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Abstract: We use a bivariate reinforced process derived from a Generalized Pólya

Urn scheme to provide an estimator for a bivariate survival function. The estimator

may be considered as a Bayesian nonparametric predictive estimator and it can be

obtained easily via an implementation of a Gibbs sampler. Consistency of the

estimator is studied.
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1. Introduction

A difficult problem in survival and reliability analysis is the estimation of a

bivariate survival function for lifetimes subjected to censoring.

Such problems arise in studies where the experimental unit consists of couples

of components (for example, twins, eyes, kidneys) or pairs of lifetimes are ob-

served for the same individual (for example, response times for successive courses

of a medical treatment).

Compared to the univariate problem, relatively less work has been done in

the nonparametric and semiparametric areas; nevertheless, recently, some con-

tributions have been made. Campbell (1981) and Hanley and Parnes (1983)

studied self-consistent maximum likelihood estimators for discrete data. Camp-

bell and Földes (1982) and Tsai, Leurgans and Crowley (1986) proposed esti-

mators based on a decomposition of the bivariate survival function. Dabrowska

(1988) and Pruitt (1991) extended the Kaplan-Meier estimator on the plane by

means of a product integral representation for a bivariate cumulative hazard.

Oakes (1989) exploited a frailty model, while Prentice and Cai (1992) used co-

variance between counting process martingales to characterize the dependence of

the survival times. van der Laan (1996) and Wang and Wells (1997) adopted a

non-parametric approach.

Most of the proposed estimators have drawbacks; some are not proper while

others have no explicit form or are quite complicated to obtain in practice. Fur-

thermore, efficiency results often hold only under restrictive conditions.
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In this paper, using a reinforcement scheme, a model for coupled survival

times is proposed. We work exclusively with discrete observations, and so with

observation space N
2
0 = {0, 1, . . .}×{0, 1, . . .}, but in many applications this does

not seem to represent a severe limitation.

Our approach can be considered as Bayesian predictive in that the main

concern is to provide a sensible procedure to predict the future behaviour of a

bivariate lifetimes when data having the same form were collected in the past.

Moreover in the model, observations are exchangeable and, hence, define via de

Finetti’s Representation Theorem, a prior on the space of bivariate distributions.

Although the prior has a structure which makes the posterior intractable, it is

possible to study its support and obtain some consistency results. Inference will

be done using sampling based methods.

Here we describe the layout of the paper. Section 2 recalls the definition and

some features of Generalized Pólya Urn scheme. In Section 3 the construction of

a bivariate reinforced process is carried out, a prior on the space of distribution

functions on N
2
0 is derived, and some properties are pointed out, with particular

attention to its support and consistency. Section 4 shows how to use this prior

to make inference about about a bivariate survival function with data eventually

subjected to censorship. An example is given in Section 5.

2. Preliminaries

The basic building block of the model is the Generalized Pólya Urn (GPU)

scheme. Here we recall the definition of Walker and Muliere (1997).

Definition 1. Consider a sequence of random variables {Tn; n ≥ 1} with values

on the non-negative integers N0 = {0, 1, 2, . . .}, and let {αj , βj , j ∈ N0} satisfy

1. αj , βj ≥ 0∀ j;

2. αj + βj > 0∀ j;

3. limn→∞
∏n

j=0 βj/(αj + βj) = 0.

The sequence {Tn; n ≥ 1} is said to come from a GPU scheme if

P [T1 = t] =
αt

αt + βt

t−1
∏

j=0

βj

αj + βj

and

P [Tn+1 = t | Tn = tn] =
αt + mt (tn)

αt + βt + st (tn)

t−1
∏

j=0

βj + rj (tn)

αj + βj + sj (tn) ,
(2.1)

where mj (tn) =
∑n

k=1 1[tk=j], rj (tn) =
∑n

k=1 1[tk>j] and sj (tn) = mj (tn) +

rj (tn).
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Henceforward bold letters indicate vectors, for example Tn = (T1, . . . , Tn);

relations and operations between them are done componentwise.

These predictive distributions arise from a beta process model of Hjort (1990).

Briefly, the model puts independent beta prior distributions on hazards at t =

1, 2, . . .. That is, a random hazard at time t from the prior is given by Vt

∏

s<t(1−

Vs), with Vs ∼ beta (αs, βs). A reason for this name can be found in the following

scheme to generate the sequence {Tn}.

Consider a Pólya urn Uj that has αj white balls and βj black balls, j =

0, 1, . . .. A ball is drawn starting from U0; if white put T1 = 0, otherwise a ball

is drawn from U1 and so on, until a white ball is obtained. If the white ball

is drawn from Ut, say, then put T1 = t. All the urns are updated according

to the traditional Pólya reinforcement rule - the drawn ball is reintroduced in

the corresponding urn along with another of the same color. So, T2, T3, . . . are

generated from continually updated urns.

The GPU scheme translates the idea of Bayesian learning, specifying through

(2.1) how to update the knowledge about survival times when data come from

follow-up studies on different subjects.

Walker and Muliere (1997) and Muliere, Secchi and Walker (2000) show that

the sequence {Tn} is exchangeable and, by de Finetti’s Representation Theorem,

there exists a random distribution function F , such that, given F , the random

variables Tn are independent and identically distributed with distribution F.

Moreover, F is distributed according to a beta-Stacy process on the integers with

parameters {αj, βj , j ∈ N0}. The beta-Stacy process is neutral to the right and,

so, conjugate to right censored observations.

Let T1, . . . , Tn be independent and identically distributed and subject to right

censoring. Thus, what is observed is (T ∗
1 , δ1), . . . , (T

∗
n , δn) where

T ∗
i = t, δi = 0 ⇔ a censoring took place: Ti > t

T ∗
i = t, δi = 1 ⇔ a death happened: Ti = t.

With a quadratic loss function, the predictive distribution of Tn+1 given (Tn, δn)

is the Bayes estimator for the random distribution function.

So, analogously for the survival function and under a beta-Stacy prior, we

have

Ŝ(t) = P [Tn+1 > t |T∗
n = tn, δn = dn]

=
t

∏

j=0

[

1 −
αj + m∗

j (tn,dn)

αj + βj + sj (tn)

]

, (2.2)

where dn ∈ {0, 1}n and m∗
j (tn,dn) =

∑n
k=1 1[tk=j,dk=1].

Finally, note the following:



430 PAOLO BULLA, PIETRO MULIERE AND STEPHEN WALKER

1. without censoring (2.2) reduces to

Ŝ(t) = P [Tn+1 > t | Tn = tn] =
t

∏

j=0

βj + rj (tn)

αj + βj + sj (tn)
;

2. the limit of (2.2) for αj, βj → 0, ∀ j, reduces to classical Kaplan-Meier esti-

mator end extend it when it was not defined.

3. A Bivariate Reinforced Random Process

3.1. Definition

Our aim is to construct a bivariate random process {(Xn, Yn) , n ≥ 1} pro-

viding a model for coupled lifetimes and incorporating the basic principle of

reinforcement similar to the GPU. The idea underlying the GPU scheme is that

of reinforcing the path from the origin to the point Tn = t before generating

Tn+1, sequentially for n ≥ 1. This is relatively easy because the random vari-

ables Tn can be represented as points on the non-negative line. On the other

hand, (Xn, Yn) is a point in the non-negative orthant and, unfortunately, there

is no unique path from (0, 0) to (x, y). So, the reinforcement procedure must be

introduced in an alternative way.

Let {An, n ≥ 1}, {Bn, n ≥ 1} and {Cn, n ≥ 1} be independent sequences

from GPUs with parameters (αA
j , βB

j ), (αB
j , βB

j ) and (αC
j , βC

j ), j ∈ N0, respec-

tively. Now, define a bivariate random process {(Xn, Yn) , n ≥ 1} by

Xn = An + Bn
(3.1)

Yn = An + Cn, n ≥ 1.

The relations above postulate a particular and very easy form of dependence

between Xn and Yn: for a given couple, each element is supposed to have a

common component (An) and a individual specific one (Bn and Cn). This is

a natural way to construct a dependence without forming a parametric model.

And, mathematically, it is that the dependence between Xn and Yn is determined

by the variance of An.

By this construction it turns out, conditionally on An, that Xn and Yn are

independent. Moreover, σ (An,Bn,Cn) = σ (An,Xn,Yn).

The structure of the dependence is described by

Cov (X1, Y1) = Var (A1) ≥ 0,

Cov (Xn+1, Yn+1|An,Bn,Cn) = Var (An+1|An) , n ≥ 1.
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Hence, we have introduced, correspondingly to each lifetimes couple, an auxiliary

variable whose variance describes the covariance between Xn and Yn. Note that

even though An cannot be directly observed, the predictive distribution of this

bivariate process can be easily computed in terms of those of the three GPUs, as

is shown in the Appendix A.

The most interesting feature of this bivariate process given in the following

proposition.

Proposition 1. The sequence of couples {(Xn, Yn) , n ≥ 1} is exchangeable.

Proof. Note that (Xn, Yn) is a measurable function of (An, Bn, Cn). This is an

exchangeable sequence and hence so is {(Xn, Yn) , n ≥ 1}.

The de Finetti Representation Theorem assures the existence of a bivariate

random distribution function FXY , conditionally on which the couples (Xn, Yn)

are independent and identically distributed with distribution FXY . The random

distribution functions corresponding to GUPs {An}, {Bn} and {Cn} are FA,

FB and FC ; moreover, they are distributed according to beta-Stacy processes

with parameters (αA
j , βA

j ), (αB
j , βB

j ) and (αC
j , βC

j ), j ∈ N0, respectively. On the

other hand, the de Finetti’s measure of {(Xn, Yn)}, that is the distribution of the

bivariate distribution function FXY , is not explicitly known. Nevertheless, it is

possible to elicit some of its properties.

First of all, if FX and FY are the marginal distributions of {Xn} and {Yn},

given FA, FB and FC , (3.1) implies

FX = FA ∗ FB
(3.2)

FY = FA ∗ FC .

Therefore, each of the two marginals is a convolution of two beta-Stacy processes.

In terms of probability functions, we can write

PXY (x, y) =

x∧y
∑

a=0

PA(a)PB(x − a)PC(y − a) ∀ (x, y) ∈ N
2
0, (3.3)

where P is the probability function corresponding to the distribution F . For the

marginals we get the usual expression for the convolution.

Moreover, given FXY , FA, FB and FC , if σ2
A = V arFA

(A), the dependence

between X and Y is described by

Cov FXY
(X,Y ) = σ2

A. (3.4)

Thus, assuming a model for coupled lifetimes data, represented by the bi-

variate process built on the basis of GPU and equations (3.1) is equivalent, in
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a Bayesian point of view, to defining a probability measure on the space of the

bivariate distribution functions on N
2
0. Let Π2 be such a measure.

3.2. The support of Π2

Before exploring the properties of the support of Π2, it is worth recalling

the topology on spaces of probability measures. Given (X ,B(X )) a measurable

space, where X is a Polish space and B(X ) its Borel σ-algebra, let M denote

the space of all probability measures on (X ,B(X )) and B(M) a suitable Borel

σ-algebra.

If, for a random element P of (M,B(M)), Π is the prior and Π(· |Xn) the

posterior, given a vector of observations Xn = (X1, . . . ,Xn) ∈ X n independent

and identically distributed according to P , the definition of a suitable topology

on (M,B(M)) allows us to deal with some interesting problems. First of all,

we can point out which probability measures belong to the support of Π and,

secondly, we can describe the asymptotic behaviour of the posterior when the

number of observations grows.

Definition 2. A subset U of M is said to be a weak neighborhood of P0 if

it contains a set of the form {P : |P (Ai) − P0(Ai)| < εi, i = 1, . . . , k} where Ai

are P0-continuous sets and εi > 0. The sequence {Π(· |Xn) , n ≥ 1} is said to

be weak consistent at P0, if for every weak neighborhood U of P0, Π (U |Xn) →

1, n → ∞ a.s. P0.

Definition 3. Let L(µ) the set of all densities with respect to a finite σ-measure

µ. For f, f0 ∈ L(µ) the Kullback-Leibler divergence of f from f0 is

K (f, f0) =

∫

f0 log
f0

f
dµ. (3.5)

For ε > 0, {f : K(f0, f) < ε} is the Kullback-Leibler neighborhood of f0 with

radius ε.

It is possible to give a definition of Kullback-Leibler consistency, but we do

not deal with it. More important for our purpose is a corollary of a classical and

well-known result of Schwartz (1965), providing a sufficient condition for weak

consistency.

Proposition 2.(Schwartz (1965)) If ∀ ε > 0, Π (f : K(f0, f) < ε) > 0, then the

posterior is weakly consistent at f0.

Exploiting the properties of the beta-Stacy process, we can obtain some

knowledge about the width of the support of Π2 with respect to weak topology.

We let PXY (i, j) = pij,∀ (i, j) ∈ N
2
0. Moreover, for a distribution (or more

generally for a measure) µ, let Sµ indicate its support.
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Let Pc2 be the set of the probability distributions on N
2
0 such that there exist

three probability distributions on N0 which (3.3) is satisfied.

The above proposition transfers a well-known result for the Dirichlet process,

easily proved also for discrete beta-Stacy, to Pc2. Proofs of following are in the

Appendix B.

Proposition 3. If Π2 is the prior on the space of the bivariate distributions on

N
2
0 determined by the parameters αA

j , βA
j , αB

j , βB
j , αC

j , βC
j > 0, ∀ j ∈ N0, then

SΠ2
⊇ Pc2. (3.6)

Remark 1. As will be pointed out in the next section, it is possible to center

Π2 with respect to three distributions on N0, QA, QB and QC ; some of the

parameters could be null and, instead of (3.6), we have

SΠ2
⊇ {PXY s.t. ∃PA, PB , Pc satisfying (3.3) and

SPA
⊆ SQA

,SPB
⊆ SQB

,SPC
⊆ SQC

} ,

where the set on the right-hand side is just a subset of Pc2.

A more detailed knowledge of the support of Π2 is provided by analysing the

behaviour of the prior in the Kullback-Leibler neighborhoods. As in the previous

case, the best strategy is to extend to Pc2 the properties of the beta-Stacy process

on N0.

Proposition 4. Let Π the measure induced by a beta-Stacy process with pa-

rameters αj , βj , j ∈ N0, on the space of distribution functions on N0 with po =

{po
j , j ∈ N0} being one of them. If αj, βj , j ∈ N0 are such that

∞
∑

j=0

po
j

[

βj

αj(αj + βj)
+ βj T (αj , βj)

]

< +∞, (3.7)

∞
∑

j=0

po
j

[

αj

βj(αj + βj)
+ αj T (βj , αj)

]

< +∞, (3.8)

where po
j =

∑

k>j po
k, and

T (α, β) =

∞
∑

n=0

1

α + n + 1

1

α + β + n + 1
< +∞ α, β > 0,

then ∀ ε > 0,

Π

[

p :

∞
∑

j=0

po
j log

po
j

pj

< ε

]

> 0.
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The previous proposition gives sufficient conditions for the parameters to pro-

duce positive probability in each Kullback-Leibler neighborhood of po; straight-

forwardly, from Schwartz’ result, we get the weak consistency at po.

An easy condition for consistency when po is unknown is, for instance,

0 < α ≤ αj ≤ α, ∀ j ∈ N0, (3.9)

0 < β ≤ βj ≤ β, ∀ j ∈ N0. (3.10)

For the bivariate prior, the following holds.

Proposition 5. Let Π2 indicate the prior on the space of bivariate distribution

function on N
2
0 with parameters αA

j , βA
j , αB

j , βB
j , αC

j , βC
j > 0, j ∈ N0, and po ∈ Pc2

with marginals po
X = {po

i·, i ∈ N0} and po
Y = {po

·j, j ∈ N0}, where po
i· =

∑∞
j=0 po

ij

and po
·j =

∑∞
i=0 po

ij.

If αB
j , βB

j for j ∈ N0 satisfy

∞
∑

j=0

po
X j

[

βj

αj(αj + βj)
+ βj T (αj , βj)

]

< +∞,

∞
∑

j=0

po
X j

[

αj

βj(αj + βj)
+ αj T (βj , αj)

]

< +∞,

and analogous conditions hold for αC
j , βC

j subtituting po
X j with po

Y j , then ∀ ε > 0

Π2

[

p :
∞
∑

i=0

∞
∑

j=0

po
ij log

po
ij

∑i∧j
a=0 pA

a pB
i−ap

C
j−a

< ε

]

> 0. (3.11)

Therefore, provided (3.11) holds, the crucial conditions must be satisfied just

for αB
j , βB

j and αC
j , βC

j with respect to the marginals. Taking these parameters

as suggested, for instance in (3.9) and (3.10), we obtain that Π2 (· |Xn,Yn) is

consistent at every po ∈ Pc2.

The next section shows how to make inference about the bivariate survival

function when Π2 is the prior.

4. Estimation of a Bivariate Survival Function

Though the lack of a well-determined form prevents the direct computation

of the posterior, it is possible to obtain an estimate of the survival function.

More precisely, let

S(x, y) = P [X > x, Y > y] (4.1)
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be a bivariate survival function on N
2
0 and (Xn,Yn) be an independent and iden-

tically distributed sample from S, where each of the two components is subject

to independent right censoring, so that the data take the form (X∗
n, δn,Y∗

n, ξn).

With this Π2 as prior, we are interested in the predictive distribution

Ŝ(x, y) = P [Xn+1 > x, Yn+1 > y |X∗
n, δn,Y∗

n, ξn] . (4.2)

Remark 2. Note that, if the data are not subjected to censoring, weak con-

sistence of the posterior implies weak consistence of the predictive distribution.

Hence the conditions on the parameters of the previous section are sufficient for

a consistent predictive distribution as will.

Before any inference, an interpretation of the parameters of the model must

be provided. This coincides, in the Bayesian perspective, with specifying the

initial distribution centered in accordance with some prior choice.

Recall that if F is distributed according to a discrete beta-Stacy process,

it is possible to center on a given discrete distribution G (Walker and Muliere

(1997)) so that E [F ({j})] = G ({j}), putting, ∀ j, cj > 0 and

αj = cjG ({j}) βj = cj

(

1 −

j
∑

i=0

G ({i})

)

.

Moreover, if cj = c ∀ j, then αj + βj = βj−1 and the beta-Stacy reduces to a

discrete Dirichlet process. While G is the distribution corresponding to the initial

guess, the parameters cj play the role of strength of belief, so that higher values

mean higher weight is given to this guess in the posterior distribution.

Hence, to determine the parameters of our model we do not need some

complicated idea about the bivariate distribution of the lifetimes, but rather a

priori guesses on the covariance between X and Y , Cov (X,Y ), and on their

marginal distributions.

In fact, (3.2) and (3.4) suggest proceeding as follow:

1. choose an initial distribution for A, F 0
A, having variance Cov (X,Y ), and de-

termine αA
j , βA

j ;

2. given the prior guess F 0
X , F 0

Y and F 0
A, solve (3.2) to obtain F 0

B and F 0
C and

then compute αB
j , βB

j , αC
j , βC

j .

In the absence of further information about FA, the choice of the distribution

for A is free, except for the variance; hence, it could be convenient to choose a

distribution making the procedure simpler at point 2.

For particular values of the parameters it is possible to abandon the hypoth-

esis of dependence between X and Y . Indeed, taking αA
0 > 0, αA

j = 0 ∀ j ≥ 1,

βA
j = 0 ∀ j ≥ 0, we obtain An = 0, Xn = Bn, Yn = Cn ∀n a.s. and

P [Xn+1 > x, Yn+1 > y|X∗
n = xn, δn = dn,Y∗

n = yn, ξn = en]
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= P [Bn+1 > x |B∗
n = xn, δn = dn]P [Cn+1 > y |C∗

n = yn, ξn = en]

= P [Xn+1 > x |X∗
n = xn, δn = dn]P [Yn+1 > y |Y∗

n = yn, ξn = en] .

This corresponds to assuming as prior for FA a Dirichlet process centered in a

distribution degenerate at 0. If, in addition, αB
j , βB

j , αC
j , βC

j → 0 ∀ j, the result

is the product of Kaplan-Meier estimators for X and Y .

When the parameters are fixed, the right hand side of (4.2) can be directly

expressed in terms of the predictives of An, Bn and Cn, as in the previous section.

The practice computation may yet be cumbersome and laborious.

A Markov Chain Monte Carlo estimation procedure can be achieved without

difficulty through the following steps.

1. Given the observations (X∗
n, δn,Y∗

n, ξn), An is generated via a Gibbs sampler,

so the full conditional of An, PAn|An−1,X∗

n,δn,Y∗

n,ξn
, is

P [An = an |An−1 = an−1,X
∗
n = xn, δn = dn,Y∗

n = yn, ξn = en ]

∝ P
[

B∗
n = xn − an, δn = dn

∣

∣B∗
n−1 = xn−1 − an−1, δn−1 = dn−1

]

P
[

C∗
n = yn − an, ξn = en

∣

∣C∗
n−1 = yn−1 − an−1, ξn−1 = en−1

]

P [An = an |An−1 = an−1 ] ,

where

P
[

B∗
n = b, δn = d

∣

∣B∗
n−1 = bn−1, δn−1 = dn−1

]

=







P
[

Bn ≥ b
∣

∣B∗
n−1 = bn−1, δn−1 = dn−1

]

, d = 0

P
[

Bn = b
∣

∣B∗
n−1 = bn−1, δn−1 = dn−1

]

, d = 1

and similarly for P
[

C∗
n = yn − an, ξn = dn

∣

∣C∗
n−1 = cn−1, ξn−1 = en−1

]

.

For exchangeability of {An}, the other full conditionals PAi|A−i,X∗

n,δn,Y∗

n,ξn
,

i = 1, . . . , n − 1 have an analogous form. (Let A−i = (A1, . . . , Ai−1, Ai+1, . . .,

An)). Then B∗
n = X∗

n − An and C∗
n = Y∗

n − An are computed.

2. An+1, Bn+1 and Cn+1 are sampled according to the predictive distributions

PAn+1|An
, PBn+1|B∗

n,δn
and PCn+1|C∗

n,ξn
.

3. Take Xn+1 = An+1 + Bn+1 and Yn+1 = An+1 + Cn+1.

This is straightforward to implement in practice.

5. An Example

We give an example involving a dataset. The following table reports the

data (Woolson and Lachenbruch (1980) and Lin and Ying (1993)) consisting of

survival times of two kinds of skin grafts on the same burn patient; more precisely,

X is referred to as closely matched grafts, Y as poorly matched ones in relation

to the HL-A antigen system.
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Table 1. Days of survival of skin grafts on burn patients.

Patient 1 2 3 4 5 6 7 8 9 10 11

Close match (X) 37 19 57+ 93 16 22 20 18 63 29 60+

Poor match (Y) 29 13 15 26 11 17 26 21 43 15 40

First, we try to reproduce the Kaplan-Meier (“empirical”) estimator. Using
well-understood ideas connecting Bayes nonparametric estimators, and empirical
estimators, we allow FA to be the distribution degenerate at 0. We take αA

0 =
1, 000, αA

j = 0 ∀ j ≥ 1, βA
j = 0 ∀ j ≥ 0, while αB

j , βB
j , αC

j , βC
j are all taken close

to 0. The marginal estimators are represented by black circles in Figures 1 and
2, and compare very well with the Kaplan-Meier estimates, provided with their
standard associated confidence bounds.
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Figure 1. Marginal estimate for X . Figure 2. Marginal estimate for Y .

Figure 3 shows the joint estimator. As we know, according to theoretical
issues about the meaning of the parameters, in this case the estimators are con-
structed as if the X and Y data are different (independent) data sets; that is
we have lost any dependence between the pairs in order to obtain the empirical
marginal estimates.

Here we also give a “smooth” estimate when the prior choice embodies some
knowledge about the dependence between X and Y . This will carry through,
and be updated, into the posterior. We choose to center the priors on Poisson
(Po) distributions to exploit some of their closure properties under convolution.
For illustrative purposes, we center FA on the Po(10) distribution, which corre-
sponds to Cov (X,Y ) = 10, and center FX and FY on the Po(40) and Po(25)
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distributions, respectively. Solving the equations in (3.2), we obtain a Po(40)

distribution for FB and a Po(15) distribution for FC . Finally, we put all the

parameters related to the degree of belief cA
j , cB

j and cC
j equal to 1,∀ j ∈ N0.

The estimates are represented by white circles in Figures 1 and 2. As can be

seen, the marginal estimators are smoothed version of Kaplan-Meier estimators.

Similarly, the joint survival function of Figure 4 is a smoothed version of Figure 3.

X

Y

X

Y

Figure 3. Empirical independent case, es-

timate of the bivariate survival function.

Figure 4. Smooth case, estimate of the

bivariate survival function.
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Appendix A. Predictive Distribution

The predictive distribution P [Xn+1 > x, Yn+1 > y|Xn = xn,Yn = yn] is

nothing but

P [Xn+1 > x, Yn+1 > y|Xn = xn,Yn = yn)]

=
P [Xn+1 > x, Yn+1 > y,Xn = xn,Yn = yn]

P [Xn = xn,Yn = yn]
,

where

P [Xn+1 > x, Yn+1 > y,Xn = xn,Yn = yn]

=

x∧y
∑

an+1=0

xn∧yn
∑

an=0

· · ·

x1∧y1
∑

a1=0

[

αA
an+1

+ man+1
(an)

αA
an+1

+ βA
an+1

+ san+1
(an)

an+1−1
∏

j=0

βA
j + rj (an)

αA
j + βA

j + sj (an)
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x−an+1
∏

j=0

βB
j + rj (xn − an)

αB
j + βB

j + sj (xn − an)

y−an+1
∏

j=0

βC
j + rj (yn − an)

αC
j + βC

j + sj (yn − an)

n−1
∏

i=1





αA
ai+1

+ mai+1
(ai)

αA
ai+1

+ βA
ai+1

+ sai+1
(ai)

ai+1−1
∏

j=0

βA
j + rj (ai)

αA
j + βA

j + sj (ai)

αB
xi+1−ai+1

+ mxi+1−ai+1
(xi−ai)

αB
xi+1−ai+1

+ βB
xi+1−ai+1

+ sxi+1−ai+1
(xi−ai)

xi+1−ai+1−1
∏

j=0

βB
j + rj (xi−ai)

αB
j + βB

j + sj (xi−ai)

αC
yi+1−ai+1

+ myi+1−ai+1
(yi−ai)

αC
yi+1−ai+1

+ βC
yi+1−ai+1

+ syi+1−ai+1
(yi−ai)

yi+1−ai+1−1
∏

j=0

βC
j + rj (yi−ai)

αC
j + βC

j + sj (yi−ai)





αA
a1

αA
a1

+ βA
a1

a1−1
∏

j=0

βA
j

αA
j + βA

j

αB
x1−a1

αB
x1−a1

+ βB
x1−a1

x1−a1−1
∏

j=0

βB
j

αB
j + βB

j

αC
y1−a1

αC
y1−a1

+ βC
y1−a1

y1−a1−1
∏

j=0

βC
j

αC
j + βC

j

]

,

P [Xn = xn,Yn = yn]

=

xn∧yn
∑

an=0

· · ·

x1∧y1
∑

a1=0

[

n−1
∏

i=1





αA
ai+1

+ mai+1
(ai)

αA
ai+1

+ βA
ai+1

+ sai+1
(ai)

ai+1−1
∏

j=0

βA
j + rj (ai)

αA
j + βA

j + sj (ai)

αB
xi+1−ai+1

+ mxi+1−ai+1
(xi−ai)

αB
xi+1−ai+1

+ βB
xi+1−ai+1

+ sxi+1−ai+1
(xi−ai)

xi+1−ai+1−1
∏

j=0

βB
j + rj (xi−ai)

αB
j + βB

j + sj (xi−ai)

αC
yi+1−ai+1

+ myi+1−ai+1
(yi−ai)

αC
yi+1−ai+1

+ βC
yi+1−ai+1

+ syi+1−ai+1
(yi−ai)

yi+1−ai+1−1
∏

j=0

βC
j + rj (yi−ai)

αC
j + βC

j + sj (yi−ai)





αA
a1

αA
a1

+ βA
a1

a1−1
∏

j=0

βA
j

αA
j + βA

j

αB
x1−a1

αB
x1−a1

+ βB
x1−a1

x1−a1−1
∏

j=0

βB
j

αB
j + βB

j

αC
y1−a1

αC
y1−a1

+ βC
y1−a1

y1−a1−1
∏

j=0

βC
j

αC
j + βC

j

]

.

Appendix B: Proofs of Propositions and Lemmas

Proof of Proposition 3. As N
2
0 is discrete we need only show Π2[

∣

∣pxiyi
− po

xiyi

∣

∣

< ε, i = 1, . . . , k] > 0 for each po ∈ Pc2, ∀ ε > 0, k ≥ 1, ∀ (xi, yi), . . . (xk, yk)
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∈ N
2
0. Now, ∀ i (mi = xi ∧ yi)

∣

∣pxiyi
− po

xiyi

∣

∣ =

∣

∣

∣

∣

∣

mi
∑

a=0

(

pA
a pB

xi−ap
C
yi−a − pA,o

a pB,o
xi−ap

C,o
yi−a

)

∣

∣

∣

∣

∣

−pA,o
a pB,o

xi−ap
C
yi−a + pA,o

a pB,o
xi−ap

C
yi−a − pA,o

a pB,o
xi−ap

C,o
yi−a

∣

∣

∣

≤

mi
∑

a=0

∣

∣pA
a − pA,o

a

∣

∣ +

mi
∑

a=0

∣

∣

∣
pB

xi−a − pB,o
xi−a

∣

∣

∣
+

mi
∑

a=0

∣

∣

∣
pC

yi−a − pC,o
yi−a

∣

∣

∣

=

mi
∑

a=0

∣

∣pA
a − pA,o

a

∣

∣+

xi
∑

j=xi−mi

∣

∣

∣pB
j − pB,o

j

∣

∣

∣+

yi
∑

j=yi−mi

∣

∣

∣pC
j − pC,o

j

∣

∣

∣ a.s. Π2,

as pA,o
i , pB,o

i , pC,o
i ∈ [0, 1] and pA

i , pB
i , pC

i ∈ [0, 1] a.s. Π2, ∀ i.

By construction, the sequences {pA
i , i ∈ N0}, {p

B
i , i ∈ N0}, and {pC

i , i ∈ N0}

are independent beta-Stacy processed on N0, so

Π2

[∣

∣pxiyi
− po

xiyi

∣

∣ < ε, i = 1, . . . , k
]

≥ Π2

[ mi
∑

j=0

∣

∣

∣
pA

j − pA,o
j

∣

∣

∣
<

ε

3
, i = 1, . . . , k

]

Π2

[ xi
∑

j=0

∣

∣

∣
pB

j − pB,o
j

∣

∣

∣
<

ε

3
, i = 1, . . . , k

]

Π2

[ yi
∑

j=0

∣

∣

∣
pC

j − pC,o
j

∣

∣

∣
<

ε

3
, i = 1, . . . , k

]

.

Consider, for instance, the first element of the product.

Let M =
∨k

i=1 mi. If

∣

∣

∣
pA

j − pA,o
j

∣

∣

∣
<

ε

3(M + 1)
= εM , j = 0, . . . ,M,

then
mi
∑

j=0

∣

∣

∣pA
j − pA,o

j

∣

∣

∣ <
ε

3
, i = 1, . . . , k,

so that

Π2

[ mi
∑

j=0

∣

∣

∣pA
j − pA,o

j

∣

∣

∣ <
ε

3
, i = 1, . . . , k

]

≥ Π2

[∣

∣

∣pA
j − pA,o

j

∣

∣

∣ < εM , j = 0, . . . ,M
]

.

(B.1)

Since
(

pA
0 , . . . , pA

M

)

has a Generalized Dirichlet distribution with parameters

αA
j , βA

j > 0, j = 0, 1, . . . ,M (see Walker and Muliere (1997)), for the full sup-

port of this distribution, the result in Proposition 3 of Ferguson (1973) can be
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generalized to the discrete beta-Stacy process and the last probability in (B.1) is

strictly positive.

Lemma 6. If X ∼ Beta (α, β), α > 0, β > 0, then

E [− log X] =
β

α

[

1

α + β
+ α

∞
∑

n=0

1

α + n + 1

1

α + β + n + 1

]

< +∞.

Proof. We write B(x;α, β) for the incomplete beta function and note that

B(α, β)=B(1;α, β)=(Γ(α)Γ(β))/Γ(α + β) and I(x;α, β) = B(x;α, β)/B(α, β).

Now

E [− log X] =

∫ 1

0
− log x

xα−1(1 − x)β−1

B(α, β)
dx

= |− log x I(x;α, β)|10 +

∫ 1

0

1

x
I(x;α, β) dx. (B.2)

The first term is 0 as

lim
x→0

log xB(x;α, β) = lim
x→0

log x

B(x;α, β)−1

= lim
x→0

1
x

−B(x;α, β)−2xα−1(1 − x)β−1
(B.3)

= lim
x→0

−
B(x;α, β)2

xα

= lim
x→0

−
2B(x;α, β)xα−1(1 − x)β−1

αxα−1
= 0, (B.4)

where (B.3) and (B.4) apply De l’Hôpital’s rule.

According to Abramowitz and Stegun (1964),

I(x;α, β) =
xα(1 − x)β

αB(α, β)

[

1 +
∞
∑

n=0

B(α + 1, n + 1)

B(α + β, n + 1)
xn+1

]

,

So (B.2) reduces to

∫ 1

0

xα−1(1 − x)β

αB(α, β)

[

1 +
∞
∑

n=0

B(α + 1, n + 1)

B(α + β, n + 1)
xn+1

]

dx

=
1

α

[

B(α, β + 1)

B(α, β)
+

∞
∑

n=0

B(α + 1, n + 1)

B(α + β, n + 1)B(α, β)

∫ 1

0
xα+n(1 − x)βdx

]

=
1

α

[

β

α + β
+

∞
∑

n=0

B(α + 1, n + 1)B(α + n + 1, β + 1)

B(α + β, n + 1)B(α, β)

]



442 PAOLO BULLA, PIETRO MULIERE AND STEPHEN WALKER

=
1

α

[

β

α + β
+

∞
∑

n=0

α

α + n + 1

β

α + β + n + 1

]

.

Since
∑∞

n=0(α + n + 1)−1(α + β + n + 1)−1 < +∞, we are finished.

Recall that T (α, β) =
∑∞

n=0(α + n + 1)−1(α + β + n + 1)−1, α, β > 0, is a

well defined function.

Proof of Proposition 4. Under Π, for j ∈ N0, pj = uj

∏j−1
k=0 [1 − uk], where

uk ∼ Beta(αk, βk) and independent. Thus

E

[

−

∞
∑

j=0

po
j log pj

]

=

∞
∑

j=0

po
jE

[

− log pj

]

=

∞
∑

j=0

po
jE [− log uj] +

∞
∑

j=0

j−1
∑

k=0

po
jE [− log (1 − uk)]

=

∞
∑

j=0

po
jE [− log uj] +

∞
∑

k=0

po
kE [− log (1 − uk)]

=

∞
∑

j=0

po
j

[

βj

αj(αj + βj)
+ βj T (αj , βj)

]

+
∞
∑

j=0

po
j

[

αj

βj(αj + βj)
+ αj T (βj , αj)

]

,

by Lemma 6.

Conditions (3.7) and (3.8) imply the finiteness of the expected value and

−

∞
∑

j=0

po
j log pj < +∞ a.s. Π.

Since
∑∞

j=0 po
j log(po

j/pj) =
∑∞

j=0 po
j log po

j −
∑∞

j=0 po
j log pj < ε, it is sufficient to

require
M
∑

j=0

po
j log po

j −

M
∑

j=0

po
j log pj <

ε

2
. (B.5)

But (p0, . . . , pM ), under Π, has a generalized Dirichlet distribution with param-

eters αj , βj , j = 0, . . . ,M . Since this distribution has full support on the M + 1-

dimensional sub-simplex, and the event above is implied by {pj > po
j/exp(ǫ/2),

j = 0, . . . ,M}, (B.5) has strictly positive probability.
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Proof of Proposition 5. Compute

E

[ ∞
∑

i=0

∞
∑

j=0

−po
ij log

i∧j
∑

a=0

pA
a pB

i−ap
C
j−a

]

=
∞

∑

i=0

∞
∑

j=0

po
ijE

[

− log

i∧j
∑

a=0

pA
a pB

i−ap
C
j−a

]

≤
+∞
∑

i=0

∞
∑

j=0

po
ijE

[

− log pA
0 pB

i pC
j

]

=

∞
∑

i=0

∞
∑

j=0

po
ijE

[

− log pA
0

]

+

∞
∑

i=0

∞
∑

j=0

po
ijE

[

− log pB
i

]

+

∞
∑

i=0

∞
∑

j=0

po
ijE

[

− log pC
j

]

= E
[

− log pA
0

]

+

∞
∑

i=0

po
i·E

[

− log pB
i

]

+

∞
∑

j=0

po
·jE

[

− log pC
j

]

.

Hence if αB
j , βB

j and αC
j , βC

j satisfy the above hypotheses, the expected value is

finite.

Now

−
∞
∑

i=0

∞
∑

j=0

po
ij log

i∧j
∑

a=0

pA
a pB

i−ap
C
j−a < +∞ a.s. Π2.

To complete the proof, we can just show

M
∑

i=0

M
∑

j=0

po
ij log po

ij −
M
∑

i=0

M
∑

j=0

po
ij log

i∧j
∑

a=0

pA
a pB

i−ap
C
j−a <

ε

2
= ε′ (B.6)

has positive probability.

Now, as po
ij =

∑i∧j
a=0 pA,o

a pB,o
i−ap

C,o
j−a, ∀ i, j ∈ N

2
0, the event above is implied by

pA
i >

pA,o
i

δ
i = 0, . . . ,M, (B.7)

pB
i >

pB,o
i

δ
i = 0, . . . ,M, (B.8)

pC
i >

pC,o
i

δ
i = 0, . . . ,M, (B.9)

where δ = exp (ε′/3) > 1. But, under Π2,
(

pA
0 , . . . , pA

M

)

,
(

pB
0 , . . . , pB

M

)

and
(

pC
0 , . . . , pC

M

)

have independent generalized Dirichlet distribution with param-

eters αA
j , βA

j , αB
j , βB

j , αC
j , βC

j > 0, j = 0, . . . ,M , respectively. The indepen-

dent events in (B.7), (B.8) and (B.9) define subsets of the M + 1-dimensional

sub-simplex (the support of the above distribution), so that they have positive

probability under Π2 as well as does (B.6).
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