M2

1 -5.54 -4.24 -2.80 -2.23 -0.86 -0.32

2 -4.89 -3.96 -1.93 -1.68 0.31 0.77

3 -2.91 -2.60 -1.67 -1.50 -0.27 -0.22

4 -5.88 -4.71 -3.14 -2.78 -1.31 -0.12

5 -3.16 -2.79 -0.06 -0.27 2.99 3.31

6 -4.74 -3.38 -1.94 -1.02 0.24 1.72

7 -4.79 -3.89 -1.90 -1.60 0.32 0.69

8 -3.36 -2.51 -1.11 -0.47 -1.29 2.30

9 -3.63 -3.66 -0.72 -1.51 1.74 0.86

5. Discussion

Our tests should have a wide spectrum of applicability in animal cognitive

research. Advances in understanding genetic mechanisms responsible for cogni-

tive capacity can be most likely achieved by comparing genetic make-up among

different strains of varying capacities. Our techniques have potential for such

kind of individual selection in the process of strain construction.

An important issue is how to effectively extract pertinent information from

an egg-distribution to confirm a specific cognitive capacity. Only when such

information is available, can an efficient test be derived for the biological goal. We

believe the information extracted via the ROC curve to be a good choice. For one,

its linearity renders simpler conditions for the Martingale Central Limit Theorem

to hold. Hence the finite sample approximate normality of M2 is expected to be

reasonable.

We emphasize that our goodness-of-fit testing is performed on an individual

basis, rather than pooling across individuals, since it is unrealistic to assume ho-

mogeneous cognitive performance across any population. From an evolutionary

perspective, the intra-population variability is the basis for evolution via natural

selection (see Lomnicki (1988)). From a theory of life history perspective, beetles

might have quite heterogeneous energy and protein reserve at maturity. These

varying resources could profoundly affect the cognitive processing undertaken by

a female beetle acting as a “decision maker” (see Krebs and Kacelnik (1991)).

From an information perspective, it is necessary to differentiate the amount of

information contributed by each individual’s egg-distribution profile. Heuristi-

cally, the amount of information might be measured by the total predictable

variation of the martingale test statistics. The pertinent inferences on a popula-

tion level must be derived in a form of weighted average. At this stage, a rigorous

treatment on this issue is not yet been carried out.
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Though estimation problems are not considered here, our martingale setups

can be used as to construct estimating equations for the Pi. Also, our model

setting can be further relaxed to allow a wider spectrum of applicability of our

techniques. For example, resource items like prey or diet can be removed from

the foraging region, instead of being depleted. Then the time-varying charac-

teristics pertaining to quality distribution and the probability of encountering

the remaining items must be incorporated into a model for evaluations of animal

cognitive performance.

Finally we discuss the slight discordance of results from the 20- and 100-bean

experiments on 5-cm Petri dishes as exhibited in Tables 1, 2 and 3. There is a

geometric difference in the display of host beans on the Petri dishes: 20 beans

contained in 5-cm petri dish forms a single layer on the dish floor, while l00

beans form two layers. This double layer structure ensures that a female beetle

in 100-bean setting requires maleessain to explore the bottom layer of beans.

Hence the encountering probability among the 100 beans is inhomogeneous, and

renders less uniform egg-distribution.

To go further, a separate experiment was conducted with 100 beans placed

in a 9-cm, instead of a 5-cm, petri dish. Here 100 beans form a single layer

on the bottom floor of the dish. As reported in Table 4, the data analysis

based on longitudinal egg-distribution profiles from the new setting shows good

agreement with that of the 20-bean experiment. We conclude that most of female

cowpea weevils not only collect information about the currently encountered

bean, but also about the previous one. The decision-making mechanism must

involve performing comparisons of current with previous information.

Also it is of importance that information collected by an animal might be

sensitive to the geometric display of resource objects in an experimental or nat-

ural environment upon which animal forages.

Table 4. Likelihood of the three dynamic rules when the female was provided

with 100 azuki beans in a large petri dish.

# of female Random Absolute Relative

#1 2.17E-29 3.36E-16 1.48E-11

#2 4.25E-35 3.89E-20 5.83E-15

#3 3.32E-29 2.64E-16 1.38E-11

#4 3.31E-31 1.73E-16 4.24E-12

#5 5.94E-17 2.71E-08 6.68E-06

#6 9.10E-26 3.03E-13 1.93E-09

#7 1.46E-27 4.23E-14 3.82E-09

#8 1.00E-30 3.90E-17 4.34E-12

#9 1.48E-14 5.40E-08 9.85E-07

#10 9.41E-25 8.73E-13 1.88E-09
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Appendix

In this Appendix, we derive the probability of laying an egg on a i-egg bean

given the egg-distribution a(x) and the dynamic rule AB or RE . Here the relative

rule RE is assumed to involve a without-replacement sampling mechanism within

the decision-making comparison. That is, an immediate revisit of a bean, which

has just been visited, is not allowed. Such a constraint is not used between deci-

sions partly due to the missing trajectory, and partly for computation simplicity.

Indeed this constraint is a matter of choice. Likewise, similar formula can be

derived by using random sampling with replacement within the decision-making

comparison.

(I) For AB:

Pr(δAB (x + 1) = i|a(x), AB)

= ai(x)Pi+
{

k
∑

j=0

aj(x)(1−Pj)
}

ai(x)Pi+
{

k
∑

j=0

aj(x)(1−Pj)
}2

ai(x)Pi+· · ·

=
ai(x) · Pi

1 −

k
∑

j=0

aj(x) · (1 − Pj)

=
ai(x) · pi

PAB
[a(x)]

.

(II) For RE :

Pr(δRE (x + 1) = i|a(x), RE)

=
1

N − 1

(

N

k
∑

j=i

aj(x) − 1
)

ai(x)Pi

+
( 1

N−1

)2
{

k
∑

j=0

aℓ(x)−1)aj(x)(1−Pj)+

k
∑

j=0

(

N

j−1
∑

ℓ=0

aℓ(x)−1
)

aj(x)

}

×

(

(

N

k
∑

j=i

aj(x) − 1
)

ai(x)Pi

)

+
( 1

N − 1

)3
{

k
∑

j=0

aℓ(x) − 1)aj(x)(1 − Pj) +

k
∑

j=0

(

N

j−1
∑

ℓ=0

aℓ(x) − 1
)

aj(x)

}2

×

(

(

N

k
∑

j=i

aj(x) − 1
)

ai(x)Pi

)

+ · · ·
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=

1

N−1

(

N

k
∑

j=i

aj(x)−1
)

ai(x)Pi

1−

{

1

N−1

k
∑

j=0

(

N

k
∑

ℓ=j

aℓ(x)−1
)

aj(x)(1−Pj)+
1

N−1

k
∑

j=0

(

N

j−1
∑

ℓ=0

aℓ(x)−1
)

aj(x)

}

=

(

N

k
∑

j=i

aj(x) − 1
)

ai(x)Pi

k
∑

j=0

(

N
k
∑

ℓ=j

aℓ(x) − 1
)

aj(x)Pj

=

1

N − 1

(

N

k
∑

j=i

aj(x) − 1
)

ai(x)Pi

PRE
[a(x)]

.
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