
Statistica Sinica 17(2007), 177-197

ADAPTIVE VARYING-COEFFICIENT LINEAR MODELS

FOR STOCHASTIC PROCESSES: ASYMPTOTIC THEORY

Zudi Lu1,2, Dag Tjøstheim3 and Qiwei Yao1,4

1London School of Economics, 2Chinese Academy of Sciences
3University of Bergen and 4Peking University

Abstract: We establish the asymptotic theory for the estimation of adaptive varying-

coefficient linear models. More specifically, we show that the estimator of the

index parameter is root-n-consistent. It differs from the locally optimal estimator

that has been proposed in the literature with a prerequisite that the estimator is

within a n−δ-distance of the true value. To this end, we establish two fundamental

lemmas for the asymptotic properties of the estimators of parametric components

in a general semiparametric setting. Furthermore, the estimation for the coefficient

functions is asymptotically adaptive to the unknown index parameter. Asymptotic

properties are derived using the empirical process theory for strictly stationary

β-mixing processes.
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1. Introduction

We consider a class of adaptive varying-coefficient models of the form

Yt = a0

{
αT

0 Xt

}
+ b0

{
αT

0 Xt

}
T
Xt + εt, (1.1)

where t is time, Xt = (Xt,1, . . . , Xt,d)
T is a d×1 predictor vector which may con-

sist of some lagged values of Yt and/or other exogenous variables, and E(εt|Xt) =

0. In (1.1), the index parameter α0 is unknown, and both a0(·) and b0(·),
which are R

1- and R
d-valued respectively, are also unknown. This model is

coined as adaptive by Fan, Yao and Cai (2003) to indicate that the coefficients

are functions of an unknown index variable αT

0 Xt, in contrast to, for example,

the functional-coefficient models of Chen and Tsay (1993) and Cai, Fan and Yao

(2000). This is a general nonlinear (dynamical) model. For example, if Xt =

{Yt−1, Yt−2, . . . , Yt−d}T, (1.1) reduces to the adaptive varying-coefficient linear

autoregressive model (Tong (1990), Xia and Li (1999) and Fan, Yao and Cai

(2003)). On the other hand, to include some financial econometrics models one
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could specify Xt = {Yt−1, Yt−2, . . . , Yt−p, Ut, Ut−1, . . . , Ut−q}T for some exogenous

process Ut; see Hannan (1970), Gourieroux and Jasiak (2001) and Hong and Lee

(2003). Formally (1.1) also includes the popular single-index model and the gen-

eralized partially linear single-index models as special cases; see Chapter 8 of

Fan and Yao (2003) and the references within. The major advantage of (1.1)

is that it does not suffer from the curse of dimensionality often encountered in

multivariate nonparametric settings, since both a0(·),b0(·) are functions of a

univariate variable.

The estimation for model (1.1) with independent observations has been in-

vestigated in several papers. Ichimura (1993) proposed the form (1.1). Following

the lead of Härdle, Hall and Ichimura (1993), Xia and Li (1999) estimated the

index parameter α0 by a computationally expensive cross-validation method. By

assuming this cross-validation estimator to be within n−δ-distance of α0 for some

δ ∈ (3/10, 1/2), Xia and Li (1999) showed that the estimator is root-n consistent.

More recently, Fan, Yao and Cai (2003) established a new computationally effi-

cient procedure based on the profile least-squares local linear weighted regression.

They also addressed the issue of deleting locally insignificant variables to avoid

overfitting. While the proposed methodology was proved effective in numerical

illustrations with both simulated and real data, the sampling properties of the

estimators remain to be established. One of the primary goals of this paper is to

fill this gap.

More precisely, we establish the asymptotic theory for the estimation of

adaptive vary-coefficient linear modelling with the observations from a mixing

processes, which is applicable to both independent data and time series. We

show that the estimator for the global parameter α0 is root-n consistent with-

out assuming it to be within a n−δ-distance of the true value, a condition of-

ten imposed for problem of this nature; see, for example, Härdle et al. (1993),

Carroll, Fan, Gijbels and Wand (1997) and Xia and Li (1999). Based on this re-

sult, we also show that the coefficient functions a0(·) and b0(·) can be estimated

asymptotically as well as if α0 were given. Our asymptotic theory shows that

two different bandwidths should be used in estimating the global parameter α0

and the local parameters a0,b0. This is in line with the common knowledge that

a global parameter should be estimated in an undersmoothed manner.

At the technical level, our approach differs from that of Härdle et al. (1993)

and Xia and Li (1999). Lemmas 4.1 and 4.2 in Section 4 below play a basic

role in deriving the asymptotic properties of the estimators. They themselves

are of independent interest, as they provide a general framework for establishing

the root-n consistency and the asymptotic normality for profile M -estimators
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(such as profile maximum likelihood estimation or profile least squares estima-

tion) for global parameters in semiparametric settings. They may be viewed

as an analogue of the results of Chan, Linton and Keilegom (2003) which dealt

with generalised method-of-moments estimation only. We validate the conditions

of the lemmas using the empirical process theory of Doukhan, Massart and Rio

(1995). In Lu, Steinskog, Tjøstheim and Yao (2006), we apply the theory devel-

oped in this paper to varying coefficient models for spatio-temporal processes,

where further numerical illustrations are reported.

A short overview of the paper is as follows. The model and the estimation

method are stated in Section 2. Asymptotic properties are presented in Section 3.

Two general lemmas on the consistency and the asymptotic normality of profile

M -estimation are established in Section 4. We prove the main results in Section 5.

A uniform convergence rate of the profile kernel regression estimator is established

in the Appendix.

2. Estimation Procedure

Fan, Yao and Cai (2003) showed that appropriate constraints on the form

(1.1) should be imposed in order to make the model identifiable. In fact,

Fan, Yao and Cai (2003, p.59) assumed the last component of α0 = (α01, . . .,

α0d)
T to be non-zero, resulting in the model

Yt = a0{αT

0 Xt} + X̆T

t b0{αT

0 Xt} + εt = X
T

t g0{αT

0 Xt} + εt.

(2.1)

Here X̆t = (Xt,1, . . . , Xt,d−1)
T is the remaining vector of Xt with its dth compo-

nent deleted, the notation b0 is retained but with only d − 1 components from

now on, Xt = (1, X̆T
t )T, and g0 = (a0,b

T
0 )T. Note (1.1) may always be expressed

in the form of (2.1) provided α0d 6= 0. Furthermore, we assume that ||α0|| = 1,

the first non-zero component of α0 is positive, that

E(Yt|Xt = x) 6= αT

0 xβTx + γTx + c

for some β,γ ∈ R
d and c ∈ R

1, and that β and α0 are not parallel to each

other. Then α0, a0(·) and b0(·) in (2.1) are all identifiable; see Theorem 1 of

Fan, Yao and Cai (2003). Furthermore, we assume |α0d| > ε0 for a given constant

ε0 ∈ (0, 1). Put

B = {α = (α1, . . . , αd)
T ∈ R

d : ‖α‖ = 1, the first non-zero element is positive,

and |αd| ≥ ε0}. (2.2)

Then α0 is an inner point of the compact set B. Therefore we need only search

for α0 over B.
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Let K(·) be a kernel function, Kh(·) = h−1K(·/h), h > 0 be a bandwidth,

and w(·) = I[−L,L](·) (L > 0) be a weight function controlling the edge effect in

the estimation. Fan, Yao and Cai (2003) proposed the following iterative profile

least squares estimation procedure.

1. For given α and Zt = αTXt, minimise

n∑

t=1

[
Yt − a − c(Zt − z) − {b− d(Zt − z)}T

X̆t

]2
Kh{Zt − z}w{Zt} (2.3)

over θ = θ(z,α) = (a,b, c,d), leading to the estimators

θ̂(z,α, h) ≡ θ̂(z,α) = {â(z,α, h), b̂(z,α, h)T, ̂̇a(z,α, h),
̂̇
b(z,α, h)T}T

= {â(z,α), b̂(z,α)T, ̂̇a(z,α),
̂̇
b(z,α)T}T

= (â, b̂T, ĉ, d̂T)T, (2.4)

where ḟ denote the derivative of a function f .

2. Let α̃ = β̂, where β̂ minimises

R(β) =
1

n

n∑

t=1

[
Yt − â{βTXt,α} − b̂{βTXt,α}TX̆t

]2
w(αTXt). (2.5)

3. Repeat the above two steps with α = α̃ until the successive values of R(α̃)

differ insignificantly. Denote by α̂ the final estimator of the index parameter.

It is well known that if α is known, the optimal bandwidth h used in (2.3)

is of order O(n−1/5). However, if α is unknown, in order to ensure that the

estimator α̂ is root-n consistent, the bandwidth h used in the above iteration

should be smaller than O(n−1/5) if we only assume a(·) and b(·) are second

order differentiable (see Theorem 3.2 below). Note that once the estimator α̂ is

available, a different bandwidth ~ of order O(n−1/5) should be used in the final

estimators for a(·) and b(·) (see Corollary 3.3 below).

For a fixed α, the sampling properties of the estimator θ̂ defined in (2.4)

follows the standard asymptotic theory of local linear regression estimation (Fan

and Gijbels (1996) and Fan and Yao (2003)). However it is more challenging to

develop the asymptotic properties of the estimator α̂ as defined in (2.5). One

fundamental difficulty is the lack of an explicit expression for such an α̂, since it

is defined iteratively. To get around this difficulty, we slightly alter the definition

of the estimator for α and take

α̂ = arg min
α∈B

Rn{â(·,α, h), b̂(·,α, h),α}, (2.6)
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where B is defined in (2.2) and

Rn{â(·,α, h), b̂(·,α, h),α}

=
1

n

n∑

t=1

[
Yt − â{αTXt,α, h} − b̂{αTXt,α, h}TX̆t

]2
w(αTXt). (2.7)

It is easy to see the backfitting iteration of (2.3) – (2.5) is an approximate and

computationally efficient way to evaluate α̂ defined in (2.6), while (2.6) itself is

theoretically more tractable. We sketch below how we proceed with the theoret-

ical investigation.

With α and Zt given, (2.3) divided by n is a consistent estimate of

Rz(a(·),b(·),α) = E

{(
Yt − a(Zt) − b(Zt)

TX̆t

)2
w(Zt) | Zt = z

}

= E

{(
Yt − a(z) − b(z)TX̆t

)2
w(z) | Zt = z

}
. (2.8)

Corresponding to (2.5), we define

R(a(·),b(·),α) = E

{(
Yt − a(Zt) − b(Zt)

TX̆t

)2
w(Zt)

}
, (2.9)

which is related to Rz(a(·),b(·),α) via

R(a(·),b(·),α) =

∫
Rz(a(·),b(·),α)fZ(z)dz

= E

{(
Yt − a(Zt) − b(Zt)

TX̆t

)2
w(Zt)

}
, (2.10)

where fZ(z) = fZ(z,α) is the density function of Zt = Zt(α) = αTXt. Note

that, with α given, the minimiser of (2.8) is
(

a0(z,α)

b0(z,α)

)
=
[
E
(
Xt X

T

t

∣∣∣Zt(α) = z
)]−1

[E(XtYt|Zt(α) = z)] , (2.11)

where Xt = (1, X̆T
t )T,defined below (2.1). It is easy to see from (2.10) that

{a0(·,α), b0(·,α)} is also the minimizer of (2.9) for any fixed α. Now the true

value of the index parameter should satisfy

α0 = arg min
α

R(a0(·,α),b0(·,α),α). (2.12)

We see intuitively that â(z,α) and b̂(z,α) defined in (2.4) are consistent esti-

mators of a0(z,α) and b0(z,α) (see Theorem 3.1). The estimator α̂ at (2.6)

is a consistent estimator of α0 given in (2.12) (Theorem 3.2), and (2.7) is a

consistent estimator of R(a0(·,α),b0(·,α),α). Finally, â0(z) ≡ â(z, α̂, ~) and

b̂0(z) ≡ b̂(z, α̂, ~) (see (2.4)) are, respectively, the consistent estimators for

a0(z) ≡ a0(z,α0) and b0(z) ≡ b0(z,α0) (Corollary 3.3).
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3. Main Results

3.1. Regularity conditions and notations

We assume {(Yt,Xt)} is a strictly stationary process. Put εt,α = Yt −
a0(α

TXt,α) − b0(α
TXt,α)TX̆t for α ∈ B defined in (2.2). Then εt,α0 = εt

defined in (2.1). Note {εt} may not be a process of i.i.d. variables. We denote

the conditional probability density of ξ given η by fξ|η(·|·). Some regularity

conditions are now in order.

(C1) (Conditions on probability densities)

The density fZ(z,α) = fαTXt
(z) is continuous and bounded away from zero

for z ∈ [−L,L], uniformly for α ∈ B. Furthermore, the joint probability

density function of (αTXt0 ,α
TXt1 , . . . ,α

TXts) exists and is bounded uni-

formly for any t0 < t1 < · · · < ts and 0 ≤ s ≤ 2(r − 1) and α ∈ B, where

r ≥ 1 is some positive integer.

(C2) (Moment conditions)

E|Yt|%r < ∞, E‖Xt‖%r < ∞, E|εt|%r < ∞, and supα∈B E|εt,α|%r < ∞ for

some real number % > 4 − 2/r, with r given in (C1).

(C3) (Inverse matrix conditions)

The matrix function A1(z,α) ≡ E
(
Xt X

T
t

∣∣αTXt = z
)

is positive definite

for z ∈ [−L,L] and α ∈ B, where Xt is defined in (2.1).

(C4) (Conditions on the nonparametric functions)

The functions a0(z,α) and b0(z,α), defined in (2.11), are twice continu-

ously differentiable with respect to z and continuously differentiable with

respect to α. Also, the derivative of R(a0(·,α),b0(·,α),α) defined by (2.9)

with respect to α, and the expectation involved, are exchangeable.

(C5) (Mixing conditions)

The process {(Yt,Xt)} is β-mixing with the mixing coefficients β(t) =

O(t−b) for some b > max{2(%r + 1)/(%r − 2), (r + a)/(1 − 2/%)}, where

r and % are specified in (C1) and (C2), and a ≥ (r% − 2)r/(2 + r% − 4r).

(C6) (Conditions on the kernel function)

The kernel K(·) is a bounded and symmetric density function on R
1 with

bounded support SK . Furthermore, |K(x)−K(y)| ≤ C|x−y| for x, y ∈ SK

and some 0 < C < ∞.
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(C7) (Conditions on the bandwidth)

The bandwidth h satisfies the conditions

lim
n→∞

h = 0 and lim inf
n→∞

nh
2(r−1)a+(%r−2)

(a+1)% > 0 (3.1)

for some integer r ≥ 3. Furthermore, there exists a sequence of positive inte-

gers sn → ∞ such that sn = o((nh)1/2), ns−b
n → 0 and snh2(%r−2)/[2+b(%r−2)]

> 1 as n → ∞.

Remark 1. Condition (C1) is satisfied under some mild conditions on the regres-

sor process {Xt}; see condition (C1′) and Lemma 3.1 below. Let L0 = L(1+ε−1
0 ).

The proof of Lemma 3.1 is given in the Appendix.

(C1′) The probability density fXt(x) of Xt is continuous and bounded away from

zero on the compact set [−L0, L0]
d ⊂ R

d. Furthermore, the joint probability

density function of (Xt0 ,Xt1 , . . . ,Xts) and the conditional density function

of (Xt0 ,d, Xt1 ,d, . . . , Xts ,d) given (X̆t0 , X̆t1 , . . . , X̆ts) exist and are bounded

uniformly for any t0 < t1 < · · · < ts and 0 ≤ s ≤ 2(r − 1), where r ≥ 1 is

some positive integer.

Lemma 3.1. Condition (C1) is implied by (C1′).

Remark 2. Condition (C2) is stronger than the standard ones imposed in

nonparametric regression estimation. This is due to the fact that we need to

establish uniform convergence for nonparametric regression estimators of a(·,α)

and b(·,α) for all α ∈ B. In fact the moment condition E(e|εt|) < ∞ employed

by Härdle et al. (1993) and Xia and Li (1999) is stronger than (C2). Many linear

and nonlinear time series satisfy mixing condition (C5); see, for example, Sec-

tion 2.6 of Fan and Yao (2003). The bandwidth condition (C7) is also standard

for this type of problem in the context of time series (c.f., Fan and Yao (2003)).

Note that (3.1) holds for h = O(n−1/5) if a > {(r − 5)% − 2}/{5% − 2r + 2} with

% > max{2(r − 2)/5, 2/(r − 5)} and r > 5. It also holds for h = O(n−1/4) if

a > {(r − 4)% − 2}/{4% − 2r + 2} with % > max{(r − 2)/2, 2/(r − 4)} and r > 4.

Therefore condition (C7) is met for appropriate constants r, % and a given in

(C1), (C2) and (C5).

We now list the notation to be used in the rest of the paper. Let Xt0 ≡ 1,

Dn = {1, . . . , n}, Sw = [−L,L], µi,K =
∫

uiK(u) du and νi,K =
∫

uiK2(u) du.

Let S and S̃ be 2 × 2 matrices with, respectively, µi+j−2,K and νi+j−2,K as the

(i, j)th elements. Let s = (µ2,K , µ3,K)T be a 2 × 1 vector.
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Put θ0(z,α) = (a0(z,α),b0(z,α)T, ȧ0(z,α), ḃ0(z,α)T)T, where ȧ0(z,α) =

∂a0(z,α)/∂z, ḃ0(z,α) = ∂b0(z,α)/∂z. Similarly, write ä0(z,α) = ∂2a0(z,α)/

∂z2 and b̈0(z,α) = ∂2b0(z,α)/∂z2.

For notational convenience, we write

g = (g1, . . . ,gd)T = g(z,α) = (a(z,α),b(z,α)T)T, (3.2)

and g0 = g0(z,α) and ĝ = ĝ(z,α) are defined in a similar manner. Assume

g(z,α) is second order differentiable. Denote by g1 = g1(z,α) the d × 1 vector

whose jth element is g
j
1 = g

j
1(z,α) = ∂gj(z,α)/∂z, and g2 = g2(z,α) the d × d

matrix whose (i, j)th element is g
ij
2 = g

ij
2 (z,α) = ∂gi(z,α)/∂αj. Similarly, we

define g01 = g01(z,α) = ∂g0(z,α)/∂z, g02 = g02(z,α) = ∂g0(z,α)/∂αT and

ĝ1 = ĝ1(z,α) = ∂ĝ(z,α)/∂z, ĝ2 = ĝ2(z,α) = ∂ĝ(z,α)/∂αT.

The Euclidean norm of g is denoted as before by ‖g‖ = (gTg)1/2. We also use

the notation ‖g‖G = sup|z|≤L,α∈B ‖g(z,α)‖ for a continuous function g defined

on Sw × B (c.f., § 5.2). Under (C4), such a norm can apply to g0(z,α) and its

first order partial derivatives.

For α ∈ B fixed, we are also concerned with an alternative norm of g(z,α) as

a function of z. For any nonnegative integer κ and any smooth function g : Sw 7→
R

d, define the differential operator Dκg(z) = dκg(z)/dzκ, note Sw = [−L,L] is

the support of w(·) and is a bounded, convex subset of R
1 with nonempty interior.

For some φ > 0, let [φ] be the largest integer not greater than φ, and define (if

it exists)

‖g‖∞,φ = max
0≤κ≤[φ]

sup
|z|≤L

‖Dκg(z)‖ + sup
z 6=z′

|z|≤L

‖D[φ]g(z) −D[φ]g(z′)‖
|z − z′|φ−[φ]

.

Further, let Cφ
c (Sw) be the set of all continuous functions g : Sw 7→ Rd with

‖g‖∞,φ ≤ c. With these notations at hand, we define a function space G in

Section 5.2. Clearly, under (C4), such a norm may apply to the function g0(z,α)

and its first order partial derivatives (with α fixed) with φ = 2 and φ = 1,

respectively.

3.2. Asymptotic properties

We state the asymptotic properties of our estimation procedure in two steps.

First Theorem 3.1 states that θ̂(z,α, h), defined in (2.4) with h = O(n−1/5), is

asymptotically normal for any α ∈ B fixed. Furthermore the same result still

holds if α is replaced by a root-n consistent estimator. Theorem 3.2 presents

the asymptotic normality for the estimator α̂, given as (2.6), with the standard

root-n convergence rate provided h = o(n−1/4).
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Theorem 3.1. Let (C1)−(C7) hold and h = O(n−1/5). Then it holds, for α ∈ B,

that

√
nh

[
Hn

{
θ̂(z,α, h) − θ0(z,α)

}
− 1

2
h2B(z)

]
D→ N{0,A(z)}, (3.3)

where Hn = diag(1, h) ⊗ Id×d, with Id×d the d × d identity matrix and ⊗ the

Kroneck product, B(z) = {(S−1s) ⊗ Id×d}(ä0(z,α), b̈0(z,α)T)T = ((ä0(z,α),

b̈0(z,α)T)µ2,K , 0, . . . , 0)T ∈ R
2d, A(z) = {fZ(z)}−1(S−1S̃S−1) ⊗ (G−1(z)G̃(z)

G−1(z)), and G(z) and G̃(z) are two d × d matrices with, respectively, Gij(z) =

E(Xt,i−1Xt,j−1|Zt = z) and G̃ij(z) = E(ε2
t,αXt,i−1Xt,j−1|Zt = z) as the (i, j)th

elements.

Furthermore, (3.3) still holds if α is replaced by α̌ provided α̌−α=Op(n
−1/2).

Theorem 3.2. Suppose (C1)−(C7) hold. Set Z o
t = αT

0 Xt. Then if % ≥ 6, r > 3d

and nh4 = O(1), nh3+3d/r → ∞ as n → ∞, it holds that

√
n

{
α̂ − α0 +

1

2
Γ−

0 Bh2

}
D→ N

(
0, Γ−

0 V0(Γ
−
0 )T

)
, (3.4)

where, setting g01t = g01(Z
o
t ,α0) and g02t = g02(Z

o
t ,α0),

B = E
{

(g01tX
T

t + g02t)
T
XtX

T

t g̈0(Z
o
t )w(Zo

t )
}

µ2,K ,

Γ0 = E
{

(g01tX
T

t + g02t)
T
XtX

T

t (g01tX
T

t + g02t)w(Zo
t )
}

,

V0 = Eε2
t

[
ΞtΞ

T

t − {E(ΞtX
T

t |Zo
t )}{E(XtX

T

t |Zo
t )}−1{E(XtΞ

T

t |Zo
t )}
]
,

Γ−
0 is a generalized inverse of Γ0, Ξt = Xt

{
ȧ0(Z

o
t ) + ḃ0(Z

o
t )TX̆t

}
w(Zo

t ), and

G0(z) is a d × d matrix with the (i, j)th elements G0
ij(z) = E(Xt,i−1Xt,j−1|Zo

t =

z).

Furthermore, if nh4 = o(1), then (3.4) reduces to

√
n {α̂ − α0} D→ N

(
0, Γ−

0 V0(Γ
−
0 )T

)
. (3.5)

Corollary 3.3. Assume the conditions of Theorem 3.2 hold, with α̂ defined in

(2.6) with h = o(n−1/4). Then letting ~ = O(n−1/5), we have

√
n~

[
H̄n

{
θ̂(z, α̂, ~) − θ0(z,α0)

}
− 1

2
~

2B0(z)

]
D→ N{0,A0(z)}, (3.6)

where H̄n = diag(1, ~)⊗ Id×d, and B0(z) and A0(z) are defined in the same way

as B(z) and A(z) in Theorem 3.1, with α replaced by α0.

This corollary follows directly from Theorems 3.1 and 3.2.
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Remark 3. (i) The estimator θ̂(z, α̂, ~) is asymptotically adaptive to unknown

α0 in the sense that θ̂(z, α̂, ~) and θ̂(z,α0, ~) share the same (first order) asymp-

totic distribution.

(ii) For α 6= α0, E{εt,α} 6= 0. However the estimator θ̂(z,α, ~) is still

asymptotic unbiased due to the least squares property; see Lemma 5.1 below.

4. Two Important Lemmas

To establish the asymptotic properties for the estimator α̂, we first establish

two lemmas of independent interest. We do not make use of the specific forms of

g(z,α) and B in the proofs, so they are applicable to the estimators for parameter

vectors in general semiparametric settings.

4.1. Consistency lemma

In this section, for generality, let B be a closed subset in R
d, and G the

space of functions of the form g(z,α), defined on Sw × B, with a norm ‖g‖G .

We are concerned with the functions g(z,α), ĝ(z,α) and g0(z,α) in G. Let

g0(z) = g0(z,α0). In Section 5, we specify B and G with the norm ‖g‖G in the

context of the (2.1).

Lemma 4.1. Suppose α0 ∈ B satisfies R(g0(·),α0) = infα∈B R(g0(·,α),α), and

that the following hold.

(i) Rn (ĝ(·, α̂), α̂) ≤ infα∈B Rn (ĝ(·,α),α) + oP (1).

(ii) For all δ > 0, there exists ε(δ) > 0 such that

inf
‖α−α0‖>δ

R (g0(·,α),α) ≥ R (g0(·),α0) + ε(δ).

(iii)Uniformly for all α ∈ B, R (g(·,α),α) is continuous [with respect to the

metric ‖ · ‖G] in g(·,α) at g0(·,α).

(iv) ‖ĝ(·, ·) − g0(·, ·)‖G = oP (1).

(v) For all {δn} with δn = o(1),

sup
α∈B

sup
‖g(·,α)−g0(·,α)‖G≤δn

|Rn (g(·,α),α) − R (g(·,α),α)| = oP (1).

Then α̂ − α0 = oP (1).

Proof. The proof is similar to that of Corollary 3.2 in Pakes and Pollard (1989)

and Theorem 1 in Chan, Linton and Keilegom (2003). By (ii), for all δ > 0,

P{‖α̂ − α0‖ > δ} ≤ P {R (g0(·, α̂), α̂) − R (g0(·),α0) ≥ ε(δ)} ,

hence it suffices to show that

R (g0(·, α̂), α̂) − R (g0(·),α0) = oP (1). (4.1)
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Note that

R (g0(·, α̂), α̂) − R (g0(·),α0) = R (g0(·, α̂), α̂) − R (ĝ(·, α̂), α̂) (4.2)

+R (ĝ(·, α̂), α̂) − Rn (ĝ(·, α̂), α̂) (4.3)

+Rn (ĝ(·, α̂), α̂) − R (g0(·),α0) . (4.4)

That the expression in (4.2) tends to 0 in probability clearly follows from con-

ditions (iii) and (iv). The absolute value of the expression in (4.3) is bounded

above by supα∈B |R(ĝ(·, α̂), α̂)−Rn(ĝ(·, α̂), α̂)| = oP (1), which follows from (iv)

and (v). Finally, we have to show that the expression in (4.4) tends to 0 in

probability. As Rn (ĝ(·, α̂), α̂) = infα∈B Rn (ĝ(·,α),α), note that

Rn (ĝ(·,α),α) = {Rn (ĝ(·,α),α) − R (ĝ(·,α),α)}
+ {R (ĝ(·,α),α) − R (g0(·,α),α)} + R (g0(·,α),α)

≤ sup
α∈B

|Rn (ĝ(·,α),α) − R (ĝ(·,α),α)|

+ sup
α∈B

|R (ĝ(·,α),α) − R (g0(·,α),α)| + R (g0(·,α),α) ,

≡ R1 + R2 + R (g0(·,α),α) . (4.5)

Then we have

Rn (ĝ(·, α̂), α̂) ≤ R1 + R2 + inf
α∈B

R (g0(·,α),α) = R1 + R2 + R (g0(·),α0) .

(4.6)

It follows, from (iv) and (v) that R1 = oP (1), and from (iii) and (iv) that

R2 = oP (1), and thus we deduce from (4.6) that, for any ε > 0 as n → ∞,

P {Rn (ĝ(·, α̂), α̂) ≤ ε + R (g0(·),α0)} → 1. (4.7)

Similarly, by exchanging Rn (ĝ(·,α),α) and R (g0(·,α),α) in (4.5), we can prove

P {R (g0(·),α0) ≤ ε + Rn (ĝ(·, α̂), α̂)} → 1. (4.8)

Therefore it follows from (4.7) and (4.8) that (4.4) tends to 0 in probability, and

hence (4.1) is proved.

4.2. Asymptotic normality lemma

Suppose R (g0(·,α),α) and Rn (ĝ(·,α),α) are differentiable with respect to

α. Denote the derivatives of R (g(·,α),α) and Rn (g(·,α),α) with respect to α

by

Ṙ (g(·,α),α) =
dR (g(·,α),α)

dα
and Ṙn (g(·,α),α) =

dRn (g(·,α),α)

dα
.
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Then as α0 and α̂ are the minimizers of R (g0(·,α),α) and Rn (ĝ(·,α),α), re-
spectively, we have

Ṙ (g0(·,α0),α0) = Ṙ (g0(·),α0) = 0 and Ṙn (ĝ(·, α̂), α̂) = 0.

Define the ordinary derivative of Ṙ(g(·,α),α) with respect to α (if it exists)
as

Γ1(g(·,α),α) =
dṘ (g(·,α),α)

dαT
=

d2R (g(·,α),α)

dαdαT
,

and the functional derivative Γ2 of Ṙ(g(·,α),α) with respect to g(·,α) at g0(·,α)
in the direction g(·,α) − g0(·,α) by

Γ2(g0(·,α),α)[g(·,α) − g0(·,α)]

= lim
τ→0

[
Ṙ(g0(·,α) + τ(g(·,α) − g0(·,α)),α) − Ṙ(g0(·,α),α)

] 1

τ
(4.9)

(if the limit exists) for all g(·,α) satisfying g0(·,α) + τ(g(·,α) − g0(·,α)) ∈ G
with τ ∈ [0, 1].

Now we assume that α̂ is consistent and α0 ∈ B. Therefore the parameter
space B and G can be replaced by small or even shrinking sets. Define Bδ = {α ∈
B : ‖α − α0‖ ≤ δ} and Gδ = {g ∈ G : ‖g(·,α) − g0(·,α)‖G ≤ δ}.
Lemma 4.2. Assume that Rn (ĝ(·,α),α) is differentiable with respect to α with
the derivative Ṙn (ĝ(·,α),α), and R (g0(·,α),α) is second order differentiable
with respect to α, with first order derivative Ṙ (g0(·,α),α) and second order
derivative Γ1 (g0(·,α),α). Suppose that α0 ∈ Bδ satisfies Ṙ (g0(·,α0),α0) = 0,
that α̂ − α0 = oP (1), and that the following hold.
(i) Ṙn (ĝ(·, α̂), α̂) = oP (n−1/2).
(ii) (1) Γ1(g0(·,α),α) is continuous at α = α0.

(2) Γ1 = Γ1(g0(·,α0),α0) has generalized inverse, Γ−
1 .

(iii) For all α ∈ Bδ, the pathwise derivative, Γ2(g0(·,α),α)[g(·,α) − g0(·,α)]
(c.f., (4.9)), of Ṙ(g0(·,α),α) exists in all directions g(·,α) − g0(·,α) ∈ Gδ,
and satisfies (1) uniformly for α ∈ Bδ, ‖Ṙ(ĝ(·,α),α) − Ṙ(g0(·,α),α) −
Γ2(g0(·,α),α)[ĝ(·,α) − g0(·,α)]‖ = oP (n−1/2);
(2) for all (g(·,α),α) ∈ Gδn

× Bδn
with a positive sequence δn = o(1):

‖Γ2(g0(·,α),α)[g(·,α)− g0(·,α)]−Γ2(g0(·,α0),α0)[g(·,α0)− g0(·,α0)]‖ ≤
o(1)‖α − α0‖.

(iv) ĝ(·,α) ∈ G with probability tending to 1, and ‖ĝ(·,α) − g0(·,α)‖G = oP (1),
‖ĝ1(·,α) − g10(·,α)‖G = oP (1), and ‖ĝ2(·,α) − g20(·,α)‖G ] = oP (1).

(v) For all sequences of positive numbers {δn} with δn = o(1),

sup
‖α−α0‖≤δn

sup
‖g(·,α)−g0(·,α)‖G≤δn

∥∥∥Ṙn (g(·,α),α) − Ṙ (g(·,α),α)

−Ṙn (g0(·,α0),α0)
∥∥∥ = oP (n− 1

2 ).
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(vi) For some Bn = O(n−1/2) and some finite matrix V1,

√
n
{

Ṙn (g0(·,α0),α0) + Γ2(g0(·,α0),α0)[ĝ(·,α0) − g0(·,α0)] − Bn

}

D→ N(0, V1).

Then
√

n(α̂ − α0 + Γ−
1 Bn)

D→ N(0,Ω), where Ω = Γ−
1 V1(Γ

−
1 )T.

Remark 4. The objective function defining the semi-parametric estimators in

Chen et al. (2003) is of a generalized method of moments (GMM) type, and

hence their Theorem 2 does not apply directly to least-squares (in this paper) or

maximum-likelihood-like semi-parametric estimators. Their argument is, how-

ever, helpful for the proof of this lemma. Note that the conditions (i), (ii) and

(v) specified for the derivative of the objective function in this lemma are ba-

sically similar to those on the GMM type objective function in Theorem 2 of

Chen et al. (2003), while the conditions (iii), (iv) and (vi) are different. In fact,

condition (iv) is much weaker than that of Chen et al. (2003) which requires the

convergence of rate oP (n−1/4), and condition (vi) allows a bias term Bn.

Proof. We only sketch the proof here. First we are establishing
√

n-consistency

of α̂ to α0. Owing to α̂−α0 = oP (1) and condition (iv), we can choose a positive

sequence δn = o(1) such that P{‖α̂−α0‖ ≤ δn, ‖ĝ(·,α)−g0(·,α)‖G ≤ δn} → 1.

So in the following we need only to look at (g(·,α),α) ∈ Gδn
× Bδn

. In light of

Ṙ (g0(·,α0),α0) = 0 and condition (ii), we have by Taylor expansion that

Ṙ (g0(·, α̂), α̂) = Γ1 (g0(·,α0),α0) (α̂ −α0)(1 + oP (1)), (4.10)

which implies that α̂−α0 has the same convergence rate to 0 as that of Ṙ(g0(·, α̂),

α̂). Similarly to (5) and (6) of Chen et al. (2003), it is obvious that

‖Ṙ (g0(·, α̂), α̂) ‖ ≤ ‖Ṙ (g0(·, α̂), α̂) − Ṙ (ĝ(·, α̂), α̂) ‖
+ ‖Ṙ (ĝ(·, α̂), α̂) − Ṙn (ĝ(·, α̂), α̂) + Ṙn (g0(·,α0),α0) ‖
+ ‖Ṙn (ĝ(·, α̂), α̂) ‖ + ‖ − Ṙn (g0(·,α0),α0) ‖

≡ D1 + D2 + D3 + D4,

D1≤ ‖Ṙ (ĝ(·, α̂), α̂) − Ṙ (g0(·, α̂), α̂) − Γ2 (g0(·, α̂), α̂) [ĝ(·, α̂) − g0(·, α̂)]‖
+ ‖Γ2 (g0(·, α̂), α̂) [ĝ(·, α̂)−g0(·, α̂)]−Γ2 (g0(·,α0),α0) [ĝ(·,α0)−g0(·,α0)]‖
+ ‖Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]‖
≡ D11 + D12 + D13.

Clearly, conditions (iii)(1) implies D11 = oP (n−1/2); condition (iii)(2) and (4.10)

imply D12 = ‖Ṙ (g0(·, α̂), α̂) ‖ × oP (1); condition (vi) implies D13 = OP (n−1/2)
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and D4 = OP (n−1/2); condition (i) implies D3 = oP (n−1/2); condition (v) implies

D2 = oP (n−1/2). Therefore it follows that ‖Ṙ (g0(·, α̂), α̂) ‖ × (1 − oP (1)) =

OP (n−1/2), and hence α̂ − α0 = OP (n−1/2).

Next, set Ln(α) = Ṙn (g0(·,α0),α0)+Γ1(α−α0)+Γ2 (g0(·,α0),α0) [ĝ(·,α0)

−g0(·,α0)]. It is obvious that

‖Ln(α̂)‖
≤ ‖Ṙn (ĝ(·, α̂), α̂) −Ln(α̂)‖ + ‖Ṙn (ĝ(·, α̂), α̂) ‖
≤ ‖Ṙ (ĝ(·, α̂), α̂) − Ṙ (g0(·, α̂), α̂) − Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]‖

+‖Ṙ (g0(·, α̂), α̂) − Γ1(α̂ − α0)‖
+‖Ṙn (ĝ(·, α̂), α̂) − Ṙ (ĝ(·, α̂), α̂) − Ṙn (g0(·,α0),α0) ‖
+‖Ṙn (ĝ(·, α̂), α̂) ‖

≡ D5 + D6 + D7 + D8.

Clearly conditions (iii) and (iv), together with α̂ − α0 = OP (n−1/2), imply

D5 = oP (n−1/2); in view of Ṙ (g0(·,α0),α0) = 0, it follows by Taylor expansion,

with condition (ii)(1) as well as α̂ − α0 = OP (n−1/2), that D6 = oP (n−1/2);

condition (v) implies D7 = oP (n−1/2); condition (i) implies D8 = oP (n−1/2).

Therefore Ln(α) = oP (n−1/2), which leads to

α̂ − α0 + Γ−
1 Bn

= −Γ−
1

{
Ṙn (g0(·,α0),α0) + Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)] − Bn

}

+oP (n− 1
2 ),

and hence the lemma follows from condition (vi).

5. Proof of the Main Results

Recall that εt,α = Yt−a0(α
TXt,α)−b0(α

TXt,α)TX̆t = Yt−g0(α
TXt,α)T

Xt, and Xt was defined in (2.1). The following lemma is basic and is used through-

out.

Lemma 5.1. For any measurable function g(·,α) = (a(·,α),b(·,α)T)T on R
1,

we have

Eεt,α{a(αTXt,α) + b(αTXt,α)TX̆t} = Eεt,αg(αTXt,α)TXt = 0. (5.1)

Proof of Lemma 5.1. Note that the left hand side of (5.1) equals

∫ [
E
{(

Yt − a0(z,α)−b0(z,α)TX̆t

) (
a(z)+b(z)TX̆t

)∣∣∣αTXt = z
}]

fZ(z) dz,
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and that by the definition of a0(·,α) and b0(·,α) in (2.11),

E
{(

Yt − a0(z,α) − b0(z,α)TX̆t

)
Xt

∣∣∣αTXt = z
}

= 0.

Therefore (5.1) follows.

5.1. Proof of Theorem 3.1

It follows from (2.3) by least squares that

θ̂(z,α) = θ̂(z,α, h) = H−1
n

(
âz, b̂

T

z , ̂̇azh, ̂̇b
T

z h

)
T

= H−1
n

{
X (z)TW(z)X (z)

}−1 {
X (z)TW(z)Y

}
, (5.2)

where Y = (Y1, . . . , Yn)T, W(z) = W(z,α) is an n × n diagonal matrix with

Kh{Zt − z}w{Zt} as its tth diagonal element, X (z) = X (z,α) is an n × 2d

matrix with (XT
t , h−1(Zt − z)XT

t ) as its tth row and Xt = (1, X̆T
t )T, and Hn =

diag(1, h) ⊗ Id×d.

Let Φ̂= Φ̂(z;α)=n−1X (z)TW(z)X (z) and Ψ̂= Ψ̂(z;α)=n−1X (z)TW(z)Y,

with the (i, j)th elements Φ̂i,j and Ψ̂i,j, respectively. Also, recall that Xt,0 ≡ 1

for notational convenience. Then with the notations in (5.2), we have, for i, j =

1, . . . , d,

Φ̂i,j = n−1
n∑

t=1

Xt,i−1Xt,j−1Kh(Zt − z)w(Zt), (5.3)

Φ̂i,d+j = Φ̂d+j,i = n−1
n∑

t=1

Xt,i−1Xt,j−1
Zt − z

h
Kh(Zt − z)w(Zt), (5.4)

Φ̂d+i,d+j = n−1
n∑

t=1

Xt,i−1Xt,j−1(
Zt − z

h
)2Kh(Zt − z)w(Zt), (5.5)

Ψ̂i = n−1
n∑

t=1

YtXt,i−1Kh(Zt − z)w(Zt), (5.6)

Ψ̂d+i = n−1
n∑

t=1

YtXt,i−1
Zt − z

h
Kh(Zt − z)w(Zt). (5.7)

Let θ0 ≡ θ0(z,α) = (a0(z,α),b0(z,α)T, ȧ0(z,α), ḃ0(z,α)T)T. Then by

(5.3)−(5.7), we have

θ̂(z,α) − θ0(z,α) = Φ̂−1(Ψ̂ − Φ̂θ0) ≡ Φ̂−1Ŵ, (5.8)
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where Ŵ = Ŵ(z;α) is a 2d-dimensional vector with elements

Ŵi = n−1
n∑

t=1

Y ∗
t Xt,i−1Kh(Zt − z)w(Zt). (5.9)

Moreover,

Ŵd+i = n−1
n∑

t=1

Y ∗
t Xt,i−1

Zt − z

h
Kh(Zt − z)w(Zt) (5.10)

for i = 1, 2, . . . , d, with

Y ∗
t = Y ∗

t (z,α) = Yt−
{
a0(z,α)+X̆T

t b0(z,α)
}
−
{
ȧ0(z,α) + X̆T

t ḃ0(z,α)
}

(Zt−z).

With (2.1) and Zt = αTXt in mind, we then have, by a Taylor expansion of

order 2,

Y ∗
t =

1

2

{
ä0(ξ,α) + X̆T

t b̈0(ξ,α)
}

(Zt − z)2 + εt,α, (5.11)

where ξ = z + η1 (Zt − z) with |η1| < 1.

With ḡij(z) = ḡij(z,α) = E{Xt,iXt,j |Zt(α) = z} for i, j = 0, 1, . . . , d, we

take ḡi(z) = ḡi0(z), and Gi(z) = (ḡi1(z), . . . , ḡi,d−1(z))T (a (d − 1)-dimensional

vector). As µi,K =
∫

uiK(u) du, using time series asymptotics (see e.g.,

Lu and Cheng (1997)) it follows from (5.3)−(5.5) and (5.9)−(5.10), together with

(5.11), that for i, j = 1, . . . , d,

Φ̂i,j = ḡi−1,j−1(z)fZ(z)w(z)µ0,K(1 + oP (1)), (5.12)

Φ̂i,d+j = Φ̂d+j,i = ḡi−1,j−1(z)fZ(z)w(z)µ1,K (1+oP (1))=0 (owing to µ1,K =0),

(5.13)

Φ̂d+i,d+j = ḡi−1,j−1(z)fZ(z)w(z)µ2,K (1 + oP (1)), (5.14)

Ŵi = Bi−1(z)µ2,Kh2(1 + oP (1)) + n−1
n∑

t=1

εt,αXt,i−1Kh(Zt − z)w(Zt), (5.15)

Ŵd+i = Bi−1(z)µ3,Kh2(1+oP (1))+n−1
n∑

t=1

εt,αXt,i−1
Zt−z

h
Kh(Zt−z)w(Zt)

= n−1
n∑

t=1

εt,αXt,i−1
Zt−z

h
Kh(Zt − z)w(Zt) (owing to µ3,K = 0), (5.16)

where Bi−1(z) = (1/2){ä(z)ḡi−1(z) + b̈(z)TGi−1(z)}w(z)fZ (z).



ADAPTIVE VARYING-COEFFICIENT LINEAR MODELS 193

Now it follows from (5.12)−(5.14) that

Φ̂ =

(
µ0,KG(z) 0d×d

0d×d µ2,KG(z)

)
w(z)fZ(z)(1 + oP (1))

= (S⊗G(z))w(z)fZ (z)(1 + oP (1)) ≡ Φ(1 + oP (1)), (5.17)

where 0d×d is a d × d matrix of elements 0, and G(z) is a d × d matrix with

(i, j)th element Gij(z) = ḡi−1,j−1(z) for i, j = 1, . . . , d.

Recall that νi,K =
∫

uiK2(u) du, and denote the second terms on the right

hand sides of (5.15) and (5.16) by Ŵi,2 and Ŵi+d,2, respectively. Moreover, let

Ŵc,2 =
∑d

i=1(ciŴi,2 + ci+dŴi+d,2) for any real constants ci. Then, under the

assumptions of this theorem, we have

E(Ŵc,2)
2 = E

{
n−1

n∑

t=1

εt,α

d∑

i=1

(
ciXt,i−1+ci+dXt,i−1

Zt−z

h

)
Kh(Zt−z)w(Zt)

}2

= (nh)−1V 2
c (z)(1 + o(1)), (5.18)

where

V 2
c (z) =

{ d∑

i=1

d∑

j=1

G̃i,j(z)(cicjν0,K + ci+dcj+dν2,K)
}

w2(z)fZ(z,α) ≡ cTV(2)(z)c,

(5.19)

with c = (c1, . . . , cd, cd+1, . . . , c2d)
T, and

V(2)(z) =

(
ν0,KG̃(z) 0d×d

0d×d ν2,KG̃(z)

)
w2(z)fZ(z,α) = (S̃ ⊗ G̃(z))w2(z)fZ(z,α),

where G̃(z) is a d× d matrix with (i, j)th element G̃i,j(z) = E(ε2
t,αXt,i−1Xt,j−1 |

Zt = z) for i, j = 1, . . . , d. Therefore, it follows from (5.15),(5.16), (5.18) and

(5.19) that

Ŵ =
1

2
h2U(z)(1+oP (1))+

(
1

nh

) 1
2

V(z)ξN (1+oP (1)). (5.20)

Here

U(z) =

(
µ2,KG(z)

0d×d

)(
ä(z)

b̈(z)

)
w(z)fZ(z,α) = (s ⊗G(z))

(
ä(z)

b̈(z)

)
w(z)fZ(z,α),

V(z) =
{
V(2)(z)

} 1
2

=
(
S̃⊗ G̃(z)

) 1
2
w(z)f

1
2
Z (z),
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with V a d×d matrix such that VTV = V(2). Here ξN is a (2d)-dimensional stan-

dard normal vector. The proof is routine because of the CLT for strong mixing

processes based on the Bernstein blocking technique (see, e.g., Hallin, Lu and Tran

(2004) Theorem 3.1, and Lu and Linton (2004)), and therefore the details are

omitted.

Finally, (3.3) in Theorem 3.1 follows from (5.17) and (5.20) with

B(z) = Φ−1(z)U(z) =
{(

S−1s
)
⊗ Id×d

}
(ä(z), b̈(z)T)T,

A(z) = Φ−1(z)V(z)
(
Φ−1(z)V(z)Φ−1(z)

)T
= Φ−1(z)V(2)(z)Φ−1(z)

= {fZ(z)}−1
(
S−1S̃S−1

)
⊗
(
G−1(z)G̃(z)G−1(z)

)
.

When α is replaced by α̌ with α̌−α = OP (n−1/2), then Žt = α̌TXt satisfies

Žt − Zt = (α̌ − α)TXt = OP (n−1/2)Xt. It is easily seen that the proof can be

modified to prove the last statement of this theorem. The details are omitted.

5.2. Outline of proof of Theorem 3.2

The proof of Theorem 3.2 is technically involved. The key is in the applica-

tion of Lemmas 4.1 and 4.2, for which we need to verify the various regularity

conditions. To that end, we apply the uniform consistency results collected in

Lemma A.1 in the Appendix below, and the empirical process theory for β-mixing

processes due to Doukhan, Massart and Rio (1995, p.405). The detailed proof is

given in Lu, Tjøstheim and Yao (2006).
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Appendix

Proof of Lemma 3.1 As α ∈ B, we have the last component |αd| ≥ ε0 > 0,

with |αj | ≤ 1 for j = 1, . . . , d. Let z = αTx =
∑d

j=1 αjxj. Then it is easily seen

that

fαTXt
(z) = |αd|−1

∫
· · ·
∫

fXt

(
x1, . . . , xd−1,

z −∑d−1
j=1 αjxj

αd

)
dx1 · · · dxd−1

≥
∫ L̃

−L̃
· · ·
∫ L̃

−L̃
fXt

(
x1, . . . , xd−1,

z −∑d−1
j=1 αjxj

αd

)
dx1 · · · dxd−1, (A.1)
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where L̃ = Lε0/d ≤ L. Note that when xi ∈ [−L̃, L̃] for i = 1, . . . , d − 1, and

z ∈ [−L,L], ∣∣∣∣∣
z −∑d−1

j=1 αjxj

αd

∣∣∣∣∣ ≤ L(1 + ε−1
0 ) = L0,

and therefore [−L̃, L̃]d−1 × [−L0, L0] ⊂ [−L0, L0]
d. Now by condition (C1′),

fXt(x) is continuous and bounded away from zero on [−L0, L0]
d, and hence it

easily follows that fαTXt
(z) is bounded away from zero on [−L,L]. The second

part of (C1) can be obtained by using similar equalities to (A.1), and the details

are omitted.

A uniform convergence lemma

Lemma A.1. Suppose the conditions of Theorem 3.2 hold, and let limn→∞

n2r+1h3(d−1) > 0. Then for Φ̂i,j(z,α), Φ̂i+d,j+d(z,α) and Gij(z,α) = ḡi−1,j−1

(z,α) as defined in Subsection 5.1,

sup
z∈Sw,α∈B

|Φ̂i,j(z,α) − µ0,KGij(z,α)w(z)fZ(z,α)|

= OP

[(
nh1+ 2d

r

)− r
2r+d

+ h2

]
, (A.2)

sup
z∈Sw ,α∈B

|Φ̂i+d,j+d(z,α) − µ2,KGij(z,α)w(z)fZ(z,α)|

= OP

[
h−1

(
nh1+ 2d

r

)− r
2r+d

+ h

]
, (A.3)

for i, j = 1, . . . , d.

sup
z∈Sw,α∈B

‖ĝ(z,α) − g0(z,α)‖ = OP

[(
nh1+ 2d

r

)− r
2r+d

+ h2

]
, (A.4)

sup
z∈Sw,α∈B

‖ĝ1(z,α) − g01(z,α)‖ = OP

[
h−1

(
nh1+ 2d

r

)− r
2r+d

+ h

]
, (A.5)

sup
z∈Sw,α∈B

‖ĝ2(z,α) − g02(z,α)‖ = OP

[
h−1

(
nh1+ 2d

r

)− r
2r+d

+ h

]
. (A.6)

The proof of this lemma is given in Lu, Tjøstheim and Yao (2006).



196 ZUDI LU, DAG TJØSTHEIM AND QIWEI YAO

References

Cai, Z., Fan, J. and Yao, Q. (2000). Functional-coefficient regression models for nonlinear time
series models. J. Amer. Statist. Assoc. 95, 888-902.

Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single–

index models. J. Amer. Statist. Assoc. 92, 477-489.

Chan, R. and Tsay, R. (1993). Functional-coefficient autoregressive models. J. Amer. Statist.

Assoc. 88, 298-308.

Chan, X., Linton, O. and Keilegom, I. V. (2003). Estimation of semiparametric models when

the criterion function is not smooth. Econometrica 71, 1591-1608.

Doukhan, P., Massart, P. and Rio, E. (1995). Invariance principles for absolutely regular em-

pirical processes. Ann. Inst. H. Poincaré Probab. Statist. 31, 393-427.
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Supplementary Material

We provide the proofs for Theorem 3.2 and Lemma A.1 in “Adaptive Varying

-Coefficient Linear Models for Stochastic Processes: Asymptotic Theory” by Lu,

Tjøstheim and Yao.

A. Proof of Theorem 3.2

In this section, we are establishing in detail the asymptotics for α̂ defined in

Section 2, using the two general lemmas developed in Section 4. We first derive

the preliminary quantities used, under the adaptive varying-coefficient modelling

of (2.1).

A.1. Derivation of preliminary quantities

We define, for some c0 > 0,

G = {g :Sw × B 7→ R
d | For any fixed α ∈ B, g(·,α) ∈ C2

c0(Sw), g1(·,α) ∈
C1

c0(Sw) and g2(·,α) ∈ C1
c0(Sw), and for any z ∈ Sw, ‖g(z,α)−

g(z,α′)‖ ≤ C‖α − α′‖, ‖g1(z,α) − g1(z,α′)‖ ≤ C‖α − α′‖ and

‖g2(z,α) − g2(z,α′)‖ ≤ C‖α − α′‖ for any α,α′ ∈ B}, (A.1)

where Cj
c0(Sw) for j = 1 and 2 was defined at the end of Subsection 3.1.

As defined in (2.9),

R(g(·,α),α) = E
(
Yt − g(αTXt,α)TXt

)2
w(αTXt)

=

∫ (
y − a(αTx,α) − b(αTx,α)Tx̆

)2
w(αTx)fY,X(y,x)dydx,

where x̆ is the (d−1)-dimensional vector obtained by deleting the d-th component
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of x, and fY,X(y,x) is the joint probability density function of (Yt,Xt); and

Rn(g(·,α),α) =
1

n

n∑

t=1

(
Yt − g(αTXt,α)TXt

)2
w(αTXt)

=
1

n

n∑

t=1

(
Yt − a(αTXt,α) − b(αTXt,α)TX̆t

)2
w(αTXt).

Then we can deduce (the notation having been explained in section 4.2, for

simplicity, we assume dw(z)/dz = 0)

Ṙ(g(·,α),α)=−2E
(
Yt−g(αTXt,α)TXt

){
g1(α

TXt,α)XT

t +g2(α
TXt,α)

}
T

×Xtw(αTXt),

Ṙn(g(·,α),α)=− 2

n

n∑

t=1

(
Yt−g(αTXt,α)TXt

){
g1(α

TXt,α)XT

t +g2(α
TXt,α)

}T

×Xtw(αTXt). (A.2)

Therefore, by Lemma 5.1, the ordinary derivative of R(g0(·,α),α) with respect

to α,

Ṙ(g0(·,α),α) = −2E
(
Yt − g0(α

TXt,α)TXt

){
g01(α

TXt,α)XT

t

}
T

Xtw(αTXt),

and further the derivative of Ṙ(g0(·,α),α) with respect to α equals (as assumed

in condition (C4), the derivative and the expectation are exchangeable)

Γ1(g0(·,α),α)

= 2E

[{
g01(α

TXt,α)XT

t + g02(α
TXt,α)

}
T

XtX
T

t

×
{
g01(α

TXt,α)XT

t + g02(α
TXt,α)

}]
w(αTXt)

− 2E
(
Yt−g0(α

TXt,α)TXt

){
g0,11(α

TXt,α)XtX
T

t +g0,12(α
TXt,α)XT

t

}
T

× Xtw(αTXt),

where g0,11(z,α) = ∂g01(z,α)/∂z and g0,12(z,α) = ∂g01(z,α)/∂α. As εt,α0 =

Yt − g0(Z
o
t ,α0)

T
Xt = εt, as assumed, satisfies E(εt|Xt) = 0, hence

Γ1 = Γ1(g0(·,α0),α0)

= 2E

[{
g01(Z

o
t ,α0)X

T

t + g02(Z
o
t ,α0)

}
T

XtX
T

t

×
{
g01(Z

o
t ,α0)X

T

t + g02(Z
o
t ,α0)

}]
w(Zo

t ). (A.3)



ADAPTIVE VARYING-COEFFICIENT LINEAR MODELS S21

Furthermore, note that, by Lemma 5.1 with some algebraic calculations,

Ṙ(g0(·,α) + τ(g(·,α) − g0(·,α)),α) − Ṙ(g0(·,α),α)

= −2E

{
Yt −

(
g0(α

TXt,α) + τ(g(αTXt,α) − g0(α
TXt,α))

)T

Xt

}

×
{(

g01(α
TXt,α) + τ(g1(α

TXt,α) − g01(α
TXt,α))

)
XT

t

+
(
g02(α

TXt,α) + τ(g2(α
TXt,α) − g02(α

TXt,α))
)}T

Xtw(αTXt)

+ 2E
{
Yt − g0(α

TXt,α)TXt

}{(
g01(α

TXt,α)XT

t

)
+
(
g02(α

TXt,α)
)}

T

× Xtw(αTXt)

= −2τE
{
εt,α

(
(g1(α

TXt,α) − g01(α
TXt,α))XT

t

)

−
(
(g(αTXt,α)−g0(α

TXt,α))TXt

)(
g01(α

TXt,α)XT

t +g02(α
TXt,α)

)}T

× Xtw(αTXt) + 2τ2E
{

(g(αTXt,α) − g0(α
TXt,α))TXt

}

×
(
(g1(α

TXt,α) − g01(α
TXt,α))XT

t + (g2(α
TXt,α) − g02(α

TXt,α))
)

T

× Xtw(αTXt). (A.4)

Therefore the functional derivative of Ṙ(g(·,α),α) with respect to g(·,α) at

g0(·,α) in the direction g(·,α) − g0(·,α) satisfies

Γ2 (g0(·,α),α) [g(·,α) − g0(·,α)]

= lim
τ→0

Ṙ(g0(·,α) + τ(g(·,α) − g0(·,α)),α) − Ṙ(g0(·,α),α)

τ

= −2E
{

εt,α

(
(g1(α

TXt,α) − g01(α
TXt,α))XT

t

)

−
(
(g(αTXt,α)−g0(α

TXt,α))TXt

)(
g01(α

TXt,α)XT

t +g02(α
TXt,α)

)}
T

× Xtw(αTXt), (A.5)

and therefore

Γ2 (g0(·,α0),α0) [g(·,α0) − g0(·,α0)]

= 2E
(
(g(Zo

t ,α0)−g0(Z
o
t ,α0))

T
Xt

)(
g01(Z

o
t ,α0)X

T

t +g02(Z
o
t ,α0)

)
T

Xtw(Zo
t )

= 2

∫
Φ̃0(z) (g(z,α0) − g0(z,α0)) w(z)fZo

t
(z)dz, (A.6)

where Φ̃0(z) = E
{(

g01(z,α0)X
T
t + g02(z,α0)

)T
XtX

T
t

∣∣∣Zo
t = z

}
.
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Next, we are establishing in detail the consistency of α̂ to α0 by Lemma 4.1.

A.2. Derivation of consistency of α̂ to α0

The consistency of α̂ can be proved by checking the conditions in Lemma 4.1

step by step: As α̂ and α0 are the minimizers of Rn(ĝ(·,α),α) and R(g0(·,α),α),

respectively, (i) and (ii) hold obviously. (iii) also holds clearly by the following

fact: noting Lemma 5.1 as well as the boundedness of w(·),

sup
α∈B

∣∣∣R(g(·,α),α) − R(g0(·,α),α)
∣∣∣

≤ sup
α∈B

∣∣∣E
(
2εt,α − (g(αTXt,α) − g0(α

TXt,α))TXt

)

× (g(αTXt,α) − g0(α
TXt,α))TXtw(αTXt)

∣∣∣

≤ sup
α∈B

∣∣∣E
(
(g(αTXt,α) − g0(α

TXt,α))TXt

)

× (g(αTXt,α) − g0(α
TXt,α))TXtw(αTXt)

∣∣∣
≤ C‖g − g0‖G‖EXtX

T

t ‖, (A.7)

where the final inequality follows from the definition of norm ‖ · ‖G in Subsec-

tion 3.1. (iv) follows clearly from Lemma A.1 in the Appendix. For (v), letting

δn = o(1) and ‖g − g0‖G ≤ δn, we notice that

Rn(g(·,α),α) − R(g(·,α),α)

= {Rn(g(·,α),α) − Rn(g0(·,α),α)} + {Rn(g0(·,α),α) − R(g0(·,α),α)}
+ {R(g0(·,α),α) − R(g(·,α),α)}

= I + II + III,

where by (A.7) III tends to 0, uniformly for α ∈ B and with g satisfying ‖g −
g0‖G ≤ δn. That I tends to 0, uniformly for α ∈ B and g with ‖g − g0‖G ≤ δn,

can be proved in the same way as for III, because in fact E[I] = III; II can

also be proved easily to tend to zero.

Finally, we are finishing the proof by Lemma 4.2.

A.3. Derivation of asymptotic normality of α̂ to α0

As we have proved that α̂ − α0 = oP (1), and from Lemma A.1 in the

Appendix, ‖ĝ− g0‖G = oP (1) as well as ‖ĝ1 − g01‖G = oP (1) and ‖ĝ2 − g02‖G =

oP (1), we can assume that α and g = (a,bT)T lie in Bδ and Gδ, respectively,
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with δ = δn → 0, where

Bδ = {α ∈ B : ‖α − α0‖ ≤ δ},
Gδ = {g ∈ G : ‖g − g0‖G ≤ δ, ‖g1 − g01‖G ≤ δ, ‖g2 − g02‖G ≤ δ}. (A.8)

As α0 is the minimizers of R(g0(·,α),α) which is differentiable with respect to

α, Ṙ(g0(·,α0),α0) = 0.

We proceed to check the conditions (i)−(vi) in Lemma 4.2:

(i) This is clear, as α̂ is the minimizers of Rn(ĝ(·,α),α) which is differentiable

with respect to α, and hence Ṙn(ĝ(·, α̂), α̂) = 0.

(ii) Both (ii)(1)−(2) are clear from Assumption (C4) in Section 3.

(iii) It follows from (A.4) with τ = 1 and (A.6) that

cT

{
Ṙ(ĝ(·,α),α) − Ṙ(g0(·,α),α) − Γ2 (g0(·,α),α) [ĝ(·,α) − g0(·,α)]

}

=2cTE
{

(ĝ(αTXt,α) − g0(α
TXt,α))TXt

}

×
(
(ĝ1(α

TXt,α)−g01(α
TXt,α))XT

t +(ĝ2(α
TXt,α)−g02(α

TXt,α))
)

T

× Xtw(αTXt)

=2

∫
(ĝ(z,α) − g0(z,α))TE{Xtc

TXtX
T

t |Zt(α) = z}(ĝ1(z,α) − g01(z,α))

× w(z)fZ(z,α)dz+2

∫
(ĝ(z,α) − g0(z,α))TE{XtX

T

t |Zt(α) = z}

× (ĝ2(z,α) − g02(z,α))cw(z)fZ (z,α)dz

≡ D̃1 + D̃2, (A.9)

from which (iii) (1) can be deduced as follows.

Set γ = (Id×d,0d×d) a d × (2d) matrix. Note that it follows from (5.8), the

uniform consistency lemma (Lemma A.1) and then (5.17) that

ĝ(z,α)−g0(z,α) = γ(θ̂(z,α) − θ0(z,α))

= γΦ̂−1Ŵ = (1 + oP (1))γΦ−1Ŵ

= (1+oP (1))(µ0,Kw(z)fZ(z,α))−1G−1(z,α)Ŵ(1)(z,α), (A.10)

where oP (1) is uniform with respect to z ∈ Sw and α ∈ B, and Ŵ(1)(z,α) is the

vector consisting of the first d components of Ŵ defined in (5.9), that is

Ŵ(1)(z,α) = n−1
n∑

t=1

Y ∗
t (z,α)XtKh(Zt(α),−z)w(Zt(α)), (A.11)
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where Y ∗
t (z,α) is as defined in (5.11) in the notation of this section as

Y ∗
t (z,α) = εt,α + (g0(Zt(α),α) − g0(z,α) − ġ0(z,α)(Zt(α) − z))T Xt

= εt,α +
1

2

(
g̈0(z + η1(Zt(α) − z),α)(Zt(α) − z)2

)T
Xt (A.12)

with |η1| < 1. Thus, setting Gc(z,α) = E{Xtc
TXtX

T
t |Zt(α) = z}, with uni-

formity of oP (1) with respect to z ∈ Sw and α ∈ B in (A.10), together with

(A.12)

D̃1 = 2

∫
((1 + oP (1))(µ0,Kw(z)fZ(z,α))−1G−1(z,α)Ŵ(1)(z,α))TGc(z,α)

× (ĝ1(z,α) − g01(z,α))w(z)fZ (z,α)dz

= 2(1 + oP (1))(µ0,K)−1

∫
G−1(z,α)Ŵ(1)(z,α))T

× Gc(z,α)(ĝ1(z,α) − g01(z,α))dz

=
1√
n

(νn(ĝ1,α) − νn(g01,α)) + OP (h2)‖ĝ1 − g01‖G , (A.13)

where νn(g1,α) = n−1/2
∑n

i=1 εt,α X
T w(Zt(α))G−1(Zt(α),α)Gc(Zt(α),α)g1

(Zt(α),α). Using the empirical process techniques, similarly to the proof of

(v) below, we can show the stochastic equicontinuity of νn(g1,α), and hence

n−1/2(νn(ĝ1,α) − νn(g01,α)) ≤ n−1/2 sup‖g1−g01‖G≤δ ‖νn(g1,α) − νn(g01,α)‖ =

oP (n−1/2); for detail, see the proof of (v) below as the proof there is more com-

plex. Also, as nh4 = O(1) is assumed as in a condition in Theorem 3.2 and

‖ĝ1 − g01‖G = oP (1), we have OP (h2)‖ĝ1 − g01‖G = oP (n−1/2). Therefore

D̃1 = oP (n−1/2). Similarly, we can prove D̃2 = oP (n−1/2), and thus (iii)(1)

follows from (A.9).

In addition, it follows from (A.6) together with Lemma 5.1 and E(εt,α0 |Xt) =

0 that

Γ2 (g0(·,α),α) [g(·,α) − g0(·,α)] − Γ2 (g0(·,α0),α0) [g(·,α0) − g0(·,α0)]

= −2E (εt,α − εt,α0)
(
(g1(α

TXt,α) − g01(α
TXt,α))XT

t

)
T

Xtw(αTXt)

+ 2E

{
δ̃t(α)

(
g01(α

TXt,α)XT

t + g02(α
TXt,α)

)
T

Xtw(αTXt)

− δ̃t(α0)
(
g01(Z

o
t ,α0)X

T

t + g02(Z
o
t ,α0)

)T

Xtw(Zo
t )

}

≡ Ω1 + Ω2,
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where δ̃t(α) = g(αTXt,α) − g0(α
TXt,α). By condition (C4),

|εt(α) − εt,α0 | = |
(
g0(α

TXt,α) − g0(Z
o
t ,α0)

)
T

Xt|

≤ C‖α − α0‖(1 + ‖Xt‖)‖Xt‖,

and ‖g1(α
TXt,α) − g01(α

TXt,α)‖G = o(1), therefore Ω1 = o(1)‖α − α0‖. For

Ω2, it is obvious by condition (C4) and ‖α − α0‖ = o(1) that

δ̃t(α) − δ̃t(α0) = g(αTXt,α) − g(Zo
t ,α0) −

(
g0(α

TXt,α) − g0(Z
o
t ,α0)

)

= g1(Z
o
t ,α0)(1 + o(1))(α − α0)

TXt + g2(Z
o
t ,α0)

T(1 + o(1))(α − α0)

−
(
g01(Z

o
t ,α0)(1 + o(1))(α − α0)

TXt+g02(Z
o
t ,α0)

T(1+o(1))(α−α0)
)

= oP (1)‖α − α0‖,

which follows from ‖g1(α
TXt,α)−g01(α

TXt,α)‖G = oP (1) and ‖g2(α
TXt,α)−

g02(α
TXt,α)‖G = oP (1); and

Ω3 ≡
(
g01(α

TXt,α)XT

t + g02(α
TXt,α)

)
−
(
g01(Z

o
t ,α0)X

T

t + g02(Z
o
t ,α0)

)

≤ C‖α − α0‖(1 + ‖Xt‖).

Therefore it easily follows that Ω2 = oP (1)‖α−α0‖. Hence (iii)(2) follows.

(iv) It is clear from the uniform convergence lemma, Lemma A.1, that

‖ĝ − g0‖G = OP

[(
nh1+ 2d

r

)− r
2r+d

]
+ O(h2),

‖ĝ1 − g10‖G = OP

[
h−1

(
nh1+ 2d

r

)− r
2r+d

]
+ O(h),

‖ĝ2 − g20‖G = OP

[
h−1

(
nh1+ 2d

r

)− r
2r+d

]
+ O(h),

and therefore ‖ĝ − g0‖G → 0, ‖ĝ1 − g10‖G → 0, and ‖ĝ2 − g20‖G → 0 if

nh3+3d/r → ∞ with r > 3d as n → ∞. Hence (iv) follows.

(v) For notational convenience, let Ft = (Yt,Xt), m(Ft,g,α) = m1t(g,α)m2t

(g,α)m3t(α) with m1t(g,α) = Yt−g(αTXt,α)TXt, m2t(g,α) = {g1(α
TXt,

α)TXt−g2(α
TXt,α)}T and m3t(α) = Xtw(αTXt), and define the empirical

process

νn(g,α) =
1√
n

n∑

t=1

{m(Ft,g,α) − Em(Ft,g,α)} .
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Then it is obvious that

Ṙn(g(·,α),α) − Ṙ(g(·,α),α) = − 2√
n

νn(g,α),

and as Ṙ(g0(·,α0),α0) = 0, we clearly have

Ṙn(g(·,α),α) − Ṙ(g(·,α),α) − Ṙn(g0(·,α0),α0)

= − 2√
n
{νn(g,α) − νn(g0,α0)}.

Therefore for (v), it suffices to prove the stochastic equicontinuity of the empirical

process {νn(g,α) : g ∈ G1, b ∈ B1}, where B1 and G1 are defined in (A.8) with

δ = 1, which are subsets of B and G, respectively, and suffices for our proof of (v)

as δn < 1 for n large enough by δn → 0. This stochastic equicontinuity follows

by checking the following conditions, due to Doukhan, Massart and Rio (1995,

p.405):

(a) {Ft : t ≥ 1} is a stationary absolutely regular sequence with mixing coeffi-

cient β(s) ≤ Cs−b for some b > r/(r − 1) and some r > 1,

(b) E[m̃2r(Ft)] < ∞ for r as in (a), where m̃(·) is the envelope of M = {m(·,g,α)

: g ∈ G1, α ∈ B1}, that is |m(·,g,α)| ≤ |m̃(·)| for any g ∈ G1, α ∈ B1.

(c) For any ε > 0, log N2(ε,M) ≤ Cε−2η for some η > 0, with b(1−η) > r/(r−1)

for r as in (a), where N2(ε,M) is the L2-bracketing cover number of M in

(b).

We check those conditions as follows. Here, (a) holds by the condition (C5).

To show (b), notice that for α ∈ B1 and g ∈ G1, we have ‖α‖ ≤ ‖α0‖ + 1 ≡ C0,

‖g‖G ≤ ‖g0‖G +1 ≡ C1, ‖g1‖G ≤ ‖g01‖G +1 ≡ C2 and ‖g2‖G ≤ ‖g02‖G +1 ≡ C3,

and therefore for m ∈ M, |m(Ft,g,α)| ≤ (|Yt| + C1‖X‖)(C2‖Xt‖ + C3)‖X‖w0,

where w0 = supz∈Sw
w(z). So we can take m̃(Ft) = (|Yt| + C1‖X‖)(C2‖Xt‖ +

C3)‖X‖w0, and hence (b) holds by condition (C2). Finally for (c), as B is a

bounded subset in R
d, for any ε > 0, we can cover B by finite number, N1 =

Cε−(d−1), of balls of radius ε with centers αj , j = 1, . . . , N1, in R
d, say, Bj,

j = 1, . . . , N1, such that

∀α ∈ B, ∃αj, such that ‖α − αj‖ ≤ ε/(2C). (A.14)

Then for each given αj and for g ∈ G, by the definition of G in this section,

g(·,αj) ∈ C2
c0(Sw), and g1(·,αj) ∈ C1

c0(Sw) and g2(·,αj) ∈ C1
c0(Sw). Therefore,

with the norm imposed on C2
c0(Sw) by the sup norm ‖g‖∞ = supz∈Sw

‖g(z)‖ for

g ∈ C2
c0(Sw), and similarly for C1

c0(Sw), it is well known (c.f., van der Vaart and

Wellner, 1996, Theorem 2.7.1) that we can cover C 2
c0(Sw) by finite number N2 =
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N(ε, C2
c0(Sw), ‖ · ‖∞), of balls of functions centered at, say, g`,j(·), ` = 1, . . . , N2,

in C2
c0(Sw), such that

log N(ε, C2
c0(Sw), ‖ · ‖∞) ≤ const. × ε−1/2,

and

∀g(·,αj) ∈ C2
c0(Sw), ∃g`,j(·), such that ‖g(·,αj) − g`,j(·)‖ ≤ ε.

Similarly C1
c0(Sw) can be covered by a finite number N3 = N(ε, C1

c0(Sw), ‖ · ‖∞),

balls of functions centered at g
`,j
1 (·) and g

`,j
2 (·), respectively, ` = 1, . . . , N3, in

C1
c0(Sw), such that

log N(ε, C1
c0(Sw), ‖ · ‖∞) ≤ const. × ε−1,

with

∀g1(·,αj) ∈ C1
c0(Sw), ∃ g

`,j
1 (·), such that ‖g1(·,αj) − g

`,j
1 (·)‖ ≤ ε,

and

∀g2(·,αj) ∈ C1
c0(Sw), ∃ g

`,j
2 (·), such that ‖g2(·,αj) − g

`,j
2 (·)‖ ≤ ε.

Thus we can cover G1 ⊂ G by finite number of N1N2 balls of centers g`,j(·),
j = 1, . . . , N1, ` = 1, . . . , N2, since for any g(z,α) ∈ G, we can suitably choose

αj and g`,j(·) such that

sup
z∈Sw

‖g(z,α) − g`,j(z)‖

≤ sup
z∈Sw

‖g(z,α) − g(z,αj)‖ + sup
z∈Sw

‖g(z,αj) − g`,j(z)‖

≤ C‖α − αj‖ + sup
z∈Sw

‖g(z,αj) − g`,j(z)‖ ≤ 3

2
ε, (A.15)

and similarly, we can cover G(1)
1 = {g1 : Sw × B 7→ R

d | g ∈ G1} and G(2)
1 = {g2 :

Sw × B 7→ R
d×d | g ∈ G1} by finite number of N1N3 balls of centers g

`,j
1 (·) and

g
`,j
2 (·), j = 1, . . . , N1, ` = 1, . . . , N3, respectively, since for any g1(z,α) ∈ G(1)

1

and g2(z,α) ∈ G(2)
1 , we can suitably choose αj and g

`,j
1 (·) and g

`,j
2 (·), respectively,

such that, as in (A.15),

sup
z∈Sw

‖g1(z,α) − g
`,j
1 (z)‖ ≤ ε, sup

z∈Sw

‖g2(z,α) − g
`,j
2 (z)‖ ≤ ε. (A.16)
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Therefore, with αTXt ∈ Sw and g`,j(·) ∈ C2
c0(Sw), it follows from (A.14), (A.15)

and (A.16) that

‖g(αTXt,α) − g`,j(αT

j Xt)‖
≤ ‖g(αTXt,α) − g`,j(αTXt)‖ + ‖g`,j(αTXt) − g`,j(αT

j Xt)‖
≤ ε + C‖Xt‖ ‖α − αj‖ ≤ ε(1 + C‖Xt‖),

similarly,

‖g1(α
TXt,α) − g

`,j
1 (αT

j Xt,αj)‖ ≤ ε(1 + C‖Xt‖),
‖g2(α

TXt,α) − g
`,j
2 (αT

j Xt,αj)‖ ≤ ε(1 + C‖Xt‖);

and with g ∈ G1, it follows that

‖g1(α
TXt,α)‖ ≤ ‖g01(α

TXt,α)‖ + 1 ≤ ‖g01‖G + 1,

‖g2(α
TXt,α)‖ ≤ ‖g02(α

TXt,α)‖ + 1 ≤ ‖g02‖G + 1,

Note, for any m ∈ M,

E|m(Ft,g,α) − m(Ft,g
`,j ,αj)|2 ≤ C(M1 + M2 + M3), (A.17)

where

M1 = E
∣∣∣(m1t(g,α) − m1t(g

`,j ,αj))m2t(g,α)m3t(α)
∣∣∣
2

≤ E
[
‖g(αTXt,α) − g`,j(αT

j Xt)‖‖Xt‖

×
∥∥∥
{
g1(α

TXt,α)TXt − g2(α
TXt,α)

}T
∥∥∥‖Xt‖ w(αTXt)

]2

≤ CεE
[
‖Xt‖‖

{
g1(α

TXt,α)TXt − g2(α
TXt,α)

}
T

‖ ‖Xt‖ w(αTXt)
]2

≤ Cε2E
[
‖Xt‖2 (C‖Xt‖ + C)2 ‖Xt‖2

]
≤ Cε2, (A.18)

M2 = E
∣∣∣m1t(g

`,j ,αj)(m2t(g,α) − m2t(g
`,j ,αj))m3t(α)

∣∣∣
2

≤ E
[
‖Yt − g`,j(αT

j Xt)
T
Xt‖{‖g1(α

TXt,α) − g
`,j
1 (αT

j Xt,αj)‖ ‖Xt‖

+ ‖g2(α
TXt,α) − g2`, j(α

T

j Xt,αj)‖} ‖Xt‖ w(αTXt)
]2

≤ Cε2E
[
(|Yt| + c0‖Xt‖)2(1 + C‖Xt‖)2‖Xt‖2

]
≤ Cε2, (A.19)

M3 = E
[
m1t(g

`,j ,αj)m2t(g
`,j ,αj)(m3t(α) − m3t(αj))

]2
≤ Cε2, (A.20)
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and where C is allowed to change in value from line to line. Then it follows from

(A.17) together with (A.18), (A.19) and (A.20) that

‖m(Ft,g,α) − m(Ft,g
`,j ,αj)‖L2 ≤ Cε,

and thus N(Cε,M, ‖ · ‖L2) ≤ (N1N2)(N1N3)N1, which leads to

log N(Cε,M, ‖ · ‖L2) ≤ C(log N1 + log N2 + log N3) ≤ Cε−1.

Now (c) holds easily.

(vi) Finally we are in a position to establish (vi) of Lemma 4.2. Note that it

follows from (A.10) with α = α0 that

ĝ(z,α0) − g0(z,α0)

= γ(θ̂(z,α0) − θ0(z,α0))

= γΦ̂−1(z,α0)Ŵ(z,α0) = (1 + oP (1))γΦ−1(z,α0)Ŵ(z,α0)

= (1 + oP (1))(µ0,Kw(z)fZ(z,α0))
−1G−1(z,α0)Ŵ

(1)(z,α0), (A.21)

where oP (1) is uniform with respect to z ∈ Sw, and Ŵ(1)(z,α0) is defined

in (A.11). Then (A.6) together with Lemma A.1 and (A.21) then leads to

Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]

= 2

∫
Φ̃0(z)(ĝ(z,α0) − g0(z,α0))w(z)f0(z,α0)dz

= (1 + oP (1))2µ−1
0,K

∫
Φ̃0(z)G−1(z,α0)Ŵ

(1)(z,α0)dz

= (1 + oP (1))2µ−1
0,Kn−1

n∑

t=1

∫
Φ̃0(z)G−1(z,α0)

×
{

εt +
1

2

(
g̈0(z + η1(Z

o
t − z))(Zo

t − z)2
)T

Xt

}
XtKh(Zo

t − z)w(Zo
t )dz

= (1 + oP (1))2µ−1
0,Kn−1

n∑

t=1

Φ̃0(Z
o
t )G−1(Zo

t ,α0)

×
{

εtµ0,K +
1

2

(
g̈0(Z

o
t )µ2,Kh2(1 + o(1))

)T
Xt

}
Xtw(Zo

t )

= (1 + oP (1))2

{
n−1

n∑

t=1

εtUt +
1

2
h2µ−1

0,Kµ2,KE
(
g̈0(Z

o
t ))TXtUt

)}

+ oP (n− 1
2 ), (A.22)
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as n−1
∑n

t=1

{
g̈0(Z

o
t ))TXtUt − E

(
g̈0(Z

o
t ))TXtUt

)}
= OP (n−1/2) according

to the CLT for a strongly mixing strictly stationary process, where

Ut = Φ̃0(Z
o
t )G−1(Zo

t ,α0)Xtw(Zo
t )

= E
(
Xtg01(Z

o
t ,α0)

T
XtX

T

t |Zo
t

)
G−1(Zo

t ,α0)Xtw(Zo
t )

+ g02(Z
o
t ,α0)

T
Xtw(Zo

t ). (A.23)

Now we have from (A.2) and (A.22) and then from (A.23) that

√
n
{
Ṙn(g0(·,α0),α0) + Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]

}

=
√

n
{
− 2

n

n∑

t=1

εt

(
g01(Z

o
t ,α0)X

T

t + g02(Z
o
t ,α0)

)
T

Xtw(Zo
t )

+ (1 + oP (1))2
[
n−1

n∑

t=1

εtUt +
1

2
h2µ−1

0,Kµ2,KE
(
g̈0(Z

o
t ))TXtUt

)]

+ oP (n− 1
2 )
}

=
√

n
{
− 2

n

n∑

t=1

εtVt + (1 + oP (1))h2µ−1
0,Kµ2,KE

(
g̈0(Z

o
t ))TXtUt

)

+ oP (n− 1
2 )
}

,

where Vt =
[
Xtg

T
01(Z

o
t ,α0) − {E

(
Xtg

T
01(Z

o
t ,α0)XtX

T
t |Zo

t

)
}G−1(Zo

t ,α0)
]

Xtw(Zo
t ). Therefore, by CLT for mixing stationary process,

√
n
{
Ṙn(g0(·,α0),α0) + Γ2 (g0(·,α0),α0) [ĝ(·,α0) − g0(·,α0)]

−(1 + oP (1))h2µ−1
0,Kµ2,KE

(
g̈0(Z

o
t ))TXtUt

)}
D→ N(0,V), (A.24)

where

V = 4Eε2
t VtV

T

t = 4Eε2
t {ΞtΞ

T

t − E(ΞtX
T

t |Zo
t )G−1

t E(XtΞ
T

t |Zo
t )}

with Ξt = Xtg
T
01(Z

o
t ,α0)Xtw(Zo

t ) and Gt = G(Zo
t ,α0) = E(XtX

T
t |Zo

t ).

Finally, letting Γ0 = Γ1/2 and V0 = V/4, we get the desired result of (3.4)

following from Lemma 4.2. The proof is completed.

B. Proof of Lemma A.1

We collect and prove the uniform convergence results which were used in the

proof for Section 3.2. All limits are taken as n → ∞ unless stated otherwise.
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B.1. Technical lemmas

For the proof of uniform-consistency lemmas, we need to repeatedly use the
following moment inequalities, which are stated for reference below.

Lemma B.1.(Cox and Kim (1995)’s moment inequality) Let {ξt} be a strongly
mixing process with Eξt = 0, and r a positive integer. Assume that for some
q > 2,

Mqr = sup
t
{‖ξt‖qr} = sup

t
{(E|ξt|qr)

1
qr } ≤ 1,

and that there is a constant ν not depending on t such that

E[|ξt|k] ≤ ν, 2 ≤ k ≤ 2r,

and that the mixing coefficients satisfy

∞∑

i=1

ir−1β(i)1−
2
q < ∞.

Then there exists a constant C depending on r but not depending on the distri-
bution of ξt nor on ν, n, nor P̃ such that

E
( n∑

t=1

ξt

)2r
≤ C

{
nrM2r

qr

∞∑

i=P̃

ir−1β(i)1−
2
q +

r∑

j=1

njP̃ 2r−jνj
}

for any integers n and P̃ with 0 < P̃ < n.

Proof. This is Theorem 1 of Cox and Kim (1995, p.152).

Lemma B.2.(Gao, Lu and Tjøstheim (2004)’s moment inequality) Assume that
the process {(Xt, Yt) : t ∈ Z

1} is β-mixing and strictly stationary with Yt and Xt

being R
1-valued respectively. Let ξt = Ktθt = K((Xt − x)/h)θt with E[ξt] = 0,

where θt = θ(Xt, Yt) and K(·) is a bounded kernel function defined on R
1. The

joint probability density fs(x1, . . . , xs) of (Xt1 , . . . , Xts) exists and is bounded
uniformly for s = 1, . . . , 2r− 1, where r is some positive integer. Assume further
that E [|θt|qr] < ∞ for some q > 2. The mixing coefficient β satisfies

lim
T→∞

T a
∞∑

t=T

tr−1β(t)
qr−2

qr = 0

for some constant a ≥ (rq−2)r/(2+rq−4r) with q > (4r−2)/r. The probability
kernel function K(x) is a symmetric and bounded density function on R

1 with
compact support, CK, and finite variance such that |K(x) − K(y)| ≤ MK |x − y|
for x, y ∈ CK and 0 < MK < ∞. The bandwidth h = hn satisfies that

lim
n→∞

hn = 0 and lim inf
n→∞

nh
2(r−1)a+(qr−2)

(a+1)q
n > 0
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for some integer r ≥ 3. Then there exists a constant C = C(r) depending on r
but not depending on the distribution of ξt nor on h, n such that

E
[( n∑

i=1

ξi

)2r]
≤ C (nh)r . (B.1)

Proof. It is a special case of Theorem 1.1 of Gao, Lu and Tjøstheim (2004) with
N = 1 there.

B.2. Proof of Lemma A.1

Proof of Lemma A.1. As the proofs of (A.2)−(A.6) are similar, so we only
sketch the proof of (A.4) below. It follows from conditions (C1) and (C3) that
fZ(z,α), which equals fαTXt

(z), and G(z,α), which is equal to E(XtX
T
t | αTXt

= z), are bounded away from zero over z ∈ Sw,α ∈ B. Therefore, it is de-
rived from (A.10) that ĝ(z,α)− g0(z,α) tending to 0 uniformly is equivalent to
Ŵ(1)(z,α) (see (A.11)) tending to 0 uniformly, where Ŵ(1)(z,α) can be sepa-
rated into two parts of the bias term and the error term owing to (A.12). As
the bias term is easily taken care of, so we are only concerned with the uniform
convergence rate, for the error term, of

Ŵ2(z,α) =
1

n

n∑

t=1

εt,αXtKh(αTXt − z)w(αTXt)

below. It follows from Lemma 5.1 that EŴ2(z,α) = 0. When α is fixed,
the uniform convergence rate of Ŵ2(z,α) with respect to z was established by
Masry and Tjøstheim (1995). Here we establish the lemma with convergence
rate also uniform with respect to α ∈ B, by

sup
α∈B

sup
z∈Sw

‖Ŵ2(z,α)‖ =
(
nh1+ 2d

r

)− r
2r+d

, (B.2)

where we note B ⊂ {α ∈ R
d : ‖α‖ = 1} and without loss of generality let B be

compact.
Because B and Sw are compact, we can cover B and Sw by a finite num-

ber M = Mn of cubes Ik ⊂ B with centers αk in B, satisfying ‖α − αk‖ ≤
const./M 1/(d−1) for any α ∈ Ik, and a finite number N = Nn of cubes J` ⊂ Sw

with centers z` in Sw, satisfying |z − z`| ≤ const./N for z ∈ J`, respectively,
where M and N are to be specified later. Therefore

sup
α∈B

sup
z∈Sw

‖Ŵ2(z,α)‖

≤ max
1≤k≤M

sup
z∈Sw

‖Ŵ2(z,αk)‖ + max
1≤k≤M

sup
α∈Ik

sup
z∈Sw

‖Ŵ2(z,α) − Ŵ2(z,αk)‖

≡ W21 + W22. (B.3)
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We first consider W22. Note that

Ŵ2(z,α) − Ŵ2(z,αk) =
1

n

n∑

t=1

Xt

{
εt,αKh(αTXt − z)w(αTXt)

− εt,αk
Kh(αT

k Xt − z)w(αT

k Xt)
}

, (B.4)

and that

|εt,α − εt,αk
| ≤ |a0(α

TXt,α) − a0(α
T

k Xt,αk)|
+ ‖b0(α

TXt,α) − b0(α
T

k Xt,αk)‖ ‖X̆t‖
≤ C‖α − αk‖(1 + ‖Xt‖)2,

and

|Kh(αTXt − z)w(αTXt) − Kh(αT

k Xt − z)w(αT

k Xt)|
≤ Ch−2‖α − αk‖ ‖Xt‖.

Thus

Ŵ2(z,α) − Ŵ2(z,αk)

≤ 1

n

n∑

t=1

‖Xt‖{h−1(1 + ‖Xt‖)2 + |εt,αk
|h−2 ‖Xt‖}‖α − αk‖

≤ 1

n

n∑

t=1

{
h−1(1 + ‖Xt‖)3 + |εt,αk

|h−2 ‖Xt‖2
}
‖α − αk‖, (B.5)

and it follows from (B.3) and (B.5) that

W22 ≤ max
1≤k≤M

sup
α∈Ik

1

n

n∑

t=1

{
h−1(1 + ‖Xt‖)3 + |εt,αk

|h−2 ‖Xt‖2
}
‖α − αk‖

≤ CM− 1
d−1 max

1≤k≤M

1

n

n∑

t=1

{
h−1(1 + ‖Xt‖)3 + |εt,αk

|h−2 ‖Xt‖2
}

≤ CM− 1
d−1

{
h−1 1

n

n∑

t=1

(1 + ‖Xt‖)3+ max
1≤k≤M

1

n

n∑

t=1

|εt,αk
|h−2‖Xt‖2

}

≤ CM− 1
d−1
{
h−1OP (1) + h−2W222 + h−2W223

}
, (B.6)

where OP (1) is uniform with respect to z ∈ Sw and α ∈ B as n → ∞, and

W222 = max
1≤k≤M

∣∣∣ 1
n

n∑

t=1

(
|εt,αk

| ‖Xt‖2 − E|εt,αk
| ‖Xt‖2

) ∣∣∣,

W223 = max
1≤k≤M

E|εt,αk
| ‖Xt‖2.
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Clearly, by the condition that supα∈B E|εt,α|2 < ∞,

W223 ≤ max
1≤k≤M

{
E|εt,αk

|2
} 1

2
{
E‖Xt‖4

} 1
2 = O(1), (B.7)

which is uniform with respect to z ∈ Sw and α ∈ B as n → ∞. Further, we

consider W222. Set ut,k = |εt,αk
| ‖Xt‖2 and ∆k = 1

n

∑n
t=1 (ut,k − Eut,k), and

therefore W222 = max1≤k≤M |∆k|. Applying Lemma B.1. with P = 1 leads to

E|∆k|2r ≤ Crn
−r, where Cr only depends on r. Thus, if M = O(nr), then

P{W222 > 2A} = P

{
max

1≤k≤M
|∆k| > 2A

}
≤

M∑

k=1

P{|∆k| > A}

= CrMA−rn−r = CA−r → 0 (B.8)

as A → ∞, which leads to W222 = OP (1). This together with (B.6) and (B.7)

implies

W22 = OP (M− 1
d−1 h−2) = OP {ζn} , (B.9)

where we take M = (h2ζn)−(d−1) with ζn to be specified later, and OP (·) is

uniform with respect to z ∈ Sw and α ∈ B as n → ∞.

Next, we consider W21 in (B.3). As Ŵ2(z,αk) = Ŵ2(z`,αk) + (Ŵ2(z,αk) −
Ŵ2(z`,αk)), we can break W21 into two parts:

W21 ≤ max
1≤k≤M

max
1≤`≤N

Ŵ2(z`,αk)

+ max
1≤k≤M

max
1≤`≤N

sup
z∈J`

‖Ŵ2(z,αk) − Ŵ2(z`,αk)‖

≡ W211 + W212. (B.10)

For W212, note that, using the Lipschitz continuity of K(·) and the boundedness

of w(·),

‖Ŵ2(z,αk) − Ŵ2(z`,αk)‖

= ‖ 1

n

n∑

t=1

εt,αk
Xt

{
Kh(αT

k Xt−z)−Kh(αT

k Xt−z`)
}

w(αT

k Xt)‖

≤ C
1

n

n∑

t=1

|εt,αk
| ‖Xt‖h−2|z − z`|w(αT

k Xt)

= Ch−2|z − z`|
1

n

n∑

t=1

|εt,αk
| ‖X̆t‖w(αT

k Xt),
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therefore, noting ‖X̆t‖ ≤ ‖Xt‖,
W212 = max

1≤k≤M
max

1≤`≤N
sup
z∈J`

‖Ŵ2(z,αk) − Ŵ2(z`,αk)‖

= C max
1≤k≤M

max
1≤`≤N

sup
z∈J`

h−2|z − z`|
1

n

n∑

t=1

|εt,αk
| ‖Xt‖w(αT

k Xt)

≤ Ch−2N−1 max
1≤k≤M

1

n

n∑

t=1

|εt,αk
| ‖Xt‖w(αT

k Xt)

= OP

(
h−2N−1

)
= OP (ζn), (B.11)

where in the final equality of (B.11), we take N = (h2ζn)−1, and OP (·) is uniform
with respect to z ∈ Sw and α ∈ B as n → ∞, the argument being the same
as that for W222 = OP (1) and W223 = O(1) in (B.6) in the above. Now we
consider W211 in (B.10). With ξt = εt,αk

XtK((αT

k Xt − z`)/h)w(αT

k Xt) and
θt = εt,αk

Xtw(αT

k Xt) in Lemma B.2, it follows from Lemma B.2 that

P{W211 ≥ ε}

≤
M∑

k=1

N∑

`=1

P{‖W2(z`,αk)‖ ≥ ε} =

M∑

k=1

N∑

`=1

P{‖(nh)−1
n∑

i=1

ξi‖ ≥ ε}

≤
M∑

k=1

N∑

`=1

ε−2r(nh)−2rE‖
n∑

i=1

ξi‖2r ≤ ε−2r(nh)−2rMNC(nh)r

= Cε−2r(nh)−rMN = Cε−2r(nh)−r(h2ζn)−d.

Therefore

W211 = OP

(
(nh)−

1
2 (h2ζn)−

d
2r

)
, (B.12)

where OP (·) is uniform with respect to z ∈ Sw and α ∈ B as n → ∞.
Finally, taking ζn = (nh1+2d/r)−r/(2r+d), then N = (h2ζn)−1 = (nh−3)r/(2r+d),

and M = (h2ζn)−(d−1) = (nh−3)(d−1)r/(2r+d) = O(nr) as limn→∞ n2r+1h3(d−1) >
0. For such a ζn, (B.8), (B.9) and (B.11) hold simultaneously. Thus the result of
(B.2) follows from (B.3), (B.9), (B.10), (B.11) and (B.12).
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