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Abstract: The problem of estimating the log-spectrum of a stationary time series

by Bayesian shrinkage of empirical wavelet coefficients is studied. A model in the

wavelet domain that accounts for distributional properties of the log-periodogram

at levels of fine detail and approximate normality at coarse levels in the wavelet

decomposition, is proposed. The smoothing procedure, called BAMS-LP (Bayesian

Adaptive Multiscale Shrinker of Log-Periodogram), ensures that the reconstructed

log-spectrum is sufficiently noise-free. It is also shown that the resulting Bayes

estimators are asymptotically optimal (in the mean-squared error sense).

Comparisons with non-wavelet and wavelet-non-Bayesian methods are discussed.
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1. Introduction

Any statistical inference in time series can be conducted in time or frequency

domains. The methods are complementary and provide different insights. Spec-

tral analysis and, in particular, estimation of the spectral density is indispensable

for exploring the frequency behavior of a time series.

Wavelet shrinkage methods have successfully been applied to the spectral

density estimation in work of Lumeau, Pesquet, Bercher and Louveau (1993),

Moulin (1994), Gao (1993a,b, 1997) and Walden, Percival and McCoy (1998),

from the classical viewpoint. In this paper we propose a novel wavelet-shrinkage

method, based on an intrinsic shrinkage property of Bayes rules. The proposed

shrinkage rules resulting from hierarchical Bayes statistical models are both re-

alistic, i.e., describe data accurately, and capable of incorporating the available

prior information on smoothness of functions represented by their wavelet coef-

ficients.

Let {Xt, t ∈ Z} be a real, weakly stationary time series with zero mean

and autocovariance function γ(h) = EX(t + h)X(t). An absolutely summable

function γ(·) defined on integers is the autocovariance function of Xt if and only
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if the function

f(ω) =
1

2π

∞
∑

h=−∞
γ(h)e−ihω (1.1)

is non-negative for all ω ∈ [−π, π]. The function f(ω) is called the spectral

density associated with covariance function γ(h). Thus, the spectral density of a

stationary process is a symmetric and non-negative function. Given the spectral

density, the autocovariance function can uniquely be recovered via inverse Fourier

transformation,

γ(h) =

∫ π

−π
f(ω)eihωdω, h = 0,±1,±2, . . . .

In particular, the variance of Xt is γ(0) =
∫ π
−π f(ω)dω.

An important class of stationary processes consists of autoregressive-moving

average ARMA(p, q) processes defined via

φ(B)Xt = θ(B)Zt, {Zt} ∼ WN(0, σ2), (1.2)

where B is the backshift operator, WN(0, σ2) is white noise with variance σ2,

the polynomials φ(z) = 1−φ1z− · · · −φpz
p and θ(z) = 1 + θ1z+ · · ·+ θqz

q have

no common zeroes, and φ(z) has no zeroes in the closed unit circle. The spectral

density of Xt in (1.2) is a rational trigonometric function,

fX(ω) =
σ2

2π

|θ(e−iω)|2
|φ(e−iω)|2 , − π ≤ ω ≤ π. (1.3)

Estimation of spectral density from the observed data is an important

statistical task in geoscience, biometry, medicine, industrial production, etc.,

where information about frequency behavior of some phenomena is essential (e.g.,

Percival and Walden (1993)). Spectral density can be estimated in the time

domain by fitting the polynomials φ(z) and θ(z) in the representation (1.3), or

directly in the frequency domain. It turns out that latter approach is generally

superior (Brockwell and Davis (1991)).

A traditional statistic used as an estimator of the spectral density is the

periodogram I. Based on a sample X1, . . . ,Xn, it is defined as

I(ωj) =
1

2πn

∣

∣

∣

∣

n−1
∑

t=0

Xte
−itωj

∣

∣

∣

∣

2

, (1.4)

where ωj is the Fourier frequency ωj = 2πj
n , j=⌊−n/2⌋+1, . . . ,−1, 0, 1, . . . , [n/2].

Because of the symmetry of I, we will focus only on non-negative Fourier

frequencies, ωj = 2πj/n, j = 0, . . . , ⌊n/2⌋ (= T ).
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For any set of Fourier frequencies ω1, ω2, . . . , ωk such that 0 < ω1 < · · · <
ωk < π, the I(ωi)’s are asymptotically independent exponential random variables
with means f(ωi) and variances (f(ωi))

2, where f is the spectral density. A good
discussion about the subtleties of this approximation can be found in Anderson

(1997). Consequently the periodogram is not a consistent estimator of f and,
citing Wahba (1980), “it will be hopelessly wiggly even when f(ω) is a smooth
function” and n→ ∞.

Smoothing the periodogram will not only help in visually extracting sig-
nificant frequencies, but smoothed periodograms can also be consistent estima-
tors of f . For the standard theory see Brockwell and Davis (1991). There are

several approaches to achieving consistency in the spectral density estimators:
smoothing the periodogram directly via a weighted local average, smoothing
the log-periodogram via traditional regression techniques, Welch’s overlapped
segment averaging (Welch (1967)), maximizing Whittle’s likelihood (or penal-
ized likelihood) of the periodogram (Chow and Grenander (1985) and Pawi-
tan and O’Sullivan (1994)), and the multitaper approach (Riedel and Sidorenko

(1995) and Walden, McCoy and Percival (1995)), to list a few. The literature on
smoothing techniques in spectral density estimation is quite rich, see for exam-
ple Brillinger (1981), Koopmans (1995), Percival and Walden (1993), Priestley
(1981), Shumway and Stoffer (2000), and the numerous references therein.

In this paper we focus on the smoothing of the log-periodogram. Early ref-

erences on utilizing splines and Fourier decomposition of log-periodogram are
Cogburn and Davis (1974) and Wahba (1980). Fan and Kreutzberger (1998) in-
vestigate local polynomial smoothers of log-periodogram, demonstrate the con-
sistency of the local linear estimators, and find the optimal bandwidth. Lee and
Wong (2003) propose disconnected regression splines and a genetic algorithm in
non-parametric smoothing of the log-periodogram.

The idea of using wavelets in smoothing log-periodograms was announced in
Donoho (1993) and fully developed by Gao (1993a,b, 1997). Moulin (1994) ap-
plies saddle point estimation to tail probabilities of distributions of wavelet coeffi-
cients to exhibit thresholds for a log-periodogram. Walden, McCoy and Percival
(1995) and Walden, Percival and McCoy (1998) propose a multitaper spectrum
estimator to address complicated wavelet-based thresholding schemes since the

distribution of the log periodogram is markedly non-Gaussian. The logarithm
of the multitaper estimator is close to Gaussian provided a moderate number of
tapers is used. In contrast to the log periodogram, log multitaper estimates are
not approximately pairwise uncorrelated at the Fourier frequencies, however the
form of the correlation can be accurately and simply approximated.

Bayesian approaches to spectral time series analysis include Choudhuri,

Ghosal and Roy (2004), Gangopadhyay, Mallick and Denison (1998), Müller and
Vidakovic (1999) and Huerta and West (1999), among others.



638 MARIANNA PENSKY, BRANI VIDAKOVIC AND DANIELA DE CANDITIIS

2. Bayesian Model

It is now standard practice in wavelet shrinkage to specify a location model

on the wavelet coefficients, elicit the prior on their locations (the signal part

in wavelet coefficients) and other unknown parameters, exhibit the Bayes es-

timator for the locations and, if the resulting Bayes rules are shrinkage esti-

mators, apply the inverse wavelet transformation to the estimators (see e.g.,

Abramovich, Sapatinas and Silverman (1998), Chipman, Kolaczyk and McCul-

lach (1997), Clyde, Parmigiani and Vidakovic (1998) or Vidakovic (1999)). This

is the core of Bayesian wavelet shrinkage.

It is certainly desirable for selected models to well-describe our empirical

observations, and to perform well in terms of mean square error for the majority

of signals and images. At the same time, in spite of high dimensionality of wavelet

descriptions, the calculational complexity of shrinkage rules should remain low.

Our experience (Vidakovic and Ruggeri (2001)) is that advanced but complicated

models, for which the rules are obtained by, say, extensive MCMC simulations

or genetic algorithms, etc., are seldom accepted by practitioners, despite their

reportedly good performance.

We believe that two desirable goals, simplicity and reality of a model, can be

achieved simultaneously by statistical modeling in the wavelet domain.

As a consequence of the decorrelating property of wavelet transformations,

simple “independence” models that model each coefficient separately are justi-

fied. We adopt a paradigmatic location model in which the empirical wavelet

coefficients of the (shifted) log-periodogram, d, are modeled via a density (likeli-

hood) ζ(d−θ) where θ is the wavelet counterpart of the log-spectrum. The same

model can be used with slight scale modifications implied by the prior on θ, for

all detail coefficients.

We discuss the model building in stages: the likelihood, the prior, the calcula-

tion of the Bayes rule and selection of the hyperparameters. We call the resulting

shrinkage algorithm BAMS-LP (short for Bayesian Adaptive Multiscale Shrinker

of Log-Periodogram).

2.1. Likelihood

Under mild conditions (Brillinger (1981, Theorem 5.2.6)) it holds that

I(ωℓ)
i.i.d.≈ 1

2
f(ωℓ)χ

2
2, (2.1)

where
i.i.d.≈ means “approximately i.i.d.”, for the “inner” non-zero Fourier fre-

quencies ωℓ. For ω = 0 and extreme Fourier frequencies when the sample size n

is even, the right-hand side of (2.1) is f(ω)χ2
1. We ignore this difference since its
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effect is negligible for large n. We also assume that i.i.d. in (2.1) is exact, which

is true for only circulant time series (Harvey (1989)). By taking the logarithm

in (2.1) we obtain a regression formulation (called Wahba’s formulation)

zℓ = ln f(ωℓ) + εℓ, (2.2)

where zℓ =ln I(ωℓ) + γ and γ is the Euler-gamma constant (γ ≈ 0.577126). The

exact distribution of the log-periodogram can be found in Whittwer (1986). In

the interest of practicality, we note that use of ω0 can be problematic if the time

series is centered (mean subtracted). This commonly performed operation has

ln I(ω0) at −∞.

The following lemma describes the distribution of the error term in (2.2).

Assume that, WLOG, sample size n is even and that T = n/2. Because of

subsequent wavelet analysis, we assume that T is power of 2, say T = 2J for

some integer J .

Lemma 2.1. The random variables εl, l = 1, . . . , T − 1 are approximately inde-

pendent, identically distributed with the density

µ(x) = γ∗ exp(x− γ∗ex), (2.3)

where γ∗ = e−γ ≈ 0.546146. Also, Eεl = 0 and Var εl =σ2 =π2/6. The skewness

of ǫ is γ1 =−2ζ(3)/(π2/6)3/2≈−1.14, where ζ is Riemann’s zeta function.

Proof. Easy, as εl − γ
d
= ln(χ2

2/2).

In the wavelet domain (2.2) becomes

d∗ = θ∗ + δ∗, (2.4)

where

d∗ =Wz; z = (z1, z2, . . . , zT );

θ∗ =Wy; y = (ln f(ω1), ln f(ω2), . . . , ln f(ωT ));

δ∗ =Wε; ε = (ε1, ε2, . . . , εT );

and W is an orthogonal matrix of the discrete wavelet transform.

Let J be such that 2J = T . Then vector δ∗ can be represented as

δ∗ = (δ∗0 , δ
∗
0, δ

∗
1, . . . , δ

∗
J−1), (2.5)

where δ∗j = (δ∗j,0, δ
∗
j,1, . . . , δ

∗
j,2j−1

) is the jth sub-vector associated with the multi-

resolution analysis. Here, coefficients δ∗0 of level j = 0 correspond to the smooth

part represented by the scaling function while j = J − 1 is the finest resolution

level. Similarly, d∗ = (d∗0, d
∗
0, d

∗
1, . . . , d

∗
J−1) and θ∗ = (θ∗0, θ

∗
0, θ

∗
1, . . . , θ

∗
J−1).
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The exact distribution for the vector δ∗ can be found, since the transfor-

mation matrix W can be written in an explicit form. By central limit theorem

arguments (see Moulin (1994) and Gao (1993a)) it follows that the density func-

tion of a component δ∗j,k can be well approximated by a mixture

ζj(x) = (1 − λj)η(x) + λjµ(x), (2.6)

where µ(x) is defined in (2.3), η(x) is the normal pdf

η(x) = (σ
√

2π)−1 exp
(−x2

2σ2

)

, (2.7)

and σ2 = π2/6. Here, the λj’s are non-zero at fine resolution levels, and zero at

coarse resolution levels, namely, λj = 0 if j ≤ J0. In theory, we need J−J0 → ∞;

however, in practice, the Central Limit Theorem can be applied for all except a

few of the finest resolution levels.

Representation (2.6) is motivated by the fact that at the coarse resolution

levels δ∗j,k’s are approximately normally distributed, while at the fine resolution

levels they are affected by the p.d.f. µ(x) defined by Lemma 2.1. Since the normal

and µ have similar shapes (see Figure 2.1), approximating the density of δ∗j,k by

the mixture in (2.6) is a simplifying compromise that works well in practice.

Figure 2.1 shows three densities and the histogram. The log-chisquare µ and

the normal η densities are depicted in dotted and dashed lines and their mixture

ζ(x) (solid line) is obtained from (2.6) with weight λ = 0.355, see Table 2.1. The

histogram shows the empirical distribution of wavelet coefficients at the first level

of detail. Wavelet is Coiflet 3 (18 tap filter), and the histogram is based on 214

observations (T = 215). Note quite satisfactory approximation of the histogram

by the mixture.

Table 2.1 provides weights λj for the highest resolution levels. The table

is obtained by matching the skewness of the likelihood mixture (2.6) and the

empirical distributions of δ∗j . The wavelet used was Coiflet 3, but the weights are

quite robust with respect to selection of the wavelet basis. For other standard

bases such as Symmlets and Daubechies’, we noted minor deviations in λj.

Table 2.1. The weights λj in the likelihood approximation (2.6).

Level j λj Level j λj

J − 1 0.355 J − 5 0.060

J − 2 0.179 J − 6 0.045

J − 3 0.127 J − 7 0.025

J − 4 0.092 ≤ J − 8 ≈ 0
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Figure 2.1. The log-chisquare µ and normal η densities (dotted and dashed

lines) and their mixture ζ (solid line) obtained with weight λ = 0.355. The

bar plot is the empirical distribution of wavelet coefficients at the finest level

of detail.

2.2. Prior selection

Since wavelet representations of regular and piecewise-regular functions con-

tain only a few non-negligible coefficients in their expansions, we place the stan-

dardly used Berger-Müller prior on the discrete wavelet coefficient θ∗jk:

θ∗jk ∼ πjδ(0) + (1 − πj)τjξ(τjx), (2.8)

where 0 ≤ πj ≤ 1, δ(0) is a point mass at zero, and the “spread” density ξ(x) is

symmetric and unimodal. We also assume that wavelet coefficients θ∗jk are apriori

independent. Note that majority of priors used previously for Bayesian wavelet

inference follow the model (2.8) (see e.g., Abramovich, Sapatinas and Silverman

(1998), Clyde, Parmigiani and Vidakovic (1998) or Vidakovic (1998)). The fac-

tor πj is the prior probability that a coefficient θ∗jk at level j is zero. In what

follows, however, we impose all conditions on the prior odds ratio:

βj =
πj

1 − πj
. (2.9)

2.3. Bayes rule and BAMS-LP estimator

Our objective is to estimate the location parameter in our model, i.e., the

log-spectral density g(ω) = ln f(ω). Denote the wavelet coefficients of g by θjk,
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so that g can be reconstructed as

g(x) =
1√
π
θ0ϕ
(x

π

)

+
1√
π

∞
∑

j=0

2j−1
∑

k=0

θjkψjk

(x

π

)

, 0 ≤ x < π, (2.10)

with ψjk(x) = 2j/2ψ(2jx − k), θ0 = (
√
π)−1

∫ π
0 ϕ(x/π)g(x)dx and θjk = (

√
π)−1

∫ π
0 ψjk(x/π)g(x)dx. Here ϕ(x) is the scaling function and ψ(x) is the correspond-

ing wavelet function periodized on the interval [0, 1]. Recall that θ∗jk and θjk are

related as θ∗jk ≈
√
Tθjk (see e.g., Vidakovic (1999)). This rescaling is a conse-

quence of changing the domain of the transformed function: θ∗ approximates θ
only when the sampling interval is 1. The relation ≈ in θ∗jk ≈

√
Tθjk can be

replaced by equality only when the wavelet basis is interpolating. The wavelet
bases we used in our simulations, symmlets and coiflets, are close to interpolating.

Let

djk =
d∗jk√
T
, νj =

√
Tτj. (2.11)

Taking into account the relation between θ∗jk and θjk and (2.6)−(2.11), we find
that the posterior pdf of θjk given djk is of the form

P (θjk|djk) =

√
Tζj(

√
T (djk − θjk))νjξ(νjθjk)

∫∞
−∞

√
Tζj(

√
T (djk − x))νjξ(νjx)dx+ βj

√
Tζj(

√
Tdjk)

,

where ζj(x) is defined in (2.6). Choosing the posterior mean as an estimator,

θ̂jk =
(1 − λj)I1(djk) + λjI

∗
1 (djk)

(1 − λj)I0(djk) + λjI
∗
0 (djk) + βj

√
Tζj(

√
Tdjk)

, 0 ≤ j ≤ J − 1, (2.12)

and θ̂jk = 0 for j ≥ J . Here

Ii(d) =

∫ ∞

−∞
xi
√
Tη(

√
T (d− x))νjξ(νjx)dx, i = 0, 1, (2.13)

I∗i (d) =

∫ ∞

−∞
xi
√
Tµ(

√
T (d− x))νjξ(νjx)dx, i = 0, 1, (2.14)

with η(x) and µ(x) given by (2.3) and (2.7), respectively. The shrinkage rule
in (2.12) is shown in Figure 2.2, for some selections of hyper-parameters. The
vertical dotted lines are plotted to emphasize the asymmetry of the rule.

Hence, the BAMS-LP estimator of g is of the form

ĝ(x) =
1√
π
θ̂0ϕ
(x

π

)

+
1√
π

J−1
∑

j=0

2j−1
∑

k=0

θ̂jkψjk

(x

π

)

, (2.15)

where θ̂0 = d∗0/
√
T .
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Figure 2.2. Shrinkage rule in (2.12), BAMS-LP rule, for a selection of hyper-

parameters. The vertical dotted lines are plotted to emphasize the asymme-

try of the rule.

In spite of having seemingly complex form, the estimators θ̂jk are easy to

compute in a number of cases. For example, if the prior pdf ξ(·) is double

exponential, the integrals Ii(d), i = 0, 1, can be expressed in terms of the normal

cdf (see Johnstone and Silverman (2005, Sec. 2.3)). The integrals I∗i (d), i = 0, 1,

can be expressed in terms of incomplete gamma functions γ(α, x) and Γ(α, x)

defined by formula (8.350) of Gradshtein and Ryzhik (1980):

I∗0 (d) = νj exp
(

− νjd+ γ
νj√
T

)

γ
(

1 +
νj√
T
, exp{d

√
T − γ}

)

+νj exp
(

νjd− γ
νj√
T

)

Γ
(

1 − νj√
T
, exp{d

√
T + γ}

)

,

I∗1 (d) = dI∗0 (d) − γ∗νj/
√
T exp(−νjd)

d

ds

[

e(s+1)γγ(s+ 1, e
√

Td−γ)
]

s=
νj
√

T

− exp(νjd)
d

ds

[

e−(s−1)γΓ(−s+ 1, e
√

Td−γ)
]

s=
νj
√

T

.

When ξ(·) is a normal pdf, the values of Ii(d), i = 0, 1, are well known (see

e.g., Abramovich, Sapatinas and Silverman (1998)). It is somewhat harder to

find expressions for functions I∗i (d), i = 0, 1; however, their Fourier transforms

can be written explicitly in terms of gamma functions of complex argument.

To summarize, in a number of cases, one can calculate the values θ̂jk efficiently

without resorting to numerical integration. Our simulations in Section 4 have

been done using the double exponential density.
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3. Minimax Convergence Rates for BAMS-LP estimators

It is well known that no function estimation performs well if the function

to be estimated belongs to an unrestricted function space. Standard restrictions

require the target function to belong to one of a range of smoothness spaces for

which the wavelets are unconditional bases.

In order to assess the error of the BAMS-LP estimator ĝ, we assume that g

belongs to a ball Br
p,q(A) in the Besov space Br

p,q. The Besov ball Br
p,q(A) can

be characterized in terms of wavelet coefficients:

g ∈ Br
p,q(A) ⇐⇒ θ2

0 +

{ ∞
∑

j=0

2
j(r+ 1

2
− 1

p
)q
( 2j−1
∑

k=0

|θjk|p
)

q

p

}
1
q

≤ A. (3.1)

Moreover, it is known (see e.g., Johnstone (2002, Lemma 9.3)) that whenever

g ∈ Br
p,q(A) with r > 1/p we have

2j−1
∑

k=0

θ2
jk ≤

{

B12
−2jr, if p ≥ 2,

B12
−2j(r+ 1

2
− 1

p
)
, if 1 ≥ p < 2,

(3.2)

for some B1 > 0. The cases p ≥ 2 and 1 ≤ p < 2 apply to spatially homogeneous

and nonhomogeneous functions, respectively.

For an estimator g̃ of g based on T observations, we define the mean inte-

grated square error (MISE) over the set F as

R(T, g̃,F) = sup
g∈F

E‖g̃ − g‖2
L2[0,π]. (3.3)

In what follows we establish convergence rates for R(T, ĝ, Br
p,q(A)) as T → ∞,

where ĝ is given by (2.15). Moreover, we show that R(T, ĝ, Br
p,q(A)) could deviate

from the optimal rate O(T−2r/(2r+1)) by just a logarithmic factor.

Although, to the best of our knowledge, no lower bounds for R(T, g̃, Br
p,q(A))

are available in the case of estimation of the log-spectral density, the rate of

O(T−2r/(2r+1)) represents a landmark: Donoho and Johnstone (1998) showed

that when the errors δ∗j,k are independent and normally distributed, T = n, and

g belongs to a ball Br
p,q(A) in the Besov space Br

p,q, then

inf
g̃
R(n, g̃, Bs

p,q(A)) = O
(

n−
2r

2r+1

)

(n→ ∞) (3.4)

provided r > max(0, 1/p− 1/2) and p, q ≥ 1. Since, by (2.6), for the majority of

resolution levels (j ≤ J0), the errors δ∗j,k are close to normal, we can expect to

achieve a convergence rate close to (3.4) as T → ∞ for some choices of ξ in (2.8).
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Note that convergence rate (3.4) cannot be attained by a linear estimator (see

e.g., Mallat (1999)). Linear estimator is known to achieve optimal convergence

rates only in spacially homogeneous Besov spaces (p ≥ 2).

3.1. Asymptotic results

Let the multiresolution analysis generating the scaling function ϕ(x) and a

corresponding wavelet function ψ(x) be s-regular with s ≥ r. Assume that the

spread density component ξ in the prior (2.8) is three times differentiable, at least

in a piecewise sense, has a finite fourth moment, and satisfies the conditions

∣

∣

∣

ξ(k)(x)

ξ(x)

∣

∣

∣
≤ Cξ,1(1 + |x|λ)k, k = 1, 2, 3, λ ≥ 0, (3.5)

Cξ,2 exp(− x2

2σ2
) ≤ ξ(x) ≤ ξ0, (3.6)

for some positive Cξ,1 and Cξ,2. Let also the integrals Ii(d) defined in (2.13) be

such that

∣

∣

∣

I1(d)

I0(d)
− d
∣

∣

∣
= O

( |d|ν2
j

T

)

if
νj√
T

→ 0, νj |d| → ∞, (3.7)

I0(d) ∼ νjξ(νjθ), if
νj√
T

→ 0, νj |d| → ∞. (3.8)

∣

∣

∣

I1(d)

I0(d)

∣

∣

∣
= O

( |d|T
ν2

j

)

if
νj√
T

→ ∞. (3.9)

We let p∗ = min(p, 2),

j0 = (2r + 1)−1 log2 T, jos = 2r[(2r + 1)(2r + 1 − 2

p∗
)]−1 log2 T, (3.10)

J0 =
(1

2
+ r[(2r + 1)(2r + 1 − 2

p∗
)]−1

)

log2 T, (3.11)

r∗ = 1/2
[

(
1

p∗
− 1

2
) +

√

(
1

p∗
− 1

2
)2 + 2(

1

p∗
− 1

2
)
]

,

and assume that

νj = 2µj with µ =















µ1 = r + 1
2 + 1

4 − (2p∗)−1, j ≤ j0,

µ2 = (r + 1
2 − 1

p) + ( r
2 + 1

2 − 1
p)r−1, j0 < j ≤ j∗0 ,

µ3 = r + 1
2 , j > j∗0 ,

(3.12)

β2
j = O

(

2
(4r+1+3( 1

2
− 1

p∗
))j
T− 4r+1

2r+1

)

, if j ≤ j0, (3.13)
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β−2
j = O

(

T
−

1
p− 1

2 +ε

(r+1
2 )(r+1

2− 1
p )
)

, if j0 + 1 ≤ j ≤ j∗0 (3.14)

for some ε > 0.

Theorem 1. Let r > r∗, (3.5)−(3.8), and (3.12)-(3.14) be valid. Then

R(T, ĝ, Br
p,q(A)) = O

(

T− 2r
2r+1 [lnT ]α

)

, T → ∞, (3.15)

where α = 1/(2r + 1) if p ≥ 2 and α = 2r/(2r + 1) if 1 ≤ p < 2. If, moreover,

(3.9) holds and p ≥ 2, then α = 0.

Corollary 1. Let r > r∗ and (3.12)−(3.14) be valid. If ξ is a normal pdf, then

R(T, ĝ, Br
p,q(A)) is of the form (3.15) with α = 0 if p ≥ 2, and α = 2r/(2r+ 1) if

1 ≤ p < 2.

Corollary 2. Let r > r∗ and (3.12)−(3.14) be valid. If ξ is a double-exponential

or a t density, then R(T, ĝ, Br
p,q(A)) is of the form (3.15) with α = 1/(2r + 1) if

p ≥ 2, and α = 2r/(2r + 1) if 1 ≤ p < 2.

Remark 1. Assumptions about νj can be translated to restrictions on τj using
(2.11), namely τ2

j = C12
2µjT−1.

Remark 2. Existence of the fourth moment is a purely technical condition,
used for derivation of asymptotic expansions of the integrals Ii(d), i = 0, 1. This
condition can be dropped and replaced by (6.1)−(6.4) and (6.6)−(6.7).

Remark 3. Condition (3.11) is quite realistic, and agrees with the Central Limit
Theorem. Note that if r > r∗, we have an infinite number,

J − J0 = log2 T (4r2 + 2r(1 − 2

p∗
) + 1 − 2

p∗
)/[(2r + 1)(2r + 1 − 2

p∗
)],

of resolution levels until the Central Limit Theorem takes over. In practice, the
normality assumption can be verified via level-by-level testing.

Remark 4. Corollaries 1 and 2 show that the estimator achieves the optimal
convergence rate exactly if the prior distribution is normal and p ≥ 2, and up to a
logarithmic factor otherwise. This does not contradict Johnstone and Silverman
(2004, 2005) who studied adaptive empirical Bayes estimators that were mainly
based on the posterior median. Johnstone and Silverman (2004, 2005) showed
that when the errors are normally distributed and priors are heavy-tailed, the
convergence rates (3.15) hold for an adaptive estimator (i.e., for r unknown).
Their difficulties with the normal prior are due to adaptivity issues.

4. Simulations and Comparisons

Implementation of the proposed Bayesian wavelet shrinkage can be described
algorithmically. Here is description.
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1. Calculate the log-periodogram of time series at the non-negative Fourier fre-

quencies. To avoid boundary effects, the log-periodogram sequence is extended

over the boundaries in the mirror-like fashion. The length of the extended se-

quence should be power of 2.

2. Transform the data in the wavelet domain; apply the Bayes shrinkage rule

(2.12) on all detail coefficients.

3. Transform the data back and take the subsequence corresponding to the unex-

tended log periodogram from step 1; to obtain an estimator of the log-spectral

density add the Euler constant γ.

We demonstrate the BAMS-LP on the Sunspot data set. We also briefly re-

view wavelet-based estimator of the log-spectral density GAO, proposed by Gao

(1993b), since the developed Bayesian wavelet shrinkage provides a rationale for

its improvements. Finally, we compare the performance of BAMS-LP to a modifi-

cation of GAO algorithm, and discuss an automatic selection of hyperparameters

in the model. The comparison is done on standardly used ARMA template time

series: MA(4), AR(12), AR(24), MA(15000), that can be found in Wahba (1980),

Gao (1993a,b, 1997), Moulin (1994), Walden, Percival and McCoy (1998), among

others. For MA(4) and AR(12)processes row log-periodograms and the theoret-

ical spectral densities (superimposed in white) are given in Figure 4.1(a, b).
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Figure 4.1. Log-periodogram and theoretical log spectral density of (a) the

MA(4) process Xt = Zt − 0.3Zt−1 − 0.6Zt−2 − 0.3Zt−3 + 0.6Zt−4, and (b)

the AR(12) process Xt = 0.9Xt−4 + 0.7Xt−8 − 0.63Xt−12 + Zt.

4.1. Sunspot data analysis

An application of spectral and log-spectral estimation involves the process-

ing of Wolf’s data set. Although in this situation the statistician does not know
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the “true” signal, the theory developed by solar scientist helps to evaluate per-

formance of the algorithm.

The Sun’s activity peaks every 11 years, creating storms on the surface of

our star that disrupt the Earth’s magnetic field. These “solar hurricanes” can

cause severe problems for electricity transmission systems. An example of the

influence of such periodic activity to everyday life is 1989 power blackout in the

American northeast.

Efforts to monitor the amount and variation of the Sun’s activity by counting

spots on it have a long and rich history. Relatively complete visual estimates of

daily activity date back to 1818, monthly averages can be extrapolated back

to 1749, and estimates of annual values can be similarly determined back to

1700. Although Galileo made observations of sunspot numbers in the early 17th

century, the modern era of sunspot counting began in the mid-1800s with the

research of Bern Observatory director Rudolph Wolf, who introduced what he

called the Universal Sunspot Number as an estimate of the solar activity. The

square root of Wolf’s yearly sunspot numbers are given in Figure 4.2(a), data

from Tong (1996), p.471. Because of wavelet data processing, we selected 256

observations from 1,733 to 1,998. The square root transformation was applied to

symmetrize the Wolf’s counts. The panel (b) in Figure 4.2 shows the BAMS-LP

estimator calculated using Daubechies 16 tap filter.
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Figure 4.2. (a) Square roots of Wolf’s yearly sunspot numbers from 1,732-
1,988 (256 observations); (b) BAMS-LP estimator of the log-spectra. The

frequency ω∗ ≈ 0.58 corresponds to Schwabe’s period of 10.8 (years).

The estimator reveals a peak at frequency ω∗ ≈ 0.58, corresponding to

Schwabe’s cycle that ranges from 9 to 11.5 years, with an average of 2π/0.58 ≈
10.8 years. The Schwabe cycle is the period between two subsequent maxima or

minima of the solar activity, although the solar physicists often think in terms of
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a 22-year magnetic cycle since the sun’s magnetic poles reverse direction every

11 years.

4.2. Gao’s algorithm and its modifications

Motivated by the apparent asymmetry of the Bayes shrinkage rules (Figure

2.2), we propose a modification to Gao’s algorithm. For completeness, a brief

overview of the original Gao’s algorithm (GAO, Gao (1993b)) is provided.

The GAO algorithm for estimating the log-spectral density consists of three

steps. Steps 1 and 3 in GAO and the BAMS-LP algorithm coincide. Step 2’ in

which the shrinkage is applied is as follows:

2’. Apply the soft thresholding rule δs(x, λ) = sign(x)(|x| − λ)+, with threshold

λj,T depending on the level j and sample size T , as follows:

(a) If the shrinkage is applied to the resolution levels of fine detail (j = J −
1, J − 2, . . . ), then the threshold

λj,T = αj ln
T

2
(4.1)

is selected. The typical values of αj , robust for commonly used wavelet

bases such as Coiflets, Daubechies’, and Symmlets, are given in Gao

(1993b).

(b) If the resolution level is coarse, that is, if j ≪ J − 1, then use

λT =

√

2 ln
T

2
· π

2

6
≈
√

3.29 · ln T
2
. (4.2)

The threshold justification is based on the distribution of the error, as in (2.3)

Since Eǫℓ = 0 and V ar ǫℓ = π2/6, the threshold (4.2) is simply the universal

threshold. The noise at fine levels of detail has non-Gaussian character and the

threshold in (4.1) is a result of an analysis of such noise. Details can be found in

Gao (1993b).

Motivated by the fact that the hard-thresholding policy is superior to the

soft in wavelet-smoothing of log-spectral density and by the apparent asymmetry

of the BAMS-LP rule (2.12), a modification of the original Gao’s algorithm is

proposed.

As the asymmetry of the error distribution propagates through the several

fine levels of wavelet decomposition, the Bayes rule is asymmetric and shrinks

the negative values of the error more, as can be concluded from Figure 2.2.

To improve GAO, we propose its asymmetric modification GAOA in which,

at the fine level of detail, the negative threshold λ1 exceeds in absolute value the

positive threshold λ : −λ1 ≥ λ. Simulations show that an appropriate asymmetry

is λ1 = −(1 + ρ)λ, with ρ between 0 and 0.1, and λ as in GAO. The shrinkage
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policy is hard-thresholding. In fact, an extensive simulational study shows that

GAO with a hard thresholding policy consistently outperforms (in terms of overall

MSE) the original GAO algorithm that uses a soft thresholding policy for a

variety of test spectral densities and sample sizes. We also implemented and

tested translation invariant versions of the algorithms BAMS-LP and GAOA,

and found performance comparable to the originally proposed algorithms. The

translation invariant versions produced smoother estimators, however.

4.3. Comparisons

As an illustration of the developed algorithm, we applied the BAMS-LP to

the MA(4) template process, Xt = Zt − 0.3Zt−1 − 0.6Zt−2 − 0.3Zt−3 + 0.6Zt−4.

Panel (a) in Figure 4.3 gives an area of detail. The theoretical log-spectral den-

sity is plotted (dotted line) with its reconstruction by GAOA (dashed line) and

BAMS-LP (solid line); panel (b) gives the qqplot of the residuals of exp{ĝ} in the

BAMS-LP model against the theoretical quantiles of χ2
2 distribution, indicating

excellent distributional compliance of the residuals with theoretical errors. The

sample size was T = 214, and the wavelet used was Coiflet 3(18tap filter).
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Figure 4.3. (a) A detail of a single run of smoothing. (b) The ordered

2I(ω)/ ln(ĝ(ω)) plot against the theoretical χ2
2 quantiles (the QQ-plot of

residuals of the Bayes estimator against χ2
2 quantiles).

We also explored behavior of BAMS-LP and GAOA on several template

spectral densities. For example, the AR(12), AR(24), and MA(15000) result in

challenging log-spectral densities, with several, hard to fit, sharp peaks (Wahba

(1980), Gao (1993a), Moulin (1994) and Walden, Percival and McCoy (1998)).

The AR (12) process is Xt = 0.9Xt−4 +0.8Xt−8 −0.63Xt−12 +Zt; coefficients for
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AR(24) process are given in Gao (1993b); the template MA(15000) process has

θ coefficients θ0 = 1, θ1 = π/4, θk+1 = k−1 sin(πk/2), k = 1, 14999.

Figure 4.4 in Panel (a) shows the BAMS-LP and GAOA estimators of the

template AR(24) spectral density. The theoretical density and the GAOA esti-

mator are displaced vertically to make this figure clearer. Panel (b) compares

BAMS-LP and GAOA estimators on MA(15000).
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Figure 4.4. Log-periodograms of (a) Gao’s AR(24) spectral density and (b)

MA(15000) spectral density. Theoretical log spectral densities are shifted for

+10, BAMS-LP estimator is at the place, and GAOA estimator is shifted

for -10.

The sample size in both cases was T = 214 with the Coiflet 2 (12 tap)

wavelet filter. At this point we note that both estimators, BAMS-LP and

GAOA, are quite biased at high frequencies, say [2.7, π], due to leakage. This is

a common problem for all spectral density estimators based on periodogram

(Brillinger (1981)). Such high frequency biases can be taken care of as in

Walden, Percival and McCoy (1998), and our methodology could, in principle,

be extended to other inconsistent estimators of spectral density, beyond the pe-

riodogram.

For the default selection of parameters, various wavelet bases, and various

sample sizes, the AMSE of BAMS-LP and GAOA is comparable, as can be seen

in Figure 4.5. There we depict boxplots of MSE based on 100 simulations for

BAMB-LP (denoted as B) and GAOA (denoted as G). The sample sizes range

from T = 211 to T = 215 and the Coiflet 2 (12 tap) wavelet filter was used.

Choudhuri, Ghosal and Roy (2004) provide a table of performance of four

competing rules discussed in their paper. All shrinkage methods in their com-

parison are concerned with the smoothing of the periodogram, and although
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BAMS-LP was not designed to estimate the periodogram directly, its exponen-
tial performed comparably to the investigated methods.
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Figure 4.5. For AR(4) and AR(24), boxplots of MSE based on 100 simula-
tions for BAMB-LP (B in graph) and GAOA (G in graph) are plotted. The
sample sizes range from T = 211 to T = 215.

4.4. Selection of hyperparameters

Selection of hyperparameters is critical for the success of BAMS-LP for finite
samples. The selection should be automatic and, although a fine tuning can
better the performance, such automatic selection should perform well for most
log-spectral densities and for all practicable sample sizes.

The implemented selection of hyperparameters β, λ, and ν, for which all the
simulations have been done, is described below.

The hyperparameter βj is an odds ratio of a coefficient from level j being a
priori 0, i.e., βj = πj/(1 − πj). Our proposal is βj = 0.1 + 0.8j/(n − 1), where j
is the level and n− 1 is the index of the finest level. Thus, when going from fine
to coarse levels of details, both βj and πj decrease. This reflects the fact that
more coefficients are a priori zero at fine rather than at the coarse levels, and
this feature contributes to the smooth appearance of the estimator.

The likelihood-mixing coefficients, λj, have been previously discussed and
may be found in Table 2.1.

The hyperparameter νj is proportional to the scale factor τj in the spread
part of the prior (2.8), τjξ(τjθ). We suggest an automatic choice of νj = (1 −
λj)(j + 2). When going from fine to coarse levels, νj will decrease almost as
j, making the prior more spread out at coarse levels, thus allowing for prior
modeling of large coefficients.

The proposal for the hyperparameters is a common sense reflection on how
such parameters should influence the model, but it does not blindly follow the
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large sample choices; in the ordinary analysis of log spectra, the number of levels

in a wavelet decomposition seldom exceeds 20.

5. Conclusions

In this paper a wavelet based smoothing of log periodogram is proposed.

The shrinkage in the wavelet domain is induced by an independence model that

assumes mixture likelihood and standard sparseness prior. The Bayes rules pro-

duces consistent estimator of the log spectral density and the convergence rates

are optimal if the prior is selected in appropriate way.

Motivated by the asymmetry of Bayes rules we propose a modification of

Gao’s algorithm and compare Bayesian shrinkage with the modification.

Matlab routines and scripts used in this paper for shrinkage and figures can

be found at http://www.isye.gatech.edu/∼brani/wavelets.html. The pro-

grams can be freely used and modified. We emphasize that the goal of this paper

is not to provide comprehensive simulations and comparison of BAMS-LP and

the modified GAO estimator with other available estimators, due to theoretical

nature of the paper and space limitations. We hope to present comprehensive

simulations elsewhere.
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Appendix: Proofs

The proof of Theorem 1 is based on the following lemmas.

Lemma 1. If |νjd| is bounded or νj |νjd|λ/
√
T → 0, then as νj/

√
T → 0,

I0(d) = νjξ(νjd)
[

1 +O(T−1ν2
j |νjd|2λ)

]

, (6.1)

I1(d)

I0(d)
= d− νjσ

2

T

ξ′(νjd)

ξ(νjd)

[

1 +O
(ν2

j

T
|νjd|2λ

)]

= d−O
(νj

T
|νjd|λ

)

. (6.2)

If
√
T |d| is bounded or T |d|/νj → 0, then as

√
T/νj → 0,

I0(d) ∼
√
T

σ
√

2π
exp

(

− Td2

2σ2

)[

1 +O
(T 2d2

ν2
j

)]

, (6.3)
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I1(d)

I0(d)
∼ −Td

ν2
j

∫ ∞

−∞
x2ξ(x)dx

[

1 +O
(T 2d2

ν2
j

)]

= O
(T |d|
ν2

j

)

. (6.4)

Proof of Lemma 1. We give the proofs of (6.1) and (6.2); the proofs of (6.3)

and (6.4) are conducted in a similar manner. Change variables y =
√
T (d − x)

in (2.13) and use the Taylor series expansion

Ii(d) =
νj√
T

∫ ∞

−∞

(

d− y√
T

)i exp(−y2

2σ2 )

σ
√

2π
ξ
(

dνj − y
νj√
T

)

dy

=
νj√
T

∫ ∞

−∞

(

d− y√
T

)i exp(−y2

2σ2 )

σ
√

2π

[

ξ(dνj) − y
νj√
T
ξ′(dνj).

+y2
ν2

j

2T
ξ′′(dνj) − y3

ν3
j

6T
√
T
ξ′′′(dνj) + · · ·

]

dy. (6.5)

Integrating in (6.5) with i = 0 and i = 1, we obtain (6.1) and (6.2).

Lemma 2. If
√
T |d| is bounded or ν−1

j

√
T exp(

√
Td) → 0 when T → ∞, then

as T/ν2
j → 0,

I∗0 (d) ∼
√
Tµ(

√
Td)

{

1 +O
( T

ν2
j

[

1 + e2
√

Td
])

}

, (6.6)

I∗1 (d) ∼ −ν−2
j

√
T
[

1 − γ∗e
√

Td
]

∫ ∞

−∞
x2ξ(x)dx

[

1 +O
(T (1 + e2

√
Td)

ν2
j

)]

. (6.7)

Proof of Lemma 2. It is similar to the proof of Lemma 1. Just note that

µ′(x) = µ(x)(1 − γ∗ex).

Lemma 3. Let the pdf of djk given θjk be of the form
√
Tζj(

√
T (djk − θjk))

where ζj(·) is defined at (2.6). Then for any positive a and b as T → ∞,

E(djk − θjk)
2i = O(T−i), i = 1, 2, (6.8)

P (
√
T |djk − θjk| > a

√
lnT ) = o

(

T
−a2

(2σ2)

)

, j < J0, (6.9)

P (|djk − θjk| > a lnT ) = λjO(T−a) + (1 − λj)o(T
−a), (6.10)

P (
√
T (djk − θjk) > a lnT ) = o(T−b). (6.11)

Proof of Lemma 3. The validity of Lemma 3 follow directly from the fact that

(compare with (2.6))

√
T (djk − θjk) ∼ (1 − λj)(

√
2πσ)−1 exp{− x2

(2σ2)
} + λjµ(x). (6.12)



BAYESIAN ESTIMATION OF A LOG-SPECTRAL DENSITY 655

Lemma 4. If ξ(x) is an even unimodal pdf, then

∣

∣

∣

I1(d)

I0(d)

∣

∣

∣
= O(|d|) if

√
T |d| → ∞, (6.13)

∣

∣

∣

I∗1 (d)

I∗0 (d)

∣

∣

∣
= O(|d|) if

νj√
T

→ ∞,
√
T |d| → ∞. (6.14)

Proof of Lemma 4. Using the fact that I0(d) is an even and I1(d) an odd

function of d, we give the proof of (6.13) for d > 0.

Partition I1(d) into I11(d), I12(d) and I13(d), where I1i, i = 1, 2, 3, are the

integrals calculated over the intervals (−d/2, 3d/2), (−∞,−d/2) and (3d/2,∞),

respectively. It is easy to see that |I11(d)/I0(d)| = O(|d|). Let us show that

I12(d)/I0(d) = O(d) since the proof for I13(d) can be conducted in a similar

manner. Making a change of variable x = y − d/2 and taking into account that,

since ξ is symmetric unimodal, ξ(νj(y − d/2)) ≤ ξ(νjy) for y < 0, we find

|I12(d)| ≤
∫ 0

−∞

∣

∣

∣
y − d

2

∣

∣

∣

√
T√

2πσ
e−

T ( 3d
2 −y)2

2σ2 νjξ(νjy)dy

= O
(

e−
5d2T

8σ2 d
)

∫ 0

−∞

√
T√

2πσ
e−

T (d−y)2

2σ2 νjξ(νjy)dy. (6.15)

Here we took into account that T (3d/2 − y)2 − T (d − y)2 = 5Td2/4 − Tyd,

and, for negative y, |y − d/2| exp{Tyd/2σ2} = O(|d|) + O(|Td|−1) = O(|d|) as√
T |d| → ∞. Formula (6.15) implies |I12(d)/I0(d)| = O(|d|).

To prove (6.14), partition the integral I∗1 (d) as I∗11(d), I
∗
12(d) and I∗13(d) where

I∗1i, i = 1, 2, 3, are the integrals calculated over the intervals (−d, d), (−∞,−d)
and (d,∞), respectively. It is easy to see that |I∗11(d)/I∗0 (d)| = O(|d|).

To derive an upper bound for |I∗12(d)/I∗0 (d)|, observe that µ′(z)/µ(z) = 1 −
γ∗ez < −z for z < −2. Therefore, changing variables x = −(z + d) and taking

into account that ξ(·) is even and unimodal, we obtain

|I
∗
12(d)

I∗0 (d)
| ≤

∫∞
0 (z + d)µ(

√
T (z+2d))ξ(νj(z + d))dz

∫∞
0 µ(

√
T (z + d))ξ(νjz)dz

≤
∫∞
0 (z + d)µ(

√
T (z + d))e−dT (z+d)ξ(νjz)dz

∫∞
0 µ(

√
T (z+d))ξ(νjz)dz

= O
(

(dT )−1 + d
)

= O(d).

Finally, in the case of I∗13(d), change variables z = d− x to get

I∗13(d) =

∫ 0

−∞
zµ(

√
Tz)ξ(νj(d− z))dz − d

∫ 0

−∞
µ(
√
Tz)ξ(νj(d− z))dz



656 MARIANNA PENSKY, BRANI VIDAKOVIC AND DANIELA DE CANDITIIS

= I∗131(d) − dI∗132(d), (6.16)

where 0 ≤ I∗132(d) ≤ I∗0 (d). To derive an upper bound for I∗131(d), note that

e−γ∗ ≤ µ(x)/(γ∗ex) < 1 for x < 0, so that we can replace µ(x) by γ∗ex in the

expression for the integral. Then, using integration by parts we arrive at

0 ≤
∫ 0

−∞
(−z)e

√
Tzξ(νj(d− z))dz = T− 1

2

∫ 0

−∞
(−z)ξ(νj(d− z))d(e

√
Tz)

= T− 1
2

∫ 0

−∞
e
√

Tzξ(νj(d− z))dz − νjT
− 1

2

∫ 0

−∞
ze

√
Tzξ′(νj(d− z))dz. (6.17)

Taking into account that both integrals in (6.17) are positive, we obtain

∣

∣

∣

∫ 0

−∞
ze

√
Tzξ(νj(d− z))dz

∣

∣

∣
≤ (

√
T )−1

∫ 0

−∞
e
√

Tzξ(νj(d− z))dz,

which implies that |I∗131(d)/I∗0 (d)| = O(1/
√
T ) = O(|d|).

Lemma 5. If f ∈ Br
p,q(A), then

∑

j

2j−1
∑

k=0

θ2
jk I(

√
T |θjk| ≤ b

√
lnT ) = O

(

T− 2r
2r+1 [lnn]

2r
2r+1

)

,

∑

j

2j−1
∑

k=0

T−1I(
√
T |θjk| > b

√
lnT ) = O

(

T− 2r
2r+1 [lnn]−

p

2

)

.

Proof of Lemma 5. This can be found in Donoho et al. (1996).

Proof of Theorem 1. Since the wavelet basis is orthonormal,

R(T, ĝ, Br
p,q(A)) = E(θ̂0 − θ0)

2 +

J−1
∑

j=0

2j−1
∑

k=0

E(θ̂jk − θjk)
2 +

∞
∑

j=J

2j−1
∑

k=0

θ2
jk. (6.18)

Observe that the first term in (6.18) is O(T−1) while the last term is bounded by

2−2rJA = O(T−2r) due to (3.2), i.e., the main contribution to R(T, ĝ, Br
p,q(A)) is

made by the second term. Divide all resolution levels into the low (0 ≤ j ≤ j0),

the intermediate (j0 + 1 ≤ j ≤ j∗0), the high (j∗0 + 1 ≤ j ≤ J0), and the highest

(J0 +1 ≤ j ≤ J −1), and partition the second sum in (6.18) accordingly into R1,
R2, R3 and R4. Note that in case p ≥ 2, j0 = j∗0 and the intermediate resolution

levels vanish.

Low resolution levels: 0 ≤ j ≤ j0, λj = 0. Let

AjT (d) =
βj

√
Tη(

√
Td)

I0(d)
, (6.19)
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and note that R1 ≤ 2(R11 +R12) where

R11 =

j0
∑

j=0

2j−1
∑

k=0

E
(I1(djk)

I0(djk)
− θjk

)2
, (6.20)

R12 =

j0
∑

j=0

2j−1
∑

k=0

E
(

I1(djk)
I0(djk)

1 +AjT (djk)
AjT (djk)

)2
. (6.21)

To establish an asymptotic upper bound for R11, observe that by the combination

of Lemma 1 and (3.7), as j ≤ j0,

E(
I1(djk)

I0(djk)
− θjk)

2 ≤ 2[E(
I1(djk)

I0(djk)
− djk)

2 + E(djk − θjk)
2]

= O
(

E(
ν4

j d
2
jk

T 2
) +

ν2
j

T 2
+
σ2

T

)

= O
(ν4

j θ
2
jk

T 2
+
ν2

j

T 2
+
σ2

T

)

, (6.22)

so that by (3.2) and the choice of νj,

R11 = O

(

j0
∑

j=0

[

2
−2j(r+ 1

2
− 1

p∗
) ν

4
j

T 2
+ 2j

ν2
j

T 2
+

2j

T

]

)

= O
(

T− 2r
2r+1

)

. (6.23)

To derive an asymptotic expression for R12 note that by (3.8) and Lemma 4,

∣

∣

∣

I1(djk)
I0(djk)

1 +AjT (djk)
− I1(djk)

I0(djk)

∣

∣

∣
= O

(βj |djk|
√
Tη(

√
Tdjk)

I0(djk)

)

= O
(βj |djk|

√
T

νj

)

,

where η(x) is the normal pdf (2.7), so that (3.13) implies that

R12 = O
(

j0
∑

j=0

ν−2
j β2

jT

2j−1
∑

k=0

(θ2
jk + T−1)

)

= O
(

j0
∑

j=0

2−2jµ1β2
j

[

T2
−j(r+ 1

2
− 1

p∗
)
+ 2j

])

= O
(

T− 2r
2r+1

)

. (6.24)

High resolution levels: j∗0+1 ≤ j ≤ J0, λj = 0. Since |θ̂jk| ≤ |I1(djk)/I0(djk)|,
we have

R3 = O

(

J0
∑

j=j∗0+1

2j−1
∑

k=0

[

E
(

θ2
jk +

I1(djk)

I0(djk)

)2]
)

= R31 +R32. (6.25)
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Note that by the choice of j∗0

R31 =

J0
∑

j=j∗0+1

2j−1
∑

k=0

θ2
jk = O

(

T− 2r
2r+1

)

. (6.26)

If (3.9) is valid, then combining Lemma 1 and (3.9), we derive |I1(d)/I0(d)| =

O(
√
T/ν2

j ) +O(|d|T/ν2
j ). Hence,

R32 = O

(

J0
∑

j=j∗0+1

2j−1
∑

k=0

E(
I1(djk)

I0(djk)
)2

)

= O

(

J0
∑

j=j∗0+1

2j−1
∑

k=0

[T 2E(djk − θjk)
2

ν4
j

+
θ2
jkT

2

ν4
j

+
T

ν4
j

]

)

rkr=O
(

T− 2r
2r+1

)

(6.27)

and R3 = O(T−2r/(2r+1)) in this case. If (3.9) does not hold, then divide R32

into two portions:

R321 =

J0
∑

j=j∗0+1

2j−1
∑

k=0

E(
I1(djk)

I0(djk)
)2I(

√
T |θjk| → ∞),

R322 =

J0
∑

j=j∗0+1

2j−1
∑

k=0

E(
I1(djk)

I0(djk)
)2I(

√
T |θjk| ≤M),

where
√
T |θjk| ≤ M means that the

√
T |θjk| are bounded by some constant M .

First consider R321. Note that if the
√
T |djk| are bounded, then by Lemma 1,

|I1(djk)/I0(djk)| = O(ν−2
j

√
T ). Similarly, if

√
T |djk| → ∞, then |I1(djk)/I0(djk)|

= O(|djk|) by Lemma 4. Then we obtain

R321 = O

(

J0
∑

j=j∗0+1

2j−1
∑

k=0

[

E(djk − θjk)
2I(

√
T |θjk| → ∞) +

T

ν4
j

+ θ2
jk

]

)

= O
(

T− 2r
2r+1

)

, (6.28)

since O(T−1) = O(T−1Tθ2
jk/[Tθ

2
jk]) = O(θ2

jk) as
√
T |θjk| → ∞.

Now, represent R322 = R3221 +R3222 with

R3221 =

J0
∑

j=j∗0+1

2j−1
∑

k=0

E
[(I1(djk)

I0(djk)

)2
I(|djk−θjk|

√
T > a

√
lnT )

]

I(
√
T |θjk|≤M),

R3222 =

J0
∑

j=j∗0+1

2j−1
∑

k=0

E
[(I1(djk)

I0(djk)

)2
I(|djk−θjk|

√
T ≤ a

√
lnT )

]

I(
√
T |θjk|≤M),
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where a2 ≥ 4σ2. Then, using (6.8) and (6.9) similarly to (6.28), we arrive at

R3221=O

(

J0
∑

j=j∗0+1

2j−1
∑

k=0

[
√

E(djk−θjk)4
√

P (|djk−θjk|
√
T >a

√
lnT )+θ2

jk+
T

ν4
j

]

)

=O

(

J0
∑

j=j∗0+1

2j−1
∑

k=0

[

T−2+θ2
jk+

T

ν4
j

]

)

=O
(

T− 2r
2r+1

)

, (6.29)

since 2J0 < T .

To derive an asymptotic upper bound for R3222, note that since |θjk|
√
T is

bounded, for some M1 > 0 and large T we have

I(
√
T |θjk|≤M)I(|djk−θjk|

√
T ≤a

√
lnT )

≤I(
√
T |θjk|≤M)I(

√
T |djk|≤2a

√
lnT )

≤I(
√
T |θjk|≤M)

[

I(
√
T |djk|≤2a

√
lnT )I

(

√
T

νj

√
lnT → 0

)

+I
( νj√

T
√

lnT
≤M1

)

]

≤I(
√
T |θjk|≤M)

[

I
(

√
T

νj
(
√
T |djk|) → 0

)

+I
(2j(2r+1)

T (lnT )
≤M1

)

]

. (6.30)

Note that Lemma 1 and
√
Tν−1

j (
√
T |djk|) → 0 imply that

E
(I1(djk)

I0(djk)

)2
= O

(

Tν−4
j (

√
T |djk|)2+θ2

jk

)

= O
(

Tν−4
j +θ2

jk

)

,

since E(Td2
jk) ≤ 2T [E(djk − θjk)

2 + θ2
jk] = O(1). Therefore, the portion of

R3222 corresponding to the fis t term in (6.30) is (T−2r/(2r+1)). By (6.13),

E(I1(djk)/I0(djk))
2 = O(E[djk − θjk]

2 + θ2
jk), so the second term in R3222 is

O

(

J0
∑

j=j∗0+1

2j−1
∑

k=0

[T−1 + θ2
jk]I

[

2j = O(T
1

2r+1 (lnT )
1

2r+1 )
]

)

= O
(

T− 2r
2r+1 (lnT )

1
2r+1

)

.

Consequently,

R3222 = O
(

T− 2r
2r+1 (lnT )

1
2r+1

)

, (6.31)

and formulas (6.28)−(6.31) imply that R3 = O
(

T−2r/(2r+1)(ln T )1/(2r+1)
)

when-

ever (3.9) is invalid.
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Highest resolution levels: J0+1 ≤ j ≤ J−1, λj > 0. To derive an asymptotic
upper bound for R4 note that

|θ̂jk − θjk| ≤ |I1(djk)

I0(djk)
| + |I

∗
1 (djk)

I∗0 (djk)
| + θ2

jk. (6.32)

Hence R4 = O(
∑6

i=1R4i), with

R41 =

J−1
∑

j=J0+1

2j−1
∑

k=0

θ2
jk,

R42 =

J−1
∑

j=J0+1

2j−1
∑

k=0

E
[

[
I1(djk)

I0(djk)
]2 + [I∗1 (djk)/I

∗
0 (djk)]

2
]

I(|θjk|
√
T → ∞),

R43 =

J−1
∑

j=J0+1

2j−1
∑

k=0

E
[

[
I1(djk)

I0(djk)
]2I(|djk − θjk|

√
T > 2 lnT )

]

,

R44 =

J−1
∑

j=J0+1

2j−1
∑

k=0

E
[

[
I1(djk)

I0(djk)
]2I(|djk − θjk|

√
T ≤ 2 lnT )

]

I(
√
T |θjk| ≤M),

R45 =

J−1
∑

j=J0+1

2j−1
∑

k=0

E
[

[
I∗1 (djk)

I∗0 (djk)
]2I((djk − θjk)

√
T > 0.25r lnT )

]

,

R46 =

J−1
∑

j=J0+1

2j−1
∑

k=0

E
[

[
I∗1 (djk)

I∗0 (djk)
]2I((djk−θjk)

√
T ≤0.25r lnT )

]

I(
√
T |θjk|≤M).

Note that similarly to (6.27), R41 = O(T−2r/(2r+1)). Using Lemma 4, we derive
that

R42 = O

(

J−1
∑

j=J0+1

2j−1
∑

k=0

Ed2
jkI(|θjk|

√
T → ∞)

)

= O
(

T− 2r
2r+1

)

(6.33)

by a calculation similar to that at (6.28). Repeating (6.29) with a
√

lnT replaced
with 2 lnT , and using (6.10) instead of (6.9), we obtain R43 =O(2JT−1T−2r/(2r+1))
= O(T−2r/(2r+1)). To find an upper bound for R44, note that I(|djk − θjk|

√
T ≤

2 lnT ) ≤ I(
√
T |djk| ≤ 2 ln T +

√
T |θjk|), and

T (
√
Tdjk)

2

ν2
j

= O
(T ln2 T

ν2
j

)

= O
( T ln2 T

2(2r+1)J0

)

= o(1),

hence Tν−2
j (

√
T |djk|)2 → 0. Consequently, by Lemma 1,

R44 = O

(

J−1
∑

j=J0+1

2j−1
∑

k=0

[

ν−4
j T ln2 T + ν−4

j T
]

)

= O
(

ν−2
j

)

= o(T−1). (6.34)
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To examine R45, use (6.14), repeat (6.29) with a
√

lnT replaced by 0.25r lnT ,

and apply (6.11) instead of (6.9). Hence, R45 = o(T−2r/(2r+1)). Finally, in

the case of R46, note that when
√
T (djk − θjk) < (4r + 1)−1 lnT , we have√

Tν−1
j exp(

√
Tdjk) = o(1). Thus, Lemma 2 is applicable and |I∗1 (djk)/I

∗
0 (djk)| =

O(
√
Tν−2

j [exp(
√
Tdjk)+1]) = O(ν−1

j ), so that R46 = o(T−2r/(2r+1)). Combining

all the R4i-terms together, we arrive at R4 = O(T−2r/(2r+1)).

Intermediate resolution levels: j0 ≤ j ≤ j∗0 , λj = 0, 1 ≤ p < 2. Partition R2

into

R21 =

j∗0
∑

j=j0+1

2j−1
∑

k=0

E(θ̂jk − θjk)
2I
(

|θjk| >
√

lnT√
T

)

,

R22 =

j∗0
∑

j=j0+1

2j−1
∑

k=0

E(θ̂jk − θjk)
2I
(

|θjk| ≤
√

lnT√
T

)

. (6.35)

Then further partition R21, similarly to (6.21), into

R211 =

j0
∑

j=0

2j−1
∑

k=0

E
(I1(djk)

I0(djk)
− θjk

)2
I
(

|θjk| >
√

lnT√
T

)

, (6.36)

R212 =

j0
∑

j=0

2j−1
∑

k=0

E
(AjT (djk)I1(djk)/I0(djk)

1 +AjT (djk)

)2
I
(

|θjk| >
√

lnT√
T

)

. (6.37)

Repeat (6.22) and note that µ2 is chosen so that

j∗0
∑

j=j0+1

2j−1
∑

k=0

[

ν2
j T

−2 + θ2
jkν

4
j T

−2
]

= O
(

T− 2r
2r+1

)

. (6.38)

Then, by Lemma 5,

R211 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

[ ν2
j

T 2
+
θ2
jkν

4
j

T 2
+
σ2

T
I
(

|θjk|>
√

lnT√
T

)]

)

= O
(

T− 2r
2r+1

)

. (6.39)

For examination of R212, note that AjT (djk)/(1+AjT (djk))∼min(1, AjT (djk))

and that, due to the condition (3.6),

d2
jk < γj ≡ 2σ2T−1 ln(

√
Tβj/(νjξ0)) =⇒ AjT (djk) > 1. (6.40)
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We partition R212 into R2121 and R2122 according to whether the inequality on

the left hand side of (6.40 is valid. Then, since ln(
√
Tβj/(νjξ0)) ∼ lnT , we have

R2121 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

E
[

d2
jkI(d

2
jk < γj)

]

I(|θjk| >
√

ln
T

T
)

)

= O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

lnT

T
I
(

|θjk| >
√

lnT√
T

)

)

= O
(

T− 2r
2r+1 [lnT ]1−

p

2

)

. (6.41)

The second term R2122 is of the form

R2122 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

E
[d2

jkβ
2
j Te

−Td2
jk

/σ2

ν2
j ξ

2(νjdjk)
I(d2

jk > γj)
]

I
(

|θjk| >
√

lnT√
T

)

)

.

(6.42)

Note that by condition (3.6),

exp
(

− Td2
jk

σ2

)

ξ2(νjdjk)
= O

(

exp
{

− (T − ν2
j )
d2

jk

σ2

})

. (6.43)

Moreover, one sees that

max
x

[

x2e−
(T−ν2

j )x2

σ2 I
(

x2 > γj

)]

= γj

(

√
Tβj

νjξ0

)−
2(T−ν2

j )

T
= O

(ν2
j lnT

β2
jT

2

)

,

since ln(
√
Tβj/νj) ∼ lnT by (3.14), and

(

ν−1
j

√
Tβj

)ν2
j /T

= exp
(

CT−1 lnTν2
j

)

∼ 1

since ν2
j lnT/T = o(1) as T → ∞. Hence,

R2122 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

β2
j T

ν2
j

ν2
j lnT

β2
j T

2
I
(

|θjk| >
√

lnT√
T

))

= O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

lnT

T
I
(

|θjk| >
√

lnT√
T

)

)

= O
(

T− 2r
2r+1 [lnT ]1−

p

2

)

(6.44)

by Lemma 5. Now note that 2r/(2r + 1) > 1 − p/2 for r > r∗, hence R21 =

O([lnT/T ]2r/(2r+1)).
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To complete the proof we consider the term R22 given by (6.35). Since

|θ̂jk − θjk| ≤
|I1(djk)/I0(djk) − djk|

1 +AjT (djk)
+

|djk − θjk|
1 +AjT (djk)

+
|θjk|

1 +AjT (djk)
+ |θjk|

= O
(νj

T
+

ν2
j |djk|T−1

1 +AjT (djk)
+

|djk − θjk|
1 +AjT (djk)

+ |θjk|
)

= O
(

|θjk| +
νj

T
+

|djk − θjk|
1 +AjT (djk)

)

,

we partition R22 into R221, R222 and R223. Here, by Lemma 5 and (6.38),

R221 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

θ2
jkI(

√
T |θjk| ≤

√
lnT )

)

= O
(

[lnT/T ]
2r

2r+1

)

, (6.45)

R222 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

ν2
j /T

2

)

=
(

T−2r/(2r+1)
)

. (6.46)

The third term, R223 we partition into R2231 and R2232 where

R2231 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

E
[ (djk − θjk)

2

(1 +AjT (djk))2

]

I(1 ≤
√
T |θjk| ≤

√
lnT )

)

,

R2232 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

E
[ (djk − θjk)

2

(1 +AjT (djk))2

]

I(
√
T |θjk| ≤ 1)

)

. (6.47)

By Lemma 5,

R2231 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

T−1I(Tθ2
jk > 1)I(Tθ2

jk ≤ lnT )

)

= O

(

[ lnT

T

]
2r

2r+1

)

. (6.48)

For an upper bound for R2232, partition it into R22321 and R22322 depending
on the value of I(

√
T |djk − θjk| > aσ

√
2
√

lnT ). Note that

E
[

(djk − θjk)
2I(

√
T |djk − θjk| > aσ

√
2
√

lnT )
]

=
2σ2

T

∫ ∞

a2 ln T
e−z√zdz ∼ T−1−a2√

lnT

by 8.357 of Gradshtein and Ryzhik (1980). Therefore,

R22321 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

T−1−a2√
lnT

)

= O
(

T−2r/(2r+1)
)

(6.49)
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provided a2 > [(2r + 1)(r + 1/2 − 1/p)]−1(1/p − 1/2). The last term,

R22322 = O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

E
[ (djk − θjk)

2

(1 +AjT (djk))2
I(
√
T |djk − θjk| ≤ aσ

√
2
√

lnT )
]

I(
√
T |θjk| ≤ 1)

)

= O

( j∗0
∑

j=j0+1

2j−1
∑

k=0

E
[(djk − θjk)

2ν2
j e

Td2
jk

/σ2

β2
j T

I
(

|djk − θjk| ≤
aσ

√
2 ln T√
T

)]

I(
√
T |θjk| ≤ 1)

)

. (6.50)

Noting that in the last expression
√
T |djk| ≤ aσ

√
2 lnT + 1, we find that the

expectation in (6.50) is bounded by

e
(aσ

√
2 ln T+1)2

σ2
σ2

T

∫ a2 lnT

0

√
ze−zdz = O

(

T 2a2−1e2a
√

2 lnT/σ
)

.

Hence,

R22322 = O

( j∗0
∑

j=j0+1

2jν2
j T

2a2−1e2a
√

2 ln T/σ

Tβ2
j

)

= O
(

T−2r/(2r+1)
)

(6.51)

provided exp(a
√

2 ln T + σ−1)2β−2
j = O(1), which is valid whenever a2 = (1/p −

1/2+ε)/[(r+1/2)(r+1/2−1/p)], by (3.14). Now to complete the proof combine

(6.39), (6.45)−(6.49) and (6.51).

Proof of Corollary 1. It is easy to verify by direct calculations that in the case

of the normal distribution, conditions (3.5)−(3.8) and (3.9) are valid.

Proof of Corollary 2. Validity of Corollary 2 follows from the fact that λ = 0

and conditions (3.7) and (3.8) hold, due to Lemma 1.
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