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Abstract: The paper considers the so-called double AR(p) model,

yt =

p
∑

i=1

φiyt−i + ηt

√

√

√

√ω +

p
∑

i=1

αiy2

t−i,

where ηt ∼ i.i.d. N(0, 1). It is shown that the necessary and sufficient condition

for the existence of a strictly stationary solution to the model is that the top

Lyapounov exponent γ, defined in the paper, be negative; the solution is then

unique and geometrically ergodic. The necessary and sufficient condition for the

existence of a strictly stationary solution to the model with Ey2

t < ∞ is also

obtained. The maximum likelihood estimator of the parameters in the model is

shown to be asymptotically normal. The condition for this is again only that γ is

negative which includes the case with some roots of 1−
∑p

i=1
φiz

i = 0 on or outside

the unit circle, and the case with Ey2

t = ∞. The result is novel because all kinds of

estimated φi’s in these cases are not asymptotically normal in the classical AR(p)

model with i.i.d. errors; it may provide new insights in this direction.

Key words and phrases: Asymptotic normality, double autoregressive model, max-

imum likelihood estimator, stationarity, geometric ergodicity.

1. Introduction

Consider the autoregressive (AR) model with conditional heteroscedasticity:

yt =

p
∑

i=1

φiyt−i + ηt

√

√

√

√ω +

p
∑

i=1

αiy2
t−i, (1.1)

where ω, αi > 0, t ∈ N ≡ {−p, . . . , 0, 1, 2, . . .}, {ηt} is an independent random

sequence, ηt ∼ N(0, 1), and ys is independent of {ηt : t ≥ 1} for s ≤ 0. Let

Ft be the σ-field generated by {ηt, . . . , η1, y0, . . . , y−p}, t ∈ N . The conditional

variance of yt is var(yt|Ft−1) = ω +
∑p

i=1 αiy
2
t−i. Model (1.1) is a special case of

ARMA-ARCH models in Weiss (1986) and an example of weak ARMA models

in Francq and Zakölan (1998, 2000), but it differs from Engle’s (1982) ARCH
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model if φi 6= 0. We call (1.1) the pth-order double AR(DAR(p)) model. Mo-

tivation for the DAR(p) models can be found in Weiss (1984) and Ling (2004).

Up to now, Engle’s ARCH models have been well-understood. For some impor-

tant results on Engle’s ARCH models, we refer to Berkes, Horvath and Kokoszka

(2003), Hall and Yao (2003), Francq and Zakölan (2004) and Jensen and Rahbek

(2004). However, we know relatively little bit about Weiss’ ARCH-type models.

The first focus of this paper is to investigate the structure of (1.1). When

p = 1, it was studied by Guégan and Diebolt (1994), Borkovec (2001) and

Borkovec and Kluppelberg (2001). A general theory for this class of time se-

ries models was developed by Chen and An (1999) and Chen and Chen (2000).

However, under which conditions the general DAR(p) model is stationary and

ergodic remains an open problem. This paper solves this problem when the ηt

are normal. In Section 2, we give the necessary and sufficient conditions for the

strict stationarity and the weak stationarity of model (1.1). Furthermore, these

conditions are sufficient for the ergodicity.

The second focus of this paper is to investigate the estimation of (1.1). Weiss

(1986) first proved the asymptotic normality of the quasi-maximum likelihood

estimator (MLE) of the parameters in (1.1). But he assumes that Ey4
t < ∞.

The moment condition of yt directly links the restriction to the parameters. The

following table from Li, Ling and McAleer (2002) gives some moment conditions

of with φ1 = 0 and p = 1, i.e., ARCH(1) model. It can be seen that Ey4
t < ∞ is

yt Strict stationarity 2nd moment 4th moment 8th moment

α1 (0, 3.5620· · · ) (0, 1) (0, 0.57· · · ) (0, 0.3· · · )

a very strong condition. Up to date, the condition for Ey4
t < ∞ has not yet been

established if φi 6= 0. However, from the figure in Section 2, we can see that

Ey2
t < ∞ is a much stronger condition than that for the strict stationarity and

hence so is Ey4
t < ∞. Ling (2004) showed that the MLE of the parameters in

(1.1) with p = 1 is consistent and asymptotically normal only under the strict

stationarity condition. Its least absolute deviation estimator was studied by

Chan and Peng (2005). In Section 3, we extend Ling’s results to general DAR(p)

models. All the proofs are given in Appendix A and Appendix B.

2. Structures of DAR(p) Models

We first let ξt = (ξ1t, . . . , ξpt) be an independent p×1 standard normal vector

independent of {ηt}, and let At be the p × p random matrix

At =

(

φ1 +
√

α1ξ1t · · · φp−1 +
√

αp−1ξp−1,t φp +
√

αpξpt

Ip−1 O(p−1)×1

)

,
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where Ir is the r × r identity matrix and Or×s is the r × s zero matrix. Let

‖M‖ =
√

tr(MM ′) for a vector or matrix, M . To state our result, we need the

notion of top Lyapounov exponent, defined as

γ = inf{ 1

n
E ln ‖A1 · · ·An‖, n ≥ 1}. (2.1)

Since ξit∼N(0, 1), we can show that E ln+ ‖A1‖<∞, where ln+ x=max{lnx, 0}.
Thus, it follows from the subadditive ergodic theorem (see Kingman (1973, The-

orem 6)) that, almost surely (a.s.),

γ = lim
n→∞

1

n
ln ‖A1 · · ·An‖. (2.2)

Given φi and αi it is generally difficult to compute γ, but we can easily estimate

γ by using simulation to sufficiently large n. Now, we can state the following

theorem.

Theorem 2.1. The necessary and sufficient condition for the existence of a

strictly stationary solution to (1.1) is γ < 0. Furthermore, the solution {yt : t ∈
N} is unique, geometrically ergodic, and E|yt|u < ∞ for some u > 0.

Remark 2.1. The proof of Theorem 2.1 transforms (1.1) into a Markov chain.

We then verify the regularity conditions in Tweedie (1983) and Tjφstheim (1990)

for sufficiency. This method has been commonly used to find sufficient conditions

for stationarity of nonlinear time series models, see for example Tong (1990),

Chen and An (1998, 1999), Carrasco and Chen (2002) and Ling and McAleer

(2002). However, the verification of these conditions for (1.1) is nonstandard.

Our main idea is to find a random coefficient AR (RCAR) model such that the

model has the same transition probability as (1.1). The proof of necessity is to

verify the conditions in Bougerol and Picard (1992).

Remark 2.2. The result in Theorem 2.1 holds for the following general case:

yt =

p1
∑

i=1

φiyt−i + ηt

√

√

√

√ω +

p2
∑

i=1

αiy
2
t−i,

by letting p = max{p1, p2} with φi = 0 for i > p1, and αj = 0 for j > p2. Theorem

2.1 implies that the strictly stationary solution {yt} to (1.1) has an absolute finite

moment E|yt|u < ∞ for some u > 0. This also implies that the strictly stationary

solution to the ARCH (p) model (i.e., (1.1) with φ1 = · · · = φp = 0) has an finite

absolute uth moment. A similar result for a GARCH(r, s) model was established

in Ling (2007).

Let ρ(A) be the moduli of the matrix A (i.e., ρ(A) = maxi |vi|, where vi is

the eigenvalues of A). We next give the result for the finite second moment of yt.
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Theorem 2.2. The necessary and sufficient condition for the existence of a

strictly stationary solution, {yt : t ∈ N} with Ey2
t < ∞, to model (1.1) is that

ρ[E(At ⊗ At)] < 1, where ⊗ denotes the Kronecker product of matrices. The

solution is unique and geometrically ergodic.

Remark 2.3. From the proof, we can see that (1.1) is equivalent to an RCAR

model in distribution. The equivalence of the two models in the second moment

was given by Tsay (1987). The RCAR models were already studied in the lit-

erature by many authors, e.g., Pham (1986). However, the structures (or data

generating mechanisms) of (1.1) and the RCAR model are not the same at all,

although they have the same marginal distribution.

Remark 2.4. When p = 1, γ = E ln |φ1 +
√

α1ξt|. In this case, the condition

in Theorem 2.2 reduces to φ2
1 + α1 < 1. Figure 1 gives the regions of (φ1, α1)

such that φ2
1 + α1 < 1 and E ln |φ1 +

√
α1ξt| < 0. For the general case, note that

‖A1 · · ·An‖2 = C ′[
∏n

t=1(At ⊗ At)]C with some constant vector C. By Jensen’s

Inequality, we see that ρ[E(At ⊗ At)] < 1 implies γ < 0. From Figure 1, we

can see that the condition γ < 0 allows the case with some roots of φ(z) ≡
1 −∑p

i=1 φiz
i = 0 on or outside the unit circle, and the case with Ey2

t = ∞.

Figure 1. E ln |φ1 +
√

α1ξt| < 0 as (φ1, α1) ∈ A ∪ B and φ2

1
+ α1 < 1 as

(φ1, α1) ∈ B.

Remark 2.5. Model (1.1) is a special case of the following general model,

yt = f(yt−1, . . . , yt−p) + ηt

√

h(yt−1, . . . , yt−p),

where h(yt−1, . . . , yt−p) > 0 and {ηt} is a sequence of i.i.d. random variables

with zero mean and variable 1. Under this framework, stationarity and moment

conditions have been extensively studied in the literature, e.g., Ango Nze (1992)
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Masry and Tjφtheim (1995), Lu (1998), Cline and Pu (1999) and Lu and Jiang

(2001). Unlike our method, these papers obtain sufficient conditions for station-

arity and the existence of moments by directly checking the regularity conditions

in Tweedie (1983) or Tjφstheim (1990). Applying their results to (1.1), the

weakest sufficient conditions for stationarity is from Lu and Jiang (2001), which

is
p
∑

i=1

|φi| + E|ηt|
p
∑

i=1

αi < 1,

where E|ηt| =
√

2/π when ηt is normal. This condition is also sufficient for

E|yt| < ∞. Comparing this condition with that in Theorem 2.1, we can see that

it is far from the necessary condition, see Remark 2.4. The weakest sufficient

conditions for Ey2
t < ∞ is from Lu (1998), which is

(

p
∑

i=1

|φi|
)2

+

p
∑

i=1

αi < 1.

Except for the case with p = 1, this condition is also stronger than that in

Theorem 2.2. For example, when α1 = · · · = αp = 0, the condition in Theorem

2.2 reduces to the necessary and sufficient one for stationarity of the usually

AR(p) model, which is much weaker than
∑p

i=1 |φi| < 1. In practice, we should

first see if these simple conditions are satisfied. If not, we then check the condition

in Theorem 2.1 or 2.2. Necessary and sufficient condtion for the DAR(p) model

when p > 1 and ηt is not normal are still not known.

3. Maximum Likelihood Estimation

Let λ = (λ′
1, λ

′
2)

′ with λ1 = (φ1, . . . , φp)
′ and λ2 = (ω, α1, . . . , αp)

′. Sup-

pose {y−p, . . . , yn} is generated by (1.1) with parameter λ0 = (λ′
10, λ

′
20)

′. The

conditional log-likelihood function (ignoring a constant) can be written as

Ln(λ) =
n
∑

t=2

lt(λ) and lt(λ) = −1

2
ln(λ′

2Y2t−1) −
ε2
t (λ)

2(λ′
2Y2t−1)

, (3.1)

where εt(λ) = yt −λ′
1Y1t−1, Y1t = (yt, . . . , yt−p+1)

′, and Y2t = (1, y2
t , . . . , y

2
t−p+1)

′.

Let Θ be the parameter space. The MLE of λ0, denoted by λ̂n, is the maximizer

of Ln(λ) on Θ. Let ω, ω̄, α and ᾱ be some positive constants. Our condition is

the following.

Assumption 3.1. Θ is compact with ω ≤ ω ≤ ω̄ and α ≤ αi ≤ ᾱ (i = 1, . . . , p),

λ0 is an interior point in Θ and γ < 0 for each λ ∈ Θ.

The following theorem gives the asymptotic properties of the MLE.
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Theorem 3.1. Suppose that {yt : t ∈ N} is the strictly stationary and ergodic

solution of (1.1). If Assumption 3.1 holds, then
√

n(λ̂n − λ0) −→L N
(

0,Ω−1),

as n → ∞, where →L denote convergence in distribution, and

Ω = diag

{

E

(

Y1tY
′
1t

λ′
20Y2t)

)

,
1

2
E

[

Y2tY
′
2t

(λ′
20Y2t)2

]}

.

Remark 3.1. When ηt is not normal, we still can use (3.1). In this case, λ̂n is

only the quasi-MLE of λ0, and Theorem 3.1 holds with Ω−1 replaced by Ω−1ΣΩ−1

if Eη4
t < ∞ and J > 0, where

Σ = E







(

Y1t
√

λ′
20Y2t

,
Y2t

λ′
20Y2t

)

J





Y ′

1t√
λ′

20
Y2t

Y ′

2t

λ′

20
Y2t











and J =

(

1 Eη3
t

Eη3
t Eη4

t − 1

)

.

The proof for this is the same as that in the Appendix B, except that we need

to modify Lemma B.5 with Ω replaced by Σ.

Remark 3.2. The condition α > 0 in Assumption 3.1 is used because ω +
∑p

i=1 αiy
2
t−i can control the log-likelihood function, score function, and informa-

tion matrix in such a way that they are bounded. We cannot obtain Theorem

3.1 without this condition. The MLE is an optimal estimator in LeCam’s sense

and its asymptotic normality implies that the log-likelihood function (3.1) is lo-

cally asymptotically normal. Theorem 3.1 shows that the MLE of λ10 may be

asymptotically normal in the case with some roots of φ(z) = 0 on or outside the

unit circle, and in the case with Ey2
t = ∞. It is well known that all kinds of the

estimated φi’s in these cases are not asymptotically normal in the classical AR(p)

model with i.i.d. errors, see Dickey and Fuller (1979), Chan and Tran (1989) and

Davis, Knight and Liu (1992).

Appendix A. Proof of Theorems 2.1−2.2

Proof of Theorem 2.1. Let Yt = (yt, yt−1, . . . , yt−p+1)
′, Bp be the class of Borel

sets of Rp, and let νp be the Lebesgue measure on (Rp,Bp). Then (Rp,Bp, νp)

is the state space of the process {Yt}. Let m : Rp → R be the projection map

onto the first coordinate, i.e., m(x) = x1 as x ∈ Rp. Then {Yt} is a homogeneous

Markov chain with state space (Rp,Bp, νp). It has the transition probability

P (x,A) =

∫

m(A)

1
√

λ′
2x̃

f
(z1 − λ′

1x
√

λ′
2x̃

)

dz1, x ∈ Rp and A ∈ Bp, (A.1)

where x = (xp, . . . , x1), x̃ = (1, x2
p, . . . , x

2
1), and f(x) = (2π)−0.5e−x2/2.
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We first check the νp-irreducibility of the Markov chain {Yt}, i.e., whether
∑

∞

n=1 P n(x,A) > 0 for every x ∈ Rp whenever νp(A) > 0, where

P n(x,A) =

∫

Rp

P n−1(y,A)P (x, dy), x ∈ Rp, A ∈ Bp.

It is easy to see that the p-step transition probability of the Markov chain {Yt}
is

P p(x,A) =

∫

A

p
∏

i=1

1
√

λ′
2X̃i

f
(zi − λ′

1Xi
√

λ′
2X̃i

)

dz1 · · · dzp, (A.2)

where Xi = (zi, . . . , z1, x1, . . . , xp−i) and X̃i = (1, z2
i , . . . , z2

1 , x2
1, . . . , x

2
p−i). Since

the transition density kernel in (A.2) is positive, we know that {Yt} is νp-
irreducible.

By (2.1), there exists an integer s such that E ln ‖A1 · · ·As‖ < 0. Let Ãt =
At · · ·At−s+1, and write q(u) = E‖Ãt‖u. Since ηt ∼ N(0, 1), it is easy to show
that q(u) is differentiable on [0, 2) and q ′(u) = E[‖Ãt‖u ln ‖Ãt‖]. Note that
| lnxδ| ≤ max{xδ, x−δ} − 1 for all x > 0 and δ ∈ [0, u/2]. We can show that

E supu∈[0,1][‖Ãt‖u ln ‖Ãt‖
∣

∣

∣
] < ∞. By the Dominated Convergence Theorem,

limu→0 q′(u) = E ln ‖Ãt‖ < 0. Thus, there exists a constant δ̃ ∈ (0, 2) such that
q(u) is strictly decreasing on [0, δ̃]. Hence, there exists a constant u ∈ (0, 1) such
that

E‖Ãt‖u < q(0) = 1. (A.3)

Using (A.3), we next prove that the s-step Markov chain {Yts} satisfies the
drift condition of Theorem 4(ii) in Tweedie (1983), i.e., there exists a compact set
K and a non-negative continuous function g(x) such that νp(K) > 0, g(x) ≥ 1
on K, and

E(g(Yst)|Y(t−1)s = x) ≤ (1 − ε)g(x), x ∈ Kc, (A.4)

E(g(Yst)|Y(t−1)s = x) ≤ M, x ∈ K, (A.5)

for some ε > 0. The key point is to find a function g such that (A.4)-(A.5) hold.
It is difficult to get g by a direct method. We first consider the RCAR(p)

model

Ỹt = AtỸt−1 + η̃t, (A.6)

where η̃t = (
√

ωηt, 0, . . . , 0)
′ and Ỹt is independent of {η̃t′ : t′ < t}. It is easy to

see that {Ỹt} is a homogeneous Markov chain with state space (Rp,Bp, νp), and
its transition probability is

P (x,A) =

∫

m(A)

1
√

λ′
2x̃

f
(z1 − λ′

1x
√

λ′
2x̃

)

dz1, x ∈ Rp and A ∈ Bp. (A.7)
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We choose g(x) = 1+‖x‖u, where x ∈ Rp and u is defined as in (A.3). For a

fixed s such that (A.3) holds, we iterate (A.6) to obtain the following expansion:

Ỹts =
(

η̃ts +

s−1
∑

j=1

j−1
∏

r=0

Ats−r η̃ts−j

)

+ ÃtsỸ(t−1)s. (A.8)

By (A.8), we have

E(g(Ỹst)|Ỹ(t−1)s = x) ≤ 1 + E‖η̃ts +
s−1
∑

j=1

j−1
∏

r=0

Ats−rη̃ts−j‖u + E‖Ãts‖u‖x‖u

= E‖Ãts‖u‖x‖u + C, (A.9)

where C is some constant. Let K = {x : ‖x‖ ≤ L} and L be a positive constant.

It is easy to see that

E(g(Ỹst)|Ỹ(t−1)s = x) ≤ M, x ∈ K, (A.10)

for some constant M . Note that E‖Ãts‖u = E‖Ãt‖u. As L is large enough and

x ∈ Kc, by (A.3) there exists ε > 0 such that

E(g(Ỹst)|Ỹ(t−1)s = x) = g(x) + (E‖Ãts‖u − 1)‖x‖u + C − 1

≤ g(x){1 − [(1 − E‖Ãts‖u) +
C − 1

1 + ‖x‖u
]}

≤ (1 − ε)g(x). (A.11)

From (A.1) and (A.7), we know that {Yt} and {Ỹt} have the same transition

kernel density. By (A.10)−(A.11), we know that (A.4)−(A.5) holds with the same

g(x) and K. For each bounded continuous function G on Rp, E[G(Yst)|Ys(t−1) =

x] is continuous in x. Thus, {Yst} is a Feller chain. Furthermore, since Yst is

νp-irreducible, by Theorems 1−2 in Feigin and Tweedie (1985), we know that (i)

Yst is geometrically ergodic, which ensures that there exists a unique stationary

distribution π for {Yst}, and (ii)
∫

‖Yst‖udπ ≤
∫

Rp

g(x)π(dx) < ∞. (A.12)

By Lemma 3.1 in Tjφstheim (1990), Yt is geometrically ergodic. Thus, Yt has

a unique stationary distribution π. Let Y0 be initialized from the stationary

distribution π. Then {yt : t ∈ N} is the unique stationary solution to (1.1) and

it is geometrically ergodic. Furthermore, by (A.12), E|yt|u < ∞.

We next consider the necessity. Assume {yt : t ∈ N} is the strictly stationary

solution to (1.1). Then the Markov chain {Yt} has a stationary distribution π.
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Since {Yt} and {Ỹt} have the same transition kernel density, the Markov chain

{Ỹt} has the stationary distribution π. Let Ỹ0 be initialized from the stationary

distribution π. Then, {Ỹt : t ∈ N} is the stationary solution to model (A.6).

By (A.8) with s = p, we have

Ỹtp = Btp + ÃtpỸ(t−1)p, (A.13)

where Btp = η̃tp +
∑p−1

j=1

∏j−1
r=0 Atp−rη̃tp−j. Note that now Ãt = At · · ·At−p+1.

Since ξt is normal and ln(1 + x) ≤ x as x ≥ 0, we have that E ln+ ‖Ãtp‖ =

E max{ln ‖Ãtp‖, 0} = E[I{‖Ãtp‖ ≥ 1} ln ‖Ãtp‖] ≤ E[(‖Ãtp‖ − 1)I{‖Ãtp‖ ≥ 1}] ≤
E‖Ãtp‖+1 < ∞. Similarly, we can show that E ln+ ‖Btp‖ < ∞. By the assump-

tion of model (A.6), {Ỹtp : t ∈ N} is a nonanticipative solution to (A.13). Since

{Ỹtp : t ∈ N} is strictly stationary, it follows that

P (Ỹtp ∈ A|Ỹ(t−1)p = x) = P (Ỹp ∈ A|Ỹ0 = x) = P p(x,A). (A.14)

By (A.2) and (A.14), the density of Ỹtp given Ỹ(t−1)p = x is positive. Let H be

any affine invariant subspace of Rp under model (A.13) (i.e., {Btp + Ãtpx : x ∈
H} ⊆ H a.s.). If νp(R

p − H) 6= 0, then, for any x ∈ H,

P (Btp + Ãtpx ∈ H) = P (Ỹtp ∈ H|Ỹ(t−1)p = x)

= P (Ỹtp ∈ Rp|Ỹ(t−1)p = x) − P (Ỹtp ∈ Rp − H|Ỹ(t−1)p = x) < 1. (A.15)

It is obvious that Rp is an affine invariant subspace. By (A.15), the affine invari-

ant subspace is unique. Thus, model (A.13) is irreducible. By Theorem 2.5 in

Bougerol and Picard (1992), the necessary condition for a nonanticipative strictly

stationary solution Ỹtp to model (A.13) is that the top Lyapounov exponent

γ̃ = inf
{1

t
E ln ‖ÃpÃ2p · · · Ãtp‖, t ≥ 1

}

< 0. (A.16)

Note that ÃpÃ2p · · · Ãtp = A1 · · ·Atp. By (A.16), there exists an s such that

E ln ‖A1 · · ·Asp‖<0. Write Ã∗
t =At · · ·At−sp+1. Then E ln ‖Ã∗

sp‖ = E ln ‖A1 · · ·
Asp‖ < 0. As for (A.3), there exists u ∈ (0, 1) such that E‖Ã∗

sp‖u < 1.

For any n, let n = msp + r, where r = 0, . . . , sp − 1. We have A1 · · ·An =

Ã∗
spÃ

∗
2sp · · · Ã∗

msp ·Amsp+1 · · ·Amsp+r, where Amsp+1 · · ·Amsp+r = 1 when r = 0.

Since {Ai} is a sequence of i.i.d. random matrices, we have

E‖A1A2 · · ·An‖u ≤ E‖Ã∗
spÃ

∗
2sp · · · Ã∗

msp‖uE‖Amsp+1 · · ·Amsp+r‖u

≤ [E‖Ã∗
sp‖u]m[E‖A1‖u]r = O([E‖Ã∗

sp‖u]m) → 0,

as n → ∞, which implies m → ∞. Thus, there exists an n such that E ln ‖A1 · · ·
An‖ ≤ u−1 lnE‖A1 · · ·An‖u < 0, and hence γ < 0.
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Proof of Theorem 2.2. Let {Yt} and {Ỹt} be defined as in the proof of Theorem

2.1. Since {Yt} and {Ỹt} have the same transition kernel density, similar to the

proof of Theorem 2.1 we only need to show that ρ[E(At ⊗ At)] < 1 is necessary

and sufficient for the existence of a unique strictly stationary solution Ỹt to

(A.6) with E‖Ỹt‖2 < ∞. The sufficiency and the uniqueness were given by

Feigin and Tweedie (1985), while the necessity was given by Nicholls and Quinn

(1982) and Ling (1999).

Appendix B. Proof of Theorem 3.1

The first lemma is Theorem 3.1 in Ling and McAleer (2003).

Lemma B.1. Let g(y, θ) be a measurable function of y in Euclidean space for

each θ ∈ Θ, a compact subset of Rp, and a continuous function of θ ∈ Θ for each

y. Suppose that {yt} is a sequence of strictly stationary and ergodic time series,

such that Eg(yt, θ) = 0 and E supθ∈Θ |g(yt, θ)| < ∞. Then

sup
θ∈Θ

∣

∣

∣

1

n

n
∑

t=1

g(yt, θ)
∣

∣

∣ = op(1).

We now give the first- and second- derivatives of lt(λ) as follows.

∂lt(λ)

∂λ1
=

Y1t−1εt(λ)

λ′
2Y2t−1

,

∂lt(λ)

∂λ2
= − Y2t−1

2λ′
2Y2t−1

[

1 − ε2
t (λ)

λ′
2Y2t−1

]

,

∂2lt(λ)

∂λ1∂λ′
1

= −Y1t−1Y
′
1t−1

λ′
2Y2t−1

,

∂2lt(λ)

∂λ2∂λ′
2

=
Y2t−1Y

′
2t−1

2(λ′
2Y2t−1)2

[

1 − 2ε2
t (λ)

λ′
2Y2t−1

]

,

∂2lt(λ)

∂λ1∂λ′
2

= −Y1t−1Y
′
2t−1εt(λ)

(λ′
2Y2t−1)2

.

The following lemma is a basic result in our proof. It indicates why we need

to bound ω and αi in Θ and is used to obtain uniform convergence in Lemma

B.3.

Lemma B.2. If the assumption of Theorem 3.1 holds, then

(i) E sup
λ∈Θ

|lt(λ)| < ∞,

(ii) E sup
λ∈Θ

∥

∥

∥

∂2lt(λ)

∂λ∂λ′

∥

∥

∥ < ∞.
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Proof. (i) By Theorem 2.1, there exists a u ∈ (0, 1) such that E|yt|u < ∞. Let

ω̄∗ = max{1, ω̄}. By Jensen’s Inequality, we have

E ln(ω̄∗ +

p
∑

i=1

ᾱiy
2
t−i) =

2

u
E ln(ω̄∗ +

p
∑

i=1

ᾱiy
2
t−i)

u
2

≤ 2

u
ln(ω̄

∗u
2 +

p
∑

i=1

ᾱ
u
2

i E|yt−i|u) < ∞, (B.1)

where the following elementary relation is used: (
∑p

i=1 ai)
s ≤ ∑p

i=1 as
i for all

ai > 0 and s ∈ (0, 1). By (B.1), we have

E sup
λ∈Θ

| ln(ω +

p
∑

i=1

αiy
2
t−i)| ≤ E sup

λ∈Θ
[I{ω +

p
∑

i=1

αiy
2
t−i ≥ 1} ln(ω +

p
∑

i=1

αiy
2
t−i)]

+ E sup
λ∈Θ

[−I{ω +

p
∑

i=1

αiy
2
t−i ≤ 1} ln(ω +

p
∑

i=1

αiy
2
t−i)]

≤ E ln(ω̄∗ +

p
∑

i=1

ᾱiy
2
t−i) − I{ω < 1} ln ω < ∞. (B.2)

Furthermore, since yt −
∑p

i=1 φiyt−i = εt(λ0) −
∑p

i=1(φi − φi0)yt−i and εt(λ0) =

ηt

√

ω0 +
∑p

i=1 αi0y2
t−i, it follows that

E sup
λ∈Θ

[(yt −
∑p

i=1 φiyt−i)
2

ω +
∑p

i=1 αiy2
t−i

]

≤ 2E sup
λ∈Θ

[ [
∑p

i=1(φi − φi0)yt−1]
2

ω +
∑p

i=1 αiy2
t−i

]

+ 2E sup
λ∈Θ

[ω0 +
∑p

i=1 αi0y
2
t−i

ω +
∑p

i=1 αiy2
t−i

]

≤ C, (B.3)

where C is some finite constant. By (B.2)-(B.3), (i) holds.

(ii). As in (B.3), we can show that

E sup
λ∈Θ

[∂lt(λ)

∂φi

]2
= E sup

λ∈Θ

y2
t−i[εt(λ0) −

∑p
i=1(φi − φi0)yt−i]

2

(ω +
∑p

i=1 αiy
2
t−i)

2

≤ E
[ Cy2

t−i

∑p
j=1 y2

t−j

(ω +
∑p

i=1 αiy
2
t−i)

2

]

+ 2E
[ y2

t−iε
2
t (λ0)

(ω +
∑p

i=1 αiy
2
t−i)

2

]

≤ C1 + 2E
[y2

t−i(ω0 +
∑p

i=1 αi0y
2
t−i)

(ω +
∑p

i=1 αiy
2
t−i)

2

]

≤ C,

where C and C1 are some finite constants. Similarly, we can show that other

terms in (ii) are finite. Thus, (ii) holds.
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Before giving the proof of Theorem 2.1, we still need three lemmas. Lemmas

B.3(i) and B.4 are used to obtain the consistency of λ̂n. Based on this consistency,

we can use Lemmas B.3(ii) and B.5 to prove Theorem 2.1.

Lemma B.3. If the assumption of Theorem 3.1 holds, then

(i) sup
λ∈Θ

∣

∣

∣

1

n
Ln(λ) − Elt(λ)

∣

∣

∣
= op(1),

(ii) sup
λ∈Θ

∥

∥

∥

1

n

n
∑

t=2

{[∂2lt(λ)

∂λ∂λ′

]

− E
[∂2lt(λ)

∂λ∂λ′

]}∥

∥

∥
= op(1).

Proof. This follows directly from Lemmas B.1 and B.2.

Lemma B.4. Under the assumption of Theorem 3.1, Elt(λ) has a unique max-

imum at λ0.

Proof. We first show that

c1 = 0 if c′1Y1t = 0 a.s. and c2 = 0 if c′2Y2t = 0 a.s., (B.4)

where c1 and c2 are p × 1 and (p + 1) × 1 constant vectors, respectively. If

c1 ≡ (c11, . . . , c1p)
′ is not a zero vector, for simplicity, we assume that c11 =

1. Then, yt = −∑p
t=2 c1iyt−i+1 a.s. because c′1Y1t = 0 a.s.. Thus, Eη2

t =

E{ηt[(−λ′
10Y1t−1 −∑p

t=2 c1iyt−i+1)/
√

λ′
20Y2t−1]} = 0 since ηt is independent of

Ft−1, which is a contradiction with ηt ∼ N(0, 1). Thus, c1 = 0. Similarly, we

can show that c2 = 0.

As in (B.3), we can show that

Elt(λ) = −1

2
E
[

ln(λ′
2Y2t−1) +

(yt − λ′
1Y1t−1)

2

λ′
2Y2t−1

]

= −1

2

{

E ln(λ′
2Y2t−1) + E

(λ′
20Y2t−1

λ′
2Y2t−1

)}

− 1

2
E
( [(λ1 − λ10)

′Y1t−1]
2

λ′
2Y2t−1

)

. (B.5)

The second term in (B.5) reaches its maximum at zero, and this occurs if and

only if (λ1 − λ10)
′Y1t−1 = 0 a.s., which holds if and only if λ1 = λ10 by (B.4).

The first term in (B.5) is

− 1

2
{−E lnMt + EMt} −

1

2
E ln(λ′

20Y2t−1), (B.6)

where Mt = λ′
20Y2t−1/λ

′
2Y2t−1. Note that, for any x > 0, −f(x) ≡ − lnx+x ≥ 1,

and hence −E lnMt + EMt ≥ 1. When Mt = 1, we have f(Mt) = f(1) = −1. If

Mt 6= 1, then f(Mt) < f(1), so Ef(Mt) ≤ Ef(1) with equality only if Mt = 1

with probability one. Thus, (B.6) reaches its maximum −1/2−E ln(λ′
20Y2t−1)/2,
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if and only if λ′
2Y2t−1 = λ′

20Y2t−1, which holds if and only if λ2 = λ20 by (B.4).

Thus, Elt(λ) is uniquely maximized at λ0.

Lemma B.5. If the assumption of Theorem 3.1 holds, then

(i) Ω is finite and positive definite,

(ii)
1√
n

n
∑

t=2

∂lt(λ0)

∂λ
−→L N(0,Ω).

Proof. Since the density of ηt is symmetric, it is easy to show that

E
[∂lt(λ0)

∂λ

∂lt(λ0)

∂λ′

]

= diag
{

E
(Y1t−1Y

′
1t−1

λ′
20Y2t−1

)

,
1

2
E
[ Y2t−1Y

′
2t−1

(λ′
20Y2t−1)2

]}

= Ω.

By Assumption 3.1, we can see that ‖Y1t−1‖2/λ′
20Y2t−1 and ‖Y2t−1‖2/λ′

20Y2t−1

are bounded a.s. by some constant C. Thus, Ω is finite. If Ω is not positive

definite, then there exists a nonzero p× 1 constant vector c1 such that c′1Y1t = 0

a.s. or a nonzero (p + 1) × 1 constant vector c2 such that c′2Y2t = 0 a.s.. But

this is impossible by (B.4). Thus, (i) holds. Using the Martingale Central Limit

Theorem and the Crámer-Wold device, it is straightforward to show that (ii)

holds.

Proof of Theorem 3.1. By Lemma B.3(i) and B.4, we have established all the

conditions for consistency in Theorem 4.1.1 in Amemiya (1985), and hence λ̂n→
λ0 in probability. By Lemma B.3(ii), we can obtain that n−1

∑n
t=2[∂

2lt(λn)/∂λ′∂λ]

converges to Ω in probability for any sequence λn such that λn → λ0 in prob-

ability. Furthermore, by Lemma B.5, we have established all the conditions in

Theorem 4.1.3 in Amemiya (1985), and hence the conclusion holds.

Acknowledgement

The author greatly appreciates two referees and the Co-Editor H.-C. Ho for

their very helpful comments, and thanks the Hong Kong RGC’s Competitive

Earmarked Research Grants #HKUST602205/05P and #HKUST6428/06H for

financial support.

References

Amemiya, T. (1985). Advanced Econometrics. Harvard University Press, Cambridge.

Ango Nze, P. (1992). Criteria of ergodicity for some models with a Markovian representation.

C. R. Acad. Sci. Paris Ser. I Math., 1301-1304.

Borkovec, M. (2001). Asymptotic behavior of the sample autocovariance and autocorrelation

function of the AR(1) process with ARCH(1). Bernoulli 6, 847-872.



174 SHIQING LING

Borkovec, M. and Kluppelberg, C. (2001). The tail of the stationary distribution of an autore-

gressive process with ARCH(1) errors. Ann. Appl. Probab. 11, 1220-1241.

Berkes, I., Horvath L. and Kokoszka, P. (2003). GARCH processes: structure and estimation.

Bernoulli 9, 201-207.

Bougerol, P. and Picard, N. (1992). Strict stationarity of generalized autoregressive processes.

Ann. Probab. 20, 1714-1730.

Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and

stochastic volatility models. Econom. Theory 18, 17-39.

Chan, N. H. and Tran, L. T. (1989). On the first-order autoregressive process with infinite

variance. Econom. Theory 5, 354-362.

Chan, N. H. and Peng, L. (2005). Weighted least absolute deviation estimation for an AR(1)

process with ARCH(1) errors. Biometrika 92, 477-484.

Chen, M. and An, H. Z. (1998). A note on the stationarity and the existence of moments of the

GARCH model. Statist. Sinica 8, 505-510.

Chen, M. and An, H. Z. (1999). The probabilistic properties of the nonlinear autoregressive

model with conditional heteroskedasticity. Acta Math. Appl. Sinica (English Ser.) 15, 9-17.

Chen, M. and Chen, G. (2000). Geometric ergodicity of nonlinear autoregressive models with

changing conditional variances. Canad. J. Statist. 28, 605-613.

Cline, D. B. H. and Pu, H. H. (1999). Geometric ergodicity of nonlinear time series. Statist.

Sinica 9, 1103-1118.

Davis, R. A., Knight, K. and Liu, J. (1992). M -estimation for autoregressions with infinite

variance. Stochastic Process. Appl. 40, 145-180.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time

series with a unit root. J. Amer. Statist. Assoc. 74, 427-431.

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of variance of

U. K. inflation. Econometrica 50, 987-1008.
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Guégan, D. and Diebolt, J. (1994). Probabilistic properties of the β-ARCH-model. Statist.

Sinica 4, 71-87.

Hall, P. and Yao, Q. W. (2003). Inference in ARCH and GARCH models. Eonometrica 71,

285-317.

Jensen, S. T. and Rahbek, A. (2004). Asymptotic normality of the QMLE estimator of ARCH

in the nonstationary case. Econometrica 72, 641-646.

Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann. Probab. 1, 883-909.

Li, W. K., Ling, S. and McAleer, M. (2002). A survey of recent theoretical results for time series

models with GARCH errors. J. Economic Survey 16, 245-269.

Ling, S. (1999). On the stationarity and the existence of moments of conditional heteroskedastic

ARMA models. Statist. Sinica 9, 1119-1130.



A DOUBLE AR(p) MODEL: STRUCTURE AND ESTIMATION 175

Ling, S. (2004). Estimation and testing stationarity for double autoregressive models. J. Roy.

Statist. Soc. Ser. B 66, 63-78.

Ling, S. (2007). Self-weighted and local quasi-maximum likelihood estimator for ARMA-

GARCH/IGARCH models. J. Econometrics. To appear.

Ling, S. and McAleer, M. (2002). Necessary and sufficient moment conditions for the GARCH

and Asymmetric Power GARCH models. Econometric Theory 18 , 722-729.

Ling, S. and McAleer, M. (2003). Asymptotic theory for a new vector ARMA-GARCH model.

Econom. Theory 19, 280-310.

Lu, Z. D. (1998). On the geometric ergodicity of a non-linear autoregressive model with an

autoregressive conditional heteroscedastic term. Statist. Sinica 8, 1205-1217.

Lu, Z. D. and Jiang, Z. Y. (2001). L1 geometric ergodicity of a multivariate nonlinear AR model

with an ARCH term. Statist. Probab. Lett. 51, 121-130.

Masry, E and Tjφtheim, D. (1995). Nonparametric estimation and identification of nonlinear

ARCH time series. Econom. Theory 11, 258-289.

Nicholls, D. F. and Quinn, B. G. (1982). Random coefficient autoregressive models: an intro-

duction. Lecture Notes in Statistics 11. Springer-Verlag, New York-Berlin.

Pham, D. T. (1986). Bilinear Markovian representation and bilinear models. Stochastic Process.

Appl. 20, 295-306.

Tjφstheim, D. (1990). Nonlinear time series and Markov chains. Adv. Appl. Probab. 22, 587-611.

Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. The Clarendon Press,

Oxford University Press, New York.

Tweedie, R. L. (1983). Criteria for rates of convergence of Markov chains, with application

to queuing theory. In Papers in Probability, Statistics and Analysis (Edited by J. F. C.

Kingman and G. E. H. Reuter). Cambridge University Press, Cambridge.

Tsay, R. S. (1987). Conditional heteroscedastic time series models. J. Amer. Statist. Assoc. 82,

590-604.

Weiss, A. A. (1984). ARMA models with ARCH errors. J. Time Ser. Anal. 5, 129-43.

Weiss, A. A. (1986). Asymptotic theory for ARCH models: estimation and testing. Econom.

Theory 2, 107-131.

Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong.

E-mail: maling@ust.hk

(Received August 2004; accepted April 2006)


	1. Introduction
	2. Structures of DAR(p) Models
	3. Maximum Likelihood Estimation
	Appendix A. Proof of Theorems 2.1-2.2 
	Appendix B. Proof of Theorem 3.1

