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Abstract: Given a renewal process {Sn}n≥1 and a fixed terminal time T > 0, we

want to find a strategy that maximizes the probability of stopping, without recall,

at the last renewal up to T . We give a simple criterion to guarantee that the

optimal strategy is of threshold type. This simple criterion is applied to several

cases, including a problem of optimal stopping on patterns discussed in Bruss and

Louchard (2003).
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1. Introduction

Suppose we hold some stocks and we want to sell them within a fixed time

interval I. It is desirable to sell the stocks at a point in time when the price

is the largest seen by then (we say that a record price appears). Therefore,

when a record price appears, we may sell the stocks or hold them to wait for

the next record price (at the risk of seeing no new record price). Best of all,

we could sell the stocks at the point of time when the last record price appears

(within the time interval I). Problems of selecting the last event up to some fixed

time in a stochastic process have attracted several author’s attention, for ex-

ample Bruss (2000), Bruss and Paindaveine (2000), Hsiau and Yang (2002) and

Bruss and Louchard (2003). These papers considered problems of selecting the

last event in independent or Markovian Bernoulli sequences with finite horizon.

In their results, the optimal strategies are of threshold type except for a curious

solution of nonthreshold type in Hsiau and Yang (2002). Here we consider the

same kind of problem in a renewal process.

Let X1,X2, . . . be a sequence of nonnegative independent random variables

with a common distribution F satisfying F (0) < 1. Let Sn =
∑n

i=1 Xi for n ≥ 1.

In the terminology of renewal theory, we call Sn the time of the nth renewal

and X1,X2, . . . the interarrival times. Let T > 0 be a fixed terminal time. We

want to find an optimal strategy that maximizes the probability of stopping,

without recall, at the last renewal up to T in observing the sequence S1, S2, . . ..
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In Chow, Robbins and Siegmund (1971), many useful techniques for solving this

kind of problem were developed. Using their terminology, our problem can be

formulated as follows. For each n ≥ 1, let Fn = σ(S1, . . . , Sn) be the σ-field

generated by S1, . . . , Sn and C the class of all finite stopping times adapted to

{Fn}n≥1. We want to find a stopping time τT ∈ C such that P (SτT
≤ T <

SτT +1) = supτ∈C P (Sτ ≤ T < Sτ+1).

For each n ≥ 1, define the reward function

Yn = E(I{Sn≤T<Sn+1}|Fn), (1.1)

the conditional probability of Sn being the last renewal up to T , given the obser-

vation S1, . . . , Sn. Here we note that Yn is Fn-measurable and, for any stopping

time τ ∈ C, we have

E(Yτ ) =
∞∑

n=1

E(Yτ |τ = n) · P (τ = n)

=

∞∑
n=1

E(Yn|τ = n) · P (τ = n)

=

∞∑
n=1

E(I{Sn≤T<Sn+1}|τ = n) · P (τ = n)

=

∞∑
n=1

E(I{Sτ≤T<Sτ+1}|τ = n) · P (τ = n)

= E(I{Sτ≤T<Sτ+1})

= P (Sτ ≤ T < Sτ+1).

Therefore, the original problem is equivalent to finding a stopping time τT ∈ C

such that E(YτT
) = supτ∈C E(Yτ ).

2. Monotone Cases and the First Threshold

Generally speaking, it is not easy to describe the optimal stopping rule ex-

plicitly. However, if we are in the so-called monotone case, a notion due to

Chow and Robbins (1961), then the optimal stopping rule can be described in a

better way. To begin put

An = {E(Yn+1|Fn) ≤ Yn}, n = 1, 2, . . . . (2.1)

We say that we are in the monotone case if

A1 ⊂ A2 ⊂ . . . and P (∪∞
n=1An) = 1. (2.2)
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When (2.2) holds, we have the important stopping rule

σ̃ = first n ≥ 1 such that Yn ≥ E(Yn+1|Fn). (2.3)

Theorem A. In the monotone case, if

lim inf
n

∫
{σ̃>n}

Y +
n = 0 (2.4)

holds, then E(Xσ̃) ≥ E(Xτ ) for all τ ∈ C for which

lim inf
n

∫
{τ>n}

Y −
n = 0. (2.5)

In our problem, since Yn ≥ 0, (2.5) clearly holds for all τ ∈ C. Moreover,

since |Yn| ≤ 1 and Yn → 0 a.s. by the fact Sn → ∞ a.s., we have limn→∞

∫
|Yn| =

0 by the Dominated Convergence Theorem, and this implies (2.4). Thus if we are

in the monotone case, the stopping rule σ̃ at (2.3) is indeed an optimal stopping

rule. Next we want to find the value of T such that we are in the monotone case.

In view of (1.1), for 0 ≤ x ≤ T , on {Sn = x} we have

Yn = E(I{Sn≤T<Sn+1}|Sn = x)

= E(I{Xn+1>T−x}|Sn = x)

= P (Xn+1 > T − x) = 1 − F (T − x),

E(Yn+1|Fn) = E(I{Sn+1≤T<Sn+2} | Sn = x)

= P (Xn+1 ≤ T − x < Xn+1 + Xn+2)

= P (S1 ≤ T − x < S2)

= P (S1 ≤ T − x) − P (S2 ≤ T − x)

= F (T − x) − F2(T − x),

where F2(t) ≡ F ∗ F (t), the convolution of two F ’s. For x > T , on {Sn = x} we

have Yn = E(Yn+1|Fn) = 0. Therefore, in view of (2.1) and (2.2), we are in the

monotone case if 1−F (T −x) ≥ F (T −x)−F2(T −x) holds for all 0 ≤ x ≤ T . Let

H(t) = 1− 2F (t) + F2(t) for t ≥ 0, then the above criterion is equivalent to that

H(t) ≥ 0 for all 0 ≤ t < T . Since F (t) and F2(t) both are right continuous, so is

H(t). Moreover, H(0) = 1−2F (0)+F2(0) = 1−2F (0)+F 2(0) = [1−F (0)]2 > 0.

Thus there exists a largest T1 > 0 (T1 may be ∞) such that H(t) ≥ 0 holds for

all 0 ≤ t < T1. We call T1 the first threshold.

From the above discussion, we see that if T < T1, then we are in the monotone

case and the stopping rule σ̃ defined by (2.3) is an optimal stopping rule, which
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tells us to stop at the first renewal, S1. For T ≥ T1, we may not be in the

monotone case, but we also can say something important. In fact, if S1, . . . , Sn

have been observed and T − Sn < T1, then the optimal strategy is just to stop

at Sn. This is because, given S1, . . . , Sn satisfying T − Sn < T1, the optimal

strategy just depends on T − Sn, and at the moment we are in the monotone

case. From now on, the statement “we are on the time t” means that S1, . . . , Sn

have been observed and T − Sn = t. With this convention, we can summarize

the above discussion as follows.

Theorem 2.1. If we are on the time t with t < T1, then the optimal strategy is

to stop at the present renewal.

In the following, we need the notation Ts = sup{ t | F (t) < 1 }. Note that

if Ts < ∞ then F (Ts) = 1, since F is a right continuous function. Moreover, in

this case it is clear that F2(Ts) < 1 and thus H(Ts) = 1 − 2F (Ts) + F2(Ts) =

−1 + F2(Ts) < 0, which implies that Ts ≥ T1 by the definition of T1. Hence

Ts ≥ T1 always holds whether Ts < ∞ or Ts = ∞.

Though the first threshold exists, the optimal stopping rule τT may not be

of threshold type (see Example 3.1.). However, if 1 − F (t) < F (t) − F2(t), i.e.,

H(t) < 0 holds whenever Ts > t > T1, then the optimal stopping rule possesses

the property: If we are on the time t with t > T1, then the next renewal needs

to be observed. This property is verified if we can find a better strategy than

stopping at the present renewal. In fact, if ∞ > t ≥ Ts, observing the next

renewal is better than stopping at the present one because the present renewal

is not the last one up to T (by the definition of Ts). If Ts > t > T1, stopping

at the next renewal has the expected reward F (t) − F2(t), which is larger than

the expected reward 1 − F (t) gained by stopping at the present renewal. As for

the case that t = T1, the optimal stopping rule depends on the value of H(T1).

If H(T1) = 0, then the optimal stopping rule is to stop at the present renewal

when t = T1 (see the Remark below Theorem 2.2); if H(T1) < 0, then the next

renewal has to be observed when t = T1. Here we note that, by the definition of

T1, H(T1) > 0 cannot occur since H(t) is right continuous.

Theorem 2.2. Let T1 be the first threshold. Assume that Ts = T1 or that

H(t) < 0 for all Ts > t > T1. If H(T1) = 0, then the optimal stopping rule

τT can be described as follows: Observe S1, S2, . . . sequentially until the first Sn

satisfying T − Sn ≤ T1, then stop at this Sn; if H(T1) < 0, then τT is the same

as above except that T − Sn ≤ T1 should be replaced by T − Sn < T1.

Remark. If H(T1) = 0, then Yn = E(Yn+1|Fn) on {T − Sn = T1}. Therefore, if

H(T1) = 0 and we are on the time t = T1, both stopping at the present renewal

and stopping at the next renewal have the same expected reward.
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In general, it is not easy to verify the assumption in Theorem 2.2, that is,

either Ts = T1 or H(t) < 0 for all Ts > t > T1. Fortunately, we have a simple

criterion to guarantee this assumption and such a criterion can be applied to

many well-known interarrival time distributions (see Section 3). Before stating

this criterion, we note that 1 − F (t) > 0 for Ts > t > 0, by the definition of Ts.

Theorem 2.3. If (F (t)−F2(t))/(1−F (t)) is nondecreasing in t for Ts > t > 0,

then T1 = sup{ Ts > t > 0 | (F (t) − F2(t))/(1 − F (t)) ≤ 1 }, and either Ts = T1

or H(t) < 0 holds for all Ts > t > T1.

Proof. Since Ts ≥ T1, and 1 − F (t) > 0 for Ts > t > 0, it is easy to see, by

the definition of T1 and the assumption of nondecreasing property of (F (t) −

F2(t))/(1 − F (t)), that

T1 = sup{ Ts > t > 0 | 1 − F (x) ≥ F (x) − F2(x) for all 0 ≤ x ≤ t }

= sup{ Ts > t > 0 |
F (x) − F2(x)

1 − F (x)
≤ 1 for all 0 ≤ x ≤ t }

= sup{ Ts > t > 0 |
F (t) − F2(t)

1 − F (t)
≤ 1 }.

If Ts = T1, there is nothing to prove. If Ts > T1, then we have (F (T1) −

F2(T1))/(1 − F (T1)) ≥ 1 since F and F2 are right continuous and so is (F −

F2)/(1−F ). However, (F (t)−F2(t))/(1−F (t)) is nondecreasing for Ts > t > 0,

thus (F (t)−F2(t))/(1−F (t)) > 1 for all Ts > t > T1, by the above third equality,

and this implies that H(t) < 0 for all Ts > t > T1.

3. Some Applications and an Example

In view of Theorems 2.2 and 2.3, we know that if (F (t)−F2(t))/(1−F (t)) is

nondecreasing in t for Ts > t > 0, then the optimal stopping rule τT is of threshold

type. In the following, we give several applications of this simple criterion.

Application 1. Let 0 < p < 1, and consider the renewal process with interarrival

times that are Geometric with parameter p, F (t) = p
∑[t]

n=1(1− p)n−1 = 1− (1−

p)[t], t ≥ 0, where [t] denotes the greatest integer not greater than t. Then

Ts = ∞ and F2(t) = F ∗ F (t) = p2
∑[t]

n=2(n− 1)(1 − p)n−2 = 1− [t](1 − p)[t]−1 +

([t] − 1)(1 − p)[t]. Thus, for t ≥ 0,

F (t) − F2(t)

1 − F (t)
=

[t]((1 − p)[t]−1 − (1 − p)[t])

(1 − p)[t]
=

p[t]

1 − p
.

It is clear that p[t]/(1− p) is nondecreasing in t for ∞ > t > 0. By Theorem 2.3,

T1 = sup{ ∞ > t > 0 |
F (t) − F2(t)

1 − F (t)
≤ 1}
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= sup{ ∞ > t > 0 |
p[t]

1 − p
≤ 1}

= sup{ ∞ > t > 0 |[t] ≤
1 − p

p
}

= [
1 − p

p
] + 1 = [

1

p
]

and we also have that H(t) < 0 for ∞ > t > [1
p
]. Since

F ([1
p
]) − F2([

1
p
])

1 − F ([1
p
])

=
p[1

p
]

1 − p
> 1,

we have H([1
p
]) < 0. Thus, by Theorem 2.2, the optimal strategy is to observe

S1, S2, . . . until the first Sn satisfying T − Sn < T1, then stop at this Sn.

Application 2. Let λ > 0 and consider the renewal process with interarrival

times that are exponential with parameter λ, F (t) = 1 − e−λt, t ≥ 0. Then

Ts = ∞ and F2(t) = F ∗ F (t) = 1 − e−λt − λte−λt, t ≥ 0. Thus

F (t) − F2(t)

1 − F (t)
=

λte−λt

e−λt
= λt.

Since λt is increasing for ∞ > t > 0, we have by Theorem 2.3,

T1 = sup{ t |
F (t) − F2(t)

1 − F (t)
≤ 1 } = sup{ t | λt ≤ 1 } =

1

λ

and H(t) < 0 for ∞ > t > 1/λ. Since H(1/λ) = 0, we have, by Theorem 2.2, the

optimal strategy is to observe S1, S2, . . . until the first Sn satisfying T−Sn ≤ 1/λ,

then stop at this Sn.

Remark. The arguments used in the above two examples also work well (but

require some modification) for renewal processes with interarrival times that

are Gamma, Negative binomial, Binomial and Poisson. In other words, for such

renewal processes the optimal strategies are all of threshold type. Here we remind

the readers that in the above two examples the thresholds happen to be about

E(X1).

The last application is to a problem discussed in Bruss and Louchard (2003).

Our version is a modified one.

Application 3. Given an alphabet and a fixed uncorrelated pattern H =

H1H2 · · ·Hl, we observe sequentially the outcome Y1, . . . , Yn of n > l draws

from the alphabet. Whenever H is achieved, we are allowed either to stop or to

continue observing. What strategy maximizes the probability of stopping on the
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very last appearance of H up to Yn? Here Y1, . . . , Yn are assumed to be inde-

pendent with the same distribution over the alphabet. The uncorrelated pattern

H = H1H2 · · ·Hl means that either l = 1 or l ≥ 2 with the property that, for

each k, 1 ≤ k ≤ l, H1H2 · · ·Hl−k+1 does not coincide with HkHk+1 · · ·Hl.

To embed the above problem to our model, we take X1 to be the first i

that makes Yi−l+1Yi−l+2 · · ·Yi coincide with H, that is, X1 is the time when

the pattern H first appears. Similarly, let X2 be the interarrival time between

the first and the second appearances of the pattern H; X3,X4, . . . are defined

sequentially in the same way. Since Y1, Y2, . . . is an i.i.d. sequence and the

pattern H is uncorrelated, X1,X2, . . . is also a positive i.i.d. sequence. Now the

original problem can be reformulated as: Find an optimal strategy to maximize

the probability of stopping at the last renewal in S1, S2, . . . up to T = n.

Let Pi = P (X1 = i), i ≥ 0, and F be the distribution of X1. It is clear

that P0 = P1 = · · · = Pl−1 = 0. Let Pl = p < 1. Since H = H1H2 · · ·Hl is

uncorrelated, for i > l,

Pi = P (H does not appear in Y1Y2 · · ·Yi−l and Yi−l+1Yi−l+2 · · ·Yi = H)

= P (H does not appear in Y1Y2 · · ·Yi−l) · P (Yi−l+1Yi−l+2 · · ·Yi = H)

= [1 − F (i − l)] · Pl = p [1 − F (i − l)]. (3.1)

Next, let F2 = F ∗ F . Then F2(i) =
∑i

j=0 PjF (i − j) for i ≥ 0, and thus

F2(i + 1) − F2(i) =

i+1∑
j=0

Pj · F (i + 1 − j) −

i∑
j=0

Pj · F (i − j)

=

i∑
j=0

Pj [F (i + 1 − j) − F (i − j)] + Pi+1F (0)

=

i∑
j=0

Pj · Pi+1−j ( since F (0) = P0 = 0)

=

i+1−l∑
j=0

Pj · Pi+1−j ( since P0 = P1 = · · · = Pl−1 = 0)

=

i+1−l∑
j=0

Pj · p · [1 − F (i + 1 − j − l)] (Using (3.1) )

= p {

i+1−l∑
j=0

Pj −

i+1−l∑
j=0

Pj · F (i + 1 − j − l)}

= p [F (i + 1 − l) − F2(i + 1 − l)]. (3.2)
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Now we are ready to show that (F (i)−F2(i))/(1−F (i)) is nondecreasing in

i. Since

F (i + 1) − F2(i + 1)

1 − F (i + 1)
−

F (i) − F2(i)

1 − F (i)

=
[F (i + 1) − F (i)][1 − F2(i)] − [F2(i + 1) − F2(i)][1 − F (i)]

[1 − F (i)][1 − F (i + 1)]
,

we see that (F (i + 1)− F2(i + 1))/(1 − F (i + 1)) ≥ (F (i) −F2(i))/(1 − F (i)) if

and only if

[F (i + 1) − F (i)][1 − F2(i)] ≥ [F2(i + 1) − F2(i)][1 − F (i)]. (3.3)

Using (3.1) and (3.2), (3.3) becomes

p [1 − F (i + 1 − l)][1 − F2(i)] ≥ p [F (i + 1 − l) − F2(i + 1 − l)][1 − F (i)]

⇐⇒
1 − F2(i)

1 − F (i)
≥

F (i + 1 − l) − F2(i + 1 − l)

1 − F (i + 1 − l)

⇐⇒ 1 +
F (i) − F2(i)

1 − F (i)
≥

F (i + 1 − l) − F2(i + 1 − l)

1 − F (i + 1 − l)
.

But (F (i) − F2(i))/(1 − F (i)) = 0 for i = 1, . . . , l − 1, and (F (l) − F2(l))/(1 −

F (l)) = p/(1 − p) > 0. By induction, (F (i + 1) − F2(i + 1))/(1 − F (i + 1)) ≥

(F (i)−F2(i))/(1−F (i)) for all i ≥ 0. Hence, the optimal strategy is of threshold

type.

Remark. In Bruss and Louchard (2003), P (Oi = 1) and P (Oi = 0) correspond

to our F (i) − F2(i) and 1 − F (i), respectively. Their Lemma 3.6 says, implicitly

that (F (i)−F2(i))/(1−F (i)) is nondecreasing in i; in fact, both their proof and

ours use the same argument with small changes.

Finally, we construct a simple example in which the optimal strategy is not

of threshold type.

Example 3.1. Let P (X1 = i) = pi with P1 = 3/5, P2 = 1/60, P3 = 1−P1−P2 =

23/60. It is clear that if we are on the time t ≥ 3, then the optimal strategy is

to observe the next renewal. If we are on the time t = 0, the optimal strategy

is, no doubt, to stop at the present renewal. If we are on the time t = 1, the

expected rewards for stopping at the present renewal and the next renewal are

1 − P1 = 2/5 and P1 = 3/5, respectively; thus, the optimal strategy is to stop

at the next renewal. If we are on the time t = 2, then stopping at the present

renewal gets the expected reward 1− P1 − P2 = 23/60, while observing the next

renewal and then adopting the optimal strategy will get the expected reward

P1 · P1 + P2 = 113/300 < 23/60; thus, the optimal strategy is to stop at the

present renewal. Hence, the optimal strategy is not of threshold type.
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