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Abstract: Panels of nonlinear time series data are increasingly collected in scientific

studies, and a fundamental problem is to study the common dynamic structures of

such data. We propose a new model for exploring the common dynamic structure

in multivariate nonlinear time series. The basic idea is that the panel of time series

are driven by an underlying low-dimensional nonlinear principal component process

that is modeled as some nonlinear function of the past lags of the time series. In

particular, we consider in some detail the REduced-rank Threshold AutoRegressive

(RETAR) model whose nonlinear principal component process is a piecewise linear

vector-valued function of past lags of the panel of time series. We propose an

estimation scheme for the RETAR model and derive the large sample properties

of the estimator. We illustrate the RETAR model using a modern panel of eight

Canada lynx series, and demonstrate a classification of lynx series that is broadly

similar to that reported by Stenseth et al. (1999), who used a different approach.
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1. Introduction

Multivariate time series data can arise in several areas. In particular, panels
of time series data are increasingly collected in various fields and often analyzed
with multivariate time series techniques. A common procedure assumes series

from each site, or each component series, as driven by a (possibly distinct) model
from a common parametric family of nonlinear models with innovations being
perhaps contemporaneously correlated, but without serial dependence. This ap-

proach was adopted by Stenseth et al. (1999) in modeling a panel of Canada
lynx pelt data. They modeled each component lynx pelt series by a second-order
Threshold AutoRegressive (TAR) model (Tong (1990)) with delay equal to two,
as motivated by a predator-prey model. They studied the spatial variation in

the nonlinear dynamics of the data which might be attributed to two compet-
ing hypotheses: an ecology-based classification according to forest types, or a
climate-based classification according to weather pattern induced by the North

Atlantic Oscillation (NAO). Stenseth et al. (1999) found that the lynx dynamics
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could be classified according to three climatic regions, Pacific-maritime, Conti-
nental and Atlantic-maritime, over each of which the lynx series share similar
dynamics during the decrease phase of the series.

An exhaustive search for patterns in the nonlinear dynamics of a panel of
time series is generally infeasible. Here we propose a new approach for exploring
common structure. The basic idea is that a panel of time series may be driven
by a few latent (nonlinear) principal component processes (which we sometimes
refer to as factor processes). In the case of linear Vector Auto-Regressive Moving-
Average (VARMA) processes, this idea is most conveniently implemented via the
reduced rank approach; see Reinsel and Velu (1998). Many nonlinear models, in-
cluding the TAR model, are conditionally linear, i.e., given some (nonlinearity)
parameters, the model resembles a linear ’regression’ model with the regressors
being some (nonlinear) functions of past lags of the observations and the non-
linearity parameters. Our new approach generalizes the method of reduced-rank
regression to conditionally linear models. The new model is referred to as the
REduced-rank Nonlinear AutoRegressive (RENAR) model. In particular, we

specialize the RENAR model to the case of threshold model, resulting in the
REduced-rank Threshold AutoRegressive (RETAR) model.

The organization of this paper is as follows. We introduce the RENAR
approach and the RETAR model in Section 2. Statistical estimation of a RE-
TAR model is discussed in Section 3. Some sufficient conditions for ergodicity
and stationarity of a RETAR model are derived in Section 4. The estimation
procedure proposed in Section 3 is essentially Maximum likelihood (ML) esti-
mation assuming that the innovations are homogeneous and Gaussian. For the
case of known error covariance, ML estimation can be carried out by weighted
least squares (LS) estimation with the inverse of the error covariance being the
weight. In Section 5, we derive the consistency property of the weighted LS
estimator of a stationary ergodic RETAR model. In particular, the threshold
estimator is shown to be super-consistent, i.e., of OP (1/T ) from the true value
where T is the sample size. In Section 6, we derive the asymptotic distribution
of the weighted least squares estimator with the weight being the inverse of the
error covariance matrix, and we discuss how to extend this asymptotic result to
the ML estimator proposed in Section 3. We illustrate the RETAR model with
the modern panel of Canada lynx data in Section 7, which essentially confirms
the climate-based classification reported by Stenseth et al. (1999). We conclude
in Section 8. Proofs of all theorems can be found in the online supplement
(http://www3.stat.sinica.edu.tw/statistica).

2. The Model

Let {Yst}, s = 1, . . . ,m, t = 1, . . . , T be a panel of time series data where

s may denote a site, for example, and t denotes time. A general scheme for
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modeling Yt = (Y1t, . . . , Ymt) is to write

Yt = h(Wt) + εt,

where h(.) can be some parametric or non-parametric function, the random vector

Wt may include past lags of Yt, and the εt denote the innovations; more generally,

Wt may contain other covariates. See Tong (1990) for a review of nonlinear time

series analysis. Here we consider the case of a conditionally linear model, that

is, h(Wt) = BWt(δ) where Wt(δ) is a function of past lags and/or covariates as

well as a parameter vector δ. This class of models is quite general as it includes

the scheme of fitting a parametric model series by series with contemporaneously

correlated innovations. To avoid the curse of dimensionality, we suppose that B

is of reduced rank.

To fix ideas, we specialize the above scheme to TAR models. Recall that a

two-regime first order TAR model, also denoted as TAR(2; 1, 1), takes the form

Yst = βs0 + βs1Ys,t−1 + {βs2 + βs3Ys,t−1}I(Ys,t−d > γs) + εst (2.1)

= βs0 + βs1Xs1t + βs2Xs2t + βs3Xs3t + εst, (2.2)

where Xs1t = Ys,t−1, Xs2t = I(Ys,t−d > γs), Xs3t = Ys,t−1I(Ys,t−d > γs), εst =

{σs1 +σs2I(Ys,t−d > γs)}et, and {et} are i.i.d. with zero mean and unit variance.

Note that, given γs and d, the TAR model is linear in the X’s. Equation (2.1) is

a common form used to represent a TAR model. The advantage of (2.2) is that

it allows us to treat the TAR model as a classical linear model. Note that in

(2.2) the ”covariates” also contain the unknown parameters d, γ1, . . . , γm.

Consider the above system of TAR(2; 1, 1) models in matrix form:

Yt =











Y1t

Y2t
...

Ymt











=











β10

β20
...

βm0











+











β11 0 . . . 0
0 β21 0 0
...

...
...

0 0 . . . βm1





















Y1,t−1

Y2,t−1
...

Ym,t−1











+











β12 0 . . . 0
0 β22 0 0
...

...
...

0 0 . . . βm2





















I(Y1,t−1 > γ1)
I(Y2,t−1 > γ2)

...
I(Ym,t−1 > γm)











+











β13 0 . . . 0
0 β23 0 0
...

...
...

0 0 . . . βm3





















Y1,t−1I(Y1,t−1 > γ1)
Y2,t−1I(Y2,t−1 > γ2)

...
Ym,t−1I(Ym,t−1 > γm)










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+











{σ11 + σ12I(Y1,t−1 > γ1)}e1t

{σ21 + σ22I(Y2,t−1 > γ2)}e2t
...

{σm1 + σm2I(Ym,t−1 > γm)}emt











.

The diagonal coefficient matrices of the above model imply that there are no
direct relationships between the Y ’s from different sites. Such relationships may,
however, be modeled by using nondiagonal coefficients, so that the model becomes

Yt = µ + C1X1t + C2X2t + C3X3t + εt

= µ + CXt + εt, (2.3)

where µ = (β10, . . . , βm0)
′, C = (C1, C2, C3), Xt = (X ′

1t, X
′
2t, X

′
3t)

′, and there
are m + 3 × m2 coefficient parameters, a large number even for a moderate m.
Note that the X’s depend on lags 1 and d of the Y ’s, as well as the nonlinearity
parameters γ’s and d’s.

A useful approach for reducing the number of explanatory variables in lin-
ear regression and vector autoregressive models is to invoke the reduced-rank

model; see Robinson (1973), Izenman (1980), Velu, Reinsel and Wichern (1986),
or Reinsel and Velu (1998). Here we borrow the essential idea of reduced-rank
regression to reduce the number of unknown parameters by replacing the matrix
C in the full rank model (2.3) by the product of two smaller-rank matrices A
and B (of equal rank):

Yt = µ + CXt + εt = µ + ABXt + εt,

where Yt, µ, εt are m dimensional vectors, A is an m × r full rank matrix, and
B is a r × 3m full rank matrix. The reduced-rank model bears a resemblance
to factor analysis, and it also subsumes the case of principal component anal-
ysis and canonical correlation analysis; see Reinsel and Velu (1998). It has the
advantage of explicitly modeling the underlying principal component as BXt,
thereby reducing the 3m-dimensional covariate process Xt to an r-dimensional
factor process BjXt, where B = (B ′

1, . . . , B
′
r)

′. Here r ≤ m, but the interesting
case of r < m implies C is of reduced-rank.

The preceding discussion leads us to propose the REduced-rank Nonlinear

AutoRegressive (RENAR) model

Yt = µ + ABXt(θ) + εt, t = 1, 2, . . . , (2.4)

where the Yt are m-dimensional and the Xt(θ) are n-dimensional vector covariates
which depend on a vector parameter θ, and may consist of past lags of Y ; A and B
are, respectively, m× r and r×n full-rank coefficient matrices; εt ∼ (0,Σεε = Σ)
and independent of past X’s and Y ’s. Some examples of the RENAR model
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include EXPAR, STAR and piecewise polynomial models; see Tong (1990). Here,

motivated by the threshold autoregressive model, we focus on the case that the

X’s are piecewise linear functions of past lags of Y ’s, although the general idea

is applicable to other conditionally linear processes.

The decomposition of C = AB in (2.4) is not unique because C = AP−1PB

for any nonsingular matrix P , i.e, A and B can be ”rotated” arbitrarily. Hence

to determine A and B uniquely, we must impose some normalization conditions,

to be elaborated upon below.

For the case of known θ and known rank of A, the remaining unknown

parameters can be estimated by the weighted least square estimator minimizing

the objective function (with a positive definite weight matrix Γ)

L = tr
[

T
∑

t=1

Γ
1

2 [Yt − µ − ABXt(θ)][Yt − µ − ABXt(θ)]′Γ
1

2

]

. (2.5)

This has the closed-form solution (Reinsel and Velu (1998))

A = Γ− 1

2 [V1, . . . , Vr] = Γ− 1

2 V, B = V ′Γ
1

2 SyxS−1
xx ,

where Syx is the sample covariance matrix of Yt and Xt(θ), and Sxx is the sample

variance matrix of Xt(θ); Vj is the normalized eigenvector corresponding to the

jth largest eigenvalue λ2
j of Γ1/2SyxS

−1
xx SxyΓ

1/2, j = 1, 2, . . . , r.

Remarks

1. The normalization conditions for the decomposition of C = AB require the

eigenvectors V ′
j s to satisfy V ′

j Vj = 1 and V ′
i Vj = 0 if i 6= j or, equivalently, to

require A and B to satisfy the conditions

BSxxB
′ = Λ2, A′ΓA = Ir.

Owing to the r2 restrictions, there are mr+nr−r2 free independent parameters

in A and B.

2. The estimator C = C (r) is given by

C(r) = A(r)B(r)

= Γ− 1

2

(

r
∑

j=1

VjV
′
j

)

Γ
1

2 SyxS−1
xx = PΓSyxS−1

xx .

Note that PΓ is an idempotent matrix for any Γ but need not be symmetric.

When r = m, Σm
j=1VjV

′
j = Im and C(m) becomes a full-rank m × n matrix.

Consider the RENAR model with threshold-type X-components, in which

case the model is called the REduced-rank Threshold AutoRegressive (RETAR)



144 MING-CHUNG LI AND KUNG-SIK CHAN

model. For the case of two regimes with AR orders p1 and p2, and delay parameter

d, the RETAR model postulates that

Yt = µ + C1Yt−1 + C2Yt−2 + · · · + Cp1Yt−p1
+ Cp1+1I(Yt−d > γ)

+Cp1+1+1Yt−1I(Yt−d > γ) + · · · + Cp1+1+p2
Yt−p2

I(Yt−d > γ) + εt

= µ + C1X1t + C2X2t + · · · + CkXkt + εt

= µ + CXt + εt

= µ + ABXt + εt, (2.6)

where Yt, µ,Xjt are m-vectors, k = p1 + 1 + p2, Xt is a km-dimensional vector,

and Cj , C, A, B are m × m, m × km, m × r and r × km dimensional matri-

ces, respectively. The notations I(Yt−d > γ) and Yt−jI(Yt−d > γ) are defined

componentwise, i.e.,

I(Yt−d > γ) = (I(Y1,t−d > γ1), . . . , I(Ym,t−d > γm))′, (2.7)

Yt−jI(Yt−d > γ) = (Y1,t−jI(Y1,t−d > γ1), . . . , Ym,t−jI(Ym,t−d > γm))′. (2.8)

The innovations {εt} are assumed i.i.d. with zero mean and covariance matrix Σ.

The delay parameter is assumed to be identical for all series. Clearly, the model

can be generalized to the case of non-constant delay with the delay for the jth

series being dj .

3. Estimation of the RETAR Model

Consider the estimation of the nonlinearity parameters (d, γ, p1, p2). The

vector delay parameter d = (d1, . . . , dm)′ is an m-dimensional vector with com-

ponents in {1, . . . , D}; D some known upper bound. Initial estimates of d and

γ = (γ1, . . . , γm)′ can be obtained by fitting separate TAR models to each se-

ries. These initial estimates are refined via an iterative scheme to be described

below. The orders (p1, p2) can be selected to be the maximum of the estimate

obtained from series by series estimation. The order of a nonlinear autoregressive

process can be consistently estimated by cross-validation; see Cheng and Tong

(1992) and Chan and Tong (2001). Alternatively, these orders can be estimated

by some classical model selection criterion. In practice substantive knowledge

may supplement these objective criteria in selecting the order and/or delay pa-

rameter.

Henceforth, we write Xt for Xt(θ), for simplicity. Given the nonlinear param-

eters (d, γ, p1, p2), we can apply reduced-rank regression techniques to estimate

µ, A and B. We propose the following algorithm to estimate the RETAR model

(the estimator so obtained is the ML estimator for the case of known rank for A

and B, assuming homogeneous Gaussian errors):
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Step 1: Obtain an initial estimate of {ds, s = 1, . . . ,m} and {γs, s = 1, . . . ,m}
by fitting separate TAR models to each series using, for example, the
method of conditional least squares.

Step 2: The corrected Bartlett test statistics (likelihood ratio tests) are com-

puted in order to determine the rank of A and B. Specifically, we set
the rank to be the smallest r for which we do not reject the null hy-

pothesis H0 : rank = r v.s. H1 : C is of full rank. For the preceding
test, the corrected Bartlett statistic is

M = −
[

T − n +
(n − m − 1)

2

]

m
∑

j=r+1

log(1 − ρ̂2
j),

where ρ̂j is the jth largest sample canonical correlation between Y

and X. M is asymptotically χ2 with d.f.=(m − r)(n − r) under H0;
m is the dimension of Yt and n that of Xt. Apply the reduced-rank

regression algorithm to obtain the least squares estimator of µ,A and

B. As detailed in Reinsel and Velu (1998), the least squares estimators
of µ,A and B are the arguments which minimize the objective function

MD ≡ tr
[

T
∑

t=1

Γ
1

2 (Yt − µ − ABXt)(Yt − µ − ABXt)
′Γ

1

2

]

,

where Γ = Σ̃−1
εε = T [(Y − µ̃− C̃X)(Y − µ̃− C̃X)′]−1, X = (X1, . . . , XT ),

Y = (Y1, . . . , YT ), C̃ = Y X ′(XX ′)−1 and µ̃ = Ȳ − C̃X̄. In other words,

the weight is the inverse of the error covariance matrix from the full-
rank model.

Step 3: Update the parameter estimates of (γ, d) by a grid search. Vary γ1 but
with the other parameters of (γ, d) including the rank found in Step 2

being fixed, and compare the objective function (MD) for different γ1,

say γ11, . . . , γ15. Update γ1 by the one with the smallest MD. Then we
vary γ2 with the other parameters being fixed, and update it by the

one with the smallest MD. Similarly we can update the estimates for

γ3, . . . , γm and d1, . . . , dm.
Step 4: Repeat Steps 2 and 3 until the change in the objective function MD is

less than a tolerance limit.

For a fixed Γ and known rank of A, the weighted least squares (WLS) es-

timator of µ, A, B, γ and d obtained by minimizing the loss function (2.5) can

be determined by the preceding algorithm, with Γ and r fixed. It will be shown
that the weighted least squares estimators are consistent and the estimator of

γ is super-consistent, that is, it has the convergence rate Op(1/T ) under some

conditions. In particular, the above consistency property enables us to adapt the
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techniques from Velu et al. (1986) to derive the limiting distribution of the WLS

estimator (Â, B̂); see also Robinson (1973) and Reinsel and Velu (1998). These

results can then be extended to show that the estimator obtained by the algo-

rithm defined by Steps 1 to 4 enjoys the limiting properties of the WLS estimator

with weight Γ = Σ−1
εε .

We remark that in Step 2, an alternative approach is to determine the rank as

a multiple-decision problem, see Anderson (1971, pp.270-276). We can also com-

pute some information-based criteria, for example AIC or BIC, for comparison

with the rank chosen by the likelihood ratio tests.

4. Ergodicity and Stationarity of the RETAR Model

In this section, we study the ergodicity of the RETAR model. Recall that

an ergodic Markov process is asymptotically stationary and admits a unique

stationary distribution. Some early works on the ergodic theory of Markov

chain are Foster (1953) and Tweedie (1975, 1976). For applications in non-

linear time series, see Petruccelli and Woolford (1984), Chan and Tong (1985),

Chan, Petruccelli, Tong and Woolford (1985), Tjøstheim (1990), Tong (1990),

Chan (1993) and Cline and Pu (2001). For comprehensive reviews, see Nummelin

(1984) and Meyn and Tweedie (1993).

In the one-dimensional case, Petruccelli and Woolford (1984) found a neces-

sary and sufficient condition for the ergodicity of a TAR(2; 1, 1) model. This

turns out to be the condition for the stability of the skeleton obtained from sup-

pressing the innovations in the TAR model; see Chan and Tong (1985) for further

discussions of the link between stability and ergodicity. Here we are interested

in applying this link between stability and ergodicity to find similar sufficient

and necessary condition for the ergodicity of RETAR models. We start with the

simplest case of model (2.6), with m = 2, n = 6, µ = 0, p1 = p2 = 1, d = 1 and

r = 1. Without loss of generality, we can assume the threshold parameter γ = 0.

Furthermore, the intercept term does not generally affect the ergodicity of the

RETAR model, except for the boundary case; see Remark 1 below Theorem 1.

Henceforth in this section, the intercept term is suppressed. Define

R1 = {(x, y) : x > 0, y > 0}, R2 = {(x, y) : x ≤ 0, y > 0},
R3 = {(x, y) : x ≤ 0, y ≤ 0}, R4 = {(x, y) : x > 0, y ≤ 0}.

Let Yt = (Y1,t, Y2,t)
′. Because C is of unit rank, write C = −→a −→

b ′, where −→a =

(a1, a2)
′ and

−→
b = (b1, b2, b3, b4, b5, b6)

′.
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The RETAR model can then be expressed as follows:

Yt = −→a (b1, b2, b3, b4, b5, b6)

















Y1,t−1

Y2,t−1

I(Y1,t−1 > 0)
I(Y2,t−1 > 0)
Y1,t−1I(Y1,t−1 > 0)
Y2,t−1I(Y2,t−1 > 0)

















+ εt

=















−→a [(b3 + b4) + (b1 + b5, b2 + b6)Yt−1] + εt if Yt−1 ∈ R1−→a [b4 + (b1, b2 + b6)Yt−1] + εt if Yt−1 ∈ R2−→a [(b1, b2)Yt−1] + εt if Yt−1 ∈ R3−→a [b3 + (b1 + b5, b2)Yt−1] + εt if Yt−1 ∈ R4.

(4.1)

For notational convenience, we write

Yt =















C1Yt−1 + εt if Yt−1 ∈ R1

C2Yt−1 + εt if Yt−1 ∈ R2

C3Yt−1 + εt if Yt−1 ∈ R3

C4Yt−1 + εt if Yt−1 ∈ R4,

(4.2)

where the intercept terms are suppressed, Ci = −→a −→
b ′

i with −→a ,
−→
b i ∈ R2, and

−→
b ′

denotes the transpose of
−→
b . (These Ci are different from those defined in model

(2.6)). Note that the
−→
b ′s are defined in (4.1), e.g.,

−→
b 1 = (b1 + b5, b2 + b6). The

sample space R2 satisfies R2 =
⋃4

i=1 Ri.
It is well known that if C1 = C2 = C3 = C4, then a necessary and sufficient

condition for the ergodicity of {Yt} is that λ(C1) < 1 where λ(A) denotes the
spectral norm (the largest eigenvalue in absolute value) of a square matrix A. A
natural conjecture is that a sufficient condition for the ergodicity of (4.2) is that
max1≤i≤4 λ(Ci) < 1. However, this need not be true as counter-examples exist
where each subsystem is stable while the whole system is unstable; see Example
2.9 in Tong (1990).

The next theorem gives a set of sufficient conditions for the geometric ergod-
icity of the model (4.2). It can be proved by similar arguments as in Chan and Tong
(1985).

Theorem 1. Let {Yt} be defined by (4.2). Suppose the error εt has a density

which is positive everywhere and E|εt| < ∞. Let −→a belong to the jth quadrant,

i.e., −→a ∈ Rj, where j = j(−→a ) ∈ {1, 2, 3, 4}. A sufficient condition for the

geometric ergodicity of the process {Yt} is that

λ(Cj) < 1, λ(Cj+2) < 1, λ(CjCj+2) < 1, (4.3)

where the addition is defined modulus 4. Also, the skeleton obtained by suppress-

ing the noise term from model (4.2) is stable if and only if the conditions (4.3)
are satisfied.
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Remarks

1. If λ(Cj) > 1 or λ(Cj+2) > 1, then the process {Yt} is not ergodic. Also,

if λ(Cj) < 0, λ(Cj+2) < 0 and λ(Cj)λ(Cj+2) > 1, then the process {Xt} is

not ergodic. The proofs of these claims are given in the online supplement

(http://www3.stat.sinica.edu.tw/statistica). The ergodicity of the RETAR

model for the boundary case in which λ(Cj) = 1, λ(Cj+2) = 1 or λ(CjCj+2) =

1 is still an open problem.

2. It is readily checked that λ(Cj) =
−→
b ′

j
−→a and λ(CjCj+2) =

−→
b ′

j
−→a −→

b ′
j+2

−→a .

3. In the decomposition of C = −→a −→
b , we may attach a negative sign to −→a and

−→
b

simultaneously. Although in the estimation step we need to impose a suitable

restriction on the sign of −→a and
−→
b for identification purpose, it is readily

seen that the conclusion for the above theorem is invariant with respect to

the signs of −→a and
−→
b .

3. The key to deriving the preceding result is that the coefficient matrices Ci

admit a common eigenvector −→a . Such an eigenvector ’controls’ the dynamical

behavior so we can easily analyze this dynamical system. This is similar to

the one-dimensional case where the scalar 1 is the common eigenvector of each

coefficient. In particular, the preceding theorem can be readily generalized to

the higher dimensional case with all coefficient matrices being of unit-rank.

For the general case with non-unit rank, we have the following result. Let

‖A‖ = (
∑

i

∑

j a2
ij)

1/2 be the Euclidean norm of a matrix A.

Theorem 2. Suppose that the m-dimensional random vector {Yt} satisfies the

piecewise linear equations

Yt = ci +

p
∑

j=1

AijYt−j + et if Yt−d ∈ Ωi,

where Ωi, 1 ≤ i ≤ q, is a partition of Rm. If maxi
∑

j ‖Aij‖ < 1 and each element

of et possesses a first absolute moment, then {Yt} is geometrically ergodic.

Remarks

1. This result is a generalization of Lemma 3.1 of Chan and Tong (1985).

2. In place of the Euclidean norm, other matrix norms can be adopted. See the

conditions of Theorem 5.6.2 in Graybill (1983).

5. Strong Consistency of the Weighted Least Square Estimators of A

RETAR Model

We have defined the REduced-rank Threshold AutoRegressive (RETAR) model

as

Yt = µ + ABXt + εt, (5.1)
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where Yt = (Y1t, . . . , Ymt)
′ and Xt = (Y ′

t−1, . . . , Y
′
t−p, I(Yt−d > γ)′, (Yt−1I(Yt−d >

γ))′, . . ., (Yt−pI(Yt−d > γ))′)′. The definition of I(Yt−d > γ) and Yt−jI(Yt−d > γ)

are given in (2.7) and (2.8). The matrices A and B are of rank r and must satisfy

some normalization conditions to be stated below. The rank r can be identified

by, for example, the Bartlett test. Thus we assume the rank r is fixed in this

and the next sections. The innovations εt are i.i.d. with zero mean, covariance

matrix Σεε and assumed to be independent of the past Yt−1, Yt−2, . . .. Let n =

dim(Xt) = 2mp + m. A general parameter in Ω = Rm × Rr(m+n−r) × Rm × Rm

is denoted by θ = (µ′, (vec(A)′, vec(B)′), γ′, d′)′, and the true parameter is θ0 =

(µ′
0, (vec(A0)

′, vec(B0)
′), γ′

0, d
′
0)

′.

The weighted least squares estimator θ̂T = (µ̂′, (vec(Â)′, vec(B̂)′), γ̂′, d̂′)′ is

any measurable choice of θ ∈ Ω which minimizes the objective function

LT (θ) =

T
∑

t=1

tr
[

Γ
1

2 (Yt − µ − ABXt)(Yt − µ − ABXt)
′Γ

1

2

]

.

Remark. Two convenient choices of Γ are Γ = I or Γ = Σ̃−1
εε = T [(Y − µ̃ −

C̃X)(Y − µ̃− C̃X)′]−1, where µ̃ = Ȳ −C̃X̄ and C̃ = Y X ′(XX ′)−1 is the full-rank

least squares estimate of C, with X defined in terms of some initial but fixed

threshold estimate.

The estimators of A and B are required to satisfy the normalization condi-

tions

BSxxB
′ = diagonal matrix, A′ΓA = Ir. (5.2)

Theorem 3. Suppose that (Yt) satisfying (5.1) is stationary ergodic, with finite

second moments, and that the stationary distribution of (Y1, . . . , Yp+1)
′ admits a

positive density everywhere. The errors εt are i.i.d. with an absolutely continuous

distribution and finite second moment. Assume the matrices A and B satisfy the

normalization conditions (5.2). Then the estimator θ̂T → θ0 a.s. Also, for the

residual covariance matrix, Σ̂ = Σεε+oP (1), where Σ̂ =
∑T

t=1(Yt−µ̂−ÂB̂Xt)(Yt−
µ̂ − ÂB̂Xt)

′/T .

We note that the estimator obtained from Steps 2 and 3 in Section 3, with a

fixed Γ, is a weighted least squares estimator of θ. We now study the convergence

rate of the threshold parameter γ. For simplicity, we state the result for the case

that m = 2, p = d = 1 although the extension to the case of higher order (p > 1)

and more than two regimes (m > 2) is straightforward. Let Yt = (Y1t, Y2t)
′.

Then (Yt) is a Markov chain. Denote its l-step transition probability by P l(y, A),

where y ∈ R2 and A is a Borel set. The following set of regularity conditions

is required for deriving the convergence rate of the threshold estimator of the

RETAR model.
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Condition 1. (Yt) admits a unique invariant measure π(·) such that there

exist constants K and ρ < 1, such that for all y ∈ R2, t ∈ N , ||P t(y, ·) − π(·)|| ≤
K(|y|+1)ρt, where ||·|| and |·| denote the total variation norm and the Euclidean

norm, respectively.

Condition 2. The error εt are absolutely continuous with a uniformly continuous

and positive pdf. Furthermore, E(εitεjtεktεlt) < ∞ for all positive i, j, k and l,

where εit is the ith component of εt.

Condition 3. (Yt) is stationary with a bounded pdf π(·), where supy π(y) < K

for some K > 0. Also, E(YitYjtYktYlt) < ∞ for all positive i, j, k and l, where Yit

is the ith component of Yt.

Condition 4. The autoregressive (conditional mean function of Yt) function is

discontinuous. If γ0 = (0, 0)′, then the autoregressive function is discontinuous

iff

A0B0(0, 0, 1, 0, 0, 0)
′ 6= 0, (5.3)

A0B0(0, 0, 0, 1, 0, 0)
′ 6= 0. (5.4)

Note that the threshold can be transformed to 0 by considering Y ′
t = Yt − r0, it

follows a RETAR model with generally different µ0 and B0.

Similar to Proposition 1 of Chan (1993a), we have the following super-

consistent property for the threshold parameter estimator.

Theorem 4. Suppose Conditions 1 to 4 hold. Then γ̂T = γ0 + OP (1/T ).

Remarks

1. Condition 4 can be derived as follows. Let

X(1) = (x1, x2, 1, 1, x1, x2)
′, (5.5)

X(2) = (x1, x2, 0, 1, 0, x2)
′, (5.6)

X(3) = (x1, x2, 0, 0, 0, 0)
′ , (5.7)

X(4) = (x1, x2, 1, 0, x1, 0)
′. (5.8)

Since the autoregressive function is discontinuous, we have

A0B0 lim
x2→0+

X(1) 6= A0B0 lim
x2→0−

X(4), for fixed x1 > 0,

A0B0 lim
x2→0+

X(2) 6= A0B0 lim
x2→0−

X(3), for fixed x1 <= 0,

A0B0 lim
x1→0+

X(1) 6= A0B0 lim
x1→0−

X(2), for fixed x2 > 0,
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A0B0 lim
x1→0+

X(4) 6= A0B0 lim
x1→0−

X(3), for fixed x2 <= 0,

A0B0 lim
x1→0+

x2→0+

X(1) 6= A0B0 lim
x1→0−

x2→0−

X(3),

A0B0 lim
x1→0−

x2→0+

X(1) 6= A0B0 lim
x1→0+

x2→0−

X(2).

Equivalently,

A0B0(x1, 0, 1, 1, x1 , 0)
′ 6= A0B0(x1, 0, 1, 0, x1, 0)

′,

A0B0(x1, 0, 0, 1, 0, 0)
′ 6= A0B0(x1, 0, 0, 0, 0, 0)

′ ,

A0B0(0, x2, 0, 1, 0, x2)
′ 6= A0B0(0, x2, 1, 1, 0, x2)

′,

A0B0(0, x2, 0, 0, 0, 0)
′ 6= A0B0(0, x2, 1, 0, 0, 0)

′ ,

A0B0(0, 0, 1, 1, 0, 0)
′ 6= A0B0(0, 0, 0, 0, 0, 0)

′ ,

A0B0(0, 0, 0, 1, 0, 0)
′ 6= A0B0(0, 0, 1, 0, 0, 0)

′ ,

which in turn, are equivalent to (5.3) and (5.4) in Condition 4.

2. For the general case with order p, m time series, d ≤ p and assuming the

true threshold parameter γ0 = 0, Conditions 1 and 3 need only be modi-

fied with Yt = (Y1t, . . . , Ymt, Y1,t−1, . . . , Ym,t−1, . . . , Y1,t−p, . . . , Ym,t−p)
′. Also,

equations (5.3) and (5.4) of Condition 4 are replaced by the following:

(0′mp, J
′
i , 0

′
(d−1)m, (J1γ0)

′, . . . , (Jmγ0)
′, 0′(p−d)m)′ 6= 0 for all i = 1, . . . ,m,

where Ji is an m-dimensional zero vector except that its ith element equals

1, and 0k is a k-dimensional zero vector. The notation Jiγ0 is defined as

componentwise multiplication.

6. Asymptotic Distribution of the Estimators of the RETAR Model

In this section, we show that under suitable conditions the weighted least

squares estimators Â and B̂ with Γ = Σ−1
εε are asymptotically normal with a

distribution the same as that for the case when γ is known. Write the parameters

of A and B as A = [α1, . . . , αr] and B = [β1, . . . , βr]
′, where α’s and β’s are the

column vectors of A and B respectively. The corresponding estimators of A and

B are written as Â = [α̂1, . . . , α̂r] and B̂ = [β̂1, . . . , β̂r]
′.

Theorem 5. Suppose Conditions 1 to 4 hold. Let Σyx = Σ′
xy = Cov (Yt, Xt),

and Σxx = Cov (Xt) be nonsingular. The matrix Σεε is assumed to be positive

definite. Let the true parameters (vec(A)′, vec(B′)′) ∈ Θ, a compact set defined

by the normalization conditions. Then, with Γ = Σ−1
εε , the weighted least squares
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vector variates T 1/2(α̂j − αj) and T 1/2(β̂j − βj) (j = 1, . . . , r) have a joint lim-

iting distribution as T → ∞ that is singular multivariate normal with null mean

vectors, and

E{T (α̂j − αj)(α̂l − αl)
′} →











∑m
k 6=j=1

λ2
j+λ2

k

(λ2
j−λ2

k)2
αkα

′
k (j = l)

− λ2
j +λ2

l

(λ2
j−λ2

l )2
αlα

′
j (j 6= l)

E{T (β̂j − βj)(β̂l − βl)
′} →











∑r
k 6=j=1

3λ2
j−λ2

k

(λ2
j−λ2

k)2
βkβ

′
k + Σ−1

xx (j = l)

− λ2
j +λ2

l

(λ2
j−λ2

l )2
βlβ

′
j (j 6= l)

(6.1)

E{T (α̂j − αj)(β̂l − βl)
′} →







2λ2
j

∑r
k 6=j=1

1
(λ2

j−λ2
k)2

αkβ
′
k (j = l)

− 2λ2
l

(λ2
j−λ2

l )2
αlα

′
j (j 6= l),

where the λ2
j , j = 1, . . . , r are the eigenvalues of the matrix Γ1/2ΣyxΣ−1

xx ΣxyΓ
1/2

with Γ = Σ−1
εε .

We have abused the notation in (6.1) in that the limiting expressions are

the asymptotic covariance matrices of T 1/2(α̂j − αj), T 1/2(β̂j − βj) and their

cross product term; we do not assert convergence in moments for the parameter

estimators.

It can be checked by routine but tedious analysis, using the techniques in the

proof presented in the online supplement (http://www3.stat.sinica.edu.tw/statis-

tica), that for known rank of C and Gaussian homogeneous errors, Â and B̂ from

the estimation method in Section 3 enjoy the same asymptotic distribution stated

in Theorem 5. Furthermore, γ̂ equals γ0 + OP (1/T ) and d̂ converges a.s. to d0.

7. Application

The classical Canada lynx data set consists of the annual record of the num-

bers of the lynx pelts collected in the Mackenzie River district of Northwest

Canada for the period 1821-1934, inclusively. These lynx counts are known to

fluctuate periodically, with asymmetrical cycles consisting of sharp and large

peaks. Previous studies (see Section 7.2 of Tong (1990) for a review) suggest that

the threshold model can adequately model several nonlinear features of the lynx

data. Although these data have been analyzed by many authors (see, e.g., Tong

(1977), Tong and Lim (1980), Lim (1987), Tong (1990) and Lin and Pourahmadi

(1998)), most have focused on the classical lynx data from the Mackenzie River

district. Further lynx records are available (Stenseth et al. (1999)). Altogether

there are two (old and modern) panels of lynx series, labeled L1-L14 and L15-

L22, respectively. Series L3 corresponds to the classical lynx data. Here, we
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concentrate on the modern series L15-L22 (Figure 1) that span the years 1920
to 1994.
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Figure 1. Recent Lynx Series by Provinces.

The dynamics of the lynx data may be structured by two eco-climatic zones:
the open boreal forest and the closed boreal forest. Alternatively, it may be struc-
tured by three geo-climatic zones (Pacific-maritime, Continental and Atlantic-
maritime) via the regional influence of a single large-scale climate system called
the North Atlantic Oscillation; see Stenseth et al. (1999). Based on a compar-
ative study of the two preceding hypotheses and the hypothesis of no common
structure, Stenseth et al. (1999) concluded that there exists a structural simi-
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larity in the lynx data throughout Canada and this structural similarity may
be classified by three geo-climatic zones: ’Pacific-maritime’, ’Continental’ and

’Atlantic-maritime’.
An exhaustive search for common structure in the panel of lynx data seems

numerically infeasible. Here, we aim to demonstrate that the RETAR model

provides an useful approach to empirically exploring the common structure in
a panel of time series. As the old panel of lynx data consists of time series
from different time spans, we focus on the recent lynx series L15-L22. As an

illustration, we fit a RETAR model to the modern lynx panel. First we set
(p1, p2, d) = (2, 2, 2). The autoregressive orders (p1, p2) and the delay param-
eter d are chosen as those considered by Chan, Tong and Stenseth (2004) and

Stenseth et al. (1999). Under this framework, they developed some methods for
testing for common structures in a panel of threshold model. A natural loga-
rithm transformation is used to stabilize the variance. Due to the presence of

zero values in the data, 1 is added to each datum before the transformation.
Table 1 reports the rank of A(B) in the RETAR model as selected by using
the corrected Bartlett criterion, at the end of the final parameter iterate of the

method introduced in Section 3. It appears from the result that the rank is 3.
The AIC and BIC criteria select the rank to be 4 and 1 respectively. It is known

that the AIC criterion tends to over-fit the model and the BIC criterion tends
to under-fit the model. Henceforth in this example we set the rank to be three.
Note that for all the tests, the alternative hypothesis is that the model is of full

rank, i.e., rank equals eight (recall that m=dim(Y )=8, n=dim(X)=40). We have
also experimented with adding 0.1 or 0.01 to the data before log-transformation,
but rank 3 is strongly suggested by the likelihood ratio test in both cases. Since

the residual covariance is ’smallest’ in the case with 1 added to the data before
the log-transformation, we henceforth report the analysis with the log(1 + x)
transformation applied to the lynx data. Also the threshold parameter estimate

is given by γ̂ = (7.420, 7.083, 7.944, 7.238, 6.581, 6.392, 6.500, 7.071).

Table 1. Summary of results for LR tests on the rank of the coefficient
matrix for the log transformed lynx data, with 1 added to the data before
the log-transformation. The alternative hypothesis is r=8. The determinant
of the residual covariance is 1.112e-04.

r=Rank M=LR statistic d.f. p-value

1 398.9674 df= 273 p= 0.000

2 289.1617 df= 228 p= 0.004
3 194.8913 df= 185 p= 0.295

4 132.5408 df= 144 p= 0.744

5 82.8078 df= 105 p= 0.946

6 45.8200 df= 68 p= 0.982

7 15.6245 df= 33 p= 0.996
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After having estimated the parameters of the RETAR model, the next step

is to see what kind of information we can infer from the fitted model. Cer-
tainly the fact that the rank equals 3 suggests that we may split the eight lynx

series into three groups. Recall that for identifiability reasons the coefficient

matrix C is decomposed as the product of two matrices A and B satisfying

BSxxB
′ = Λ2 and A′ΓA = Ir. The selection of the normalization condition is

subjective and often chosen for mathematical convenience. Rotating the esti-

mates of A and B obtained from a set of normalization conditions may lead to

more interpretable estimates. A convenient method of rotation is the varimax

method; see Mardia, Kent and Bibby (1979).
In Table 2 we report the varimax-rotated Â, the estimated factor loading

matrix with standard errors. From Table 2 we see the first factor loads heav-

ily on sites 18 (Alberta), 19 (Saskatchewan) and 20 (Manitoba), and note that

these are provinces in the southern part of the Continental-climatic region. Fac-
tor 2, loading heavily on site 22 (Quebec), represents a province belonging to

the Atlantic-maritime region, while factor 3, loading heavily on sites 15 (British

Columbia), 16 (Yukon Territory), 17 (N.W. Territory) and 21 (Ontario), repre-
sents provinces in the Pacific-maritime region, except for Ontario.

Another perspective on the classification of the lynx series may be obtained

by rotating Â and B̂ so that B̂X is orthonormalized; see Table 3 for the rotated

Â so obtained. The Euclidean distance of any two rows of the Â then measure
the dissimilarity of the dynamics of the two corresponding lynx series. Figure

2 reports the hierarchical cluster analysis of the eight series based on Â, using

the options of average Euclidean distance and complete linkage. It now appears

that we have two major groups: Group 1 consists of Alberta, Saskatchewan and
Manitoba, which can be interpreted as Continental group; Group 2 consists of

Ontario, British Columbia, N.W. Territory, Quebec and Yukon, with the last

two provinces possibly classified into a third group. Generally speaking, the

second cluster represents a maritime group. It seems that Stenseth et al. (1999)
obtained a finer classification by studying the lynx dynamics over the decrease

phase.

Scatter plots of each of the response variable versus the first three predictive

index variables (Li (2000)) suggest that the response variables of L18, L19 and
L20 have a quite strong positive linear relationship with x∗

1 = β̂′
1X, and that

L22 is strongly related to the second index variable x∗
2 = β̂′

2X, while L15 and

L16 are strongly related to the third index variable x∗
3 = β̂′

3X. In Figure 3 we

show the time series plots of the first three latent principal component processes
β̂′

iXt, 1 ≤ i ≤ 3. These time series plots are similar to the time series plots of

L19, L22 and L15, which means, for example, the dynamics of the series in the

first group is heavily related to the dynamics of series L19. Finally we note that

the RETAR model may lead to more accurate forecasts than forecasting each
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Table 2. Maximum likelihood estimates Â of the log-transformed data with

rank=3 principal components obtained by using the varimax rotation. Stan-

dard errors are enclosed by parentheses.

Factor loadings

response site 1 2 3

1 15 0.025∗ 0.066∗ 0.119∗

(0.014) (0.015) (0.013)
2 16 -0.134∗ 0.053 0.262∗

(0.028) (0.039) (0.024)

3 17 0.058∗ -0.007 0.073∗

(0.020) (0.017) (0.025)
4 18 0.210∗ 0.008 0.095∗

(0.013) (0.010) (0.025)

5 19 0.281∗ -0.035 -0.041

(0.028) (0.033) (0.050)

6 20 0.263∗ -0.013 0.029
(0.017) (0.020) (0.037)

7 21 0.073∗ 0.036∗ 0.106∗

(0.015) (0.013) (0.015)

8 22 -0.021∗ 0.149∗ 0.037
(0.009) (0.007) (0.021)

Table 3. Maximum likelihood estimate Â of the log-transformed data with

rank=3 principal component obtained by rotation such that B̂X is orthonor-

malized. Standard errors are enclosed by parentheses.

Factor loadings

response site 1 2 3

1 15 0.559∗ -0.065 0.227∗

(0.033) (0.057) (0.035)
2 16 0.178∗ -0.087 0.723∗

(0.052) (0.150) (0.036)

3 17 0.333∗ -0.201∗ 0.056

(0.045) (0.057) (0.072)

4 18 1.009∗ -0.405∗ -0.106
(0.032) (0.036) (0.065)

5 19 0.864∗ -0.393∗ -0.491∗

(0.085) (0.133) (0.111)

6 20 1.010∗ -0.425∗ -0.317∗

(0.055) (0.084) (0.084)

7 21 0.613∗ -0.175∗ 0.121∗

(0.027) (0.041) (0.047)

8 22 0.536∗ 0.295∗ 0.169∗

(0.025) (0.040) (0.048)
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Figure 2. Hierarchical cluster analysis of the lynx data based on the average
Euclidean distance and complete linkage.
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series from individually fitted Threshold Autoregressive models, even after ad-

justing for contemporaneous correlations; see Li (2000) for an illustration with

the lynx data.

8. Conclusion

We have demonstrated the usefulness of the RETAR model for exploring

the common dynamic structure of a panel of nonlinear time series. The RETAR

model assumes that the nonlinear principal components are piecewise linear func-

tions of the past lags of the time series. An interesting future research problem

concerns the use of other nonlinear functions of the data to model the nonlinear

principal components. A related approach is to model the nonlinear principal

components nonparametrically, see Li and Chan (2001).
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Appendix A. Proof of Theorem 1

We first consider the case that the error εt is suppressed from (4.2). Without

loss of generality, assume −→a ∈ R1. If Xt = x ∈ Rk for some k, then Xt+i =
−→a −→

b ′
kx = −→a (

−→
b ′

kx) ∈ R1 or R3 for any i > 0. Therefore the stability of the

deterministic system is determined by the first and the third difference equations.

A deterministic system composed of these two difference equations is stable if

and only if λ(A1) < 1, λ(A3) < 1 and λ(A1A3) < 1. This justifies the statement

regarding the stability of the skeleton.

Now let us consider the stochastic case of (4.2). We note that the eigen-

value conditions imply that the origin is uniformly asymptotically stable for the

skeleton, which implies the geometric ergodicity of {Xt}; see Theorem 4.5 in

Chan and Tong (1985).

Next we show the nonergodicity for the two cases as stated in Remark 1.

Lemma 1. If λ(Cj) > 1 or λ(Cj+2) > 1 then the process {Xt} is not ergodic.

Proof. Without loss of generality we assume −→a ∈ R1 and only consider the case

λ(C1) > 1. We first show that Xt will go to infinity, with positive probability.

Let M > 0 be a constant to be determined below. Consider Xt = −→a h + εt ∈ R1

and that Xt =
(X1t
X2t

)

is such that Xit > M, i = 1, 2. For any 1 < η < λ(C1) ≡ λ1

and conditioned on Xt, we have,

P ((1, 1)Xt+1 > 2−1(η + 1)(1, 1)Xt)

= P ((1, 1)(−→a −→
b ′

1Xt + εt+1 > 2−1(η + 1)(1, 1)Xt)

= P ((1, 1)εt+1 > (2−1(η + 1)(1, 1) − (1, 1)−→a −→
b ′

1)Xt)

= P ((1, 1)εt+1 > (2−1(η + 1)(1, 1)(−→a h + εt) − (1, 1)−→a −→
b ′

1(
−→a h + εt)))

= P ((1, 1)εt+1 > (2−1(η + 1) − λ1)(1, 1)(
−→a h + εt) + λ1(1, 1)εt − (1, 1)−→a −→

b ′
1εt)
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= P (ε∗t+1 > 2−1(1 − η)(1, 1)Xt) where ε∗t+1 = (1, 1)[εt+1 + (−→a −→
b ′

1 − λ1)εt]

= 1 − P (ε∗t+1 ≤ 2−1(1 − η)(1, 1)Xt)

≥ 1 − P (|ε∗t+1| > 2−1(η − 1)(1, 1)Xt)

≥ 1 − E|ε∗t+1|/((η − 1)M) whenever X1t > M,X2t > M

= 1 − c where c = E|ε∗t+1|/((η − 1)M)is chosen such that c < 1. (A.1)

Similarly, we can show that given X11 > M and X21 > M ,

P ((1, 1)X3 > 2−1(η + 1)(1, 1)X2, (1, 1)X2 > 2−1(η + 1)(1, 1)X1 |X1)

≥
(

1 − E|ε∗3|
η+1
2

η−1
2 2M

)

(1 − c)

= (1 − cβ)(1 − c)

where β = 2/(η + 1) < 1. Continuing in this manner, we have, whenever X1,1 >

M,X2,1 > M ,

P ((1, 1)Xl+1 > 2−1(η + 1)(1, 1)Xl , l = 1, . . . , t|X1) ≥
t

∏

i=1

(1 − cβi−1)

≥ (1 − c)1/(1−β)

for all t; the last inequality follows from routine analysis. Consequently for any

X0 ∈ R1

P ((1, 1)Xt → ∞|X0) ≥ (1 − c)1/(1−β)P (X1,1 > M,X2,1 > M |X0) > 0.

Hence, {Xt} is not ergodic if λ(C1) > 1.

Lemma 2. If λ(Cj) < 0, λ(Cj+2) < 0 and λ(Cj)λ(Cj+2) > 1 then the process

{Xt} is not ergodic.

Proof. Without loss of generality we consider the case −→a ∈ R1, λ(C1) < −1

and λ(C1)λ(C3) > 1. The proof is similar to that for the above lemma except

that we show that the Markov chain {X2t; t ≥ 0} has the property that, for any

X0 ∈ R,

P ((1, 1)X2t → ∞|X0) > 0.

As the proof is similar to the proof of lemma 1, we skip the detail.

Appendix B. Proof of Theorem 2

The proof is similar to that used in Chan and Tong (1985) except for a minor

change. Let Z = (z1, . . . , zm) = (xm, xm−1, . . . , x2, x1) ∈ Rm. As maxi
∑

j ‖Aij‖
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< 1 ∃p1, . . . , pm > 0 such that maxi
∑

j ‖Aij‖p1/pj < θ < 1 for some θ. Moreover,

θ can be chosen such that θ > pi+1/pi. Define the test function g : Rm → R by

g(z) = 1 + maxi |zi|pi. Then

E[g(Zt+1)|Zt = z]

= 1 + max{E|h(X1, . . . , Xm) + et+1|p1, E|Xm|p2, E|Xm−1|p3, . . . , E|X2|pm}
≤ c + max{|h(X1, . . . , Xm)|p1, |Xm|p2, . . . , |X2|pm}

= c + max{|
m

∑

j

AkjXm+1−j |p1, |Xm|p2, . . . , |X2|pm}

≤ c + max{
m

∑

j

||Akj |||Xm+1−j |p1, |Xm|p2, . . . , |X2|pm}

≤ c + θ max{|Xm|p1, |Xm−1|p2, . . . , |X2|pm−1, |X1|pm}
= c′ + θg(z).

Then the rest of the proof follows the argument as in Chan and Tong (1985).

Appendix C. Proof of Theorem 3

We review some theories of uniform convergence of empirical measures which

are useful for showing the strong consistency of the weighted least squares esti-

mator of RETAR model; for details, see Chapter 2 of Pollard (1984).

Suppose that we observe a stochastic process {ξi} consisting of independent

samples taken from P . Let Pn represent the empirical measure that puts equal

mass at each of the n observations ξ1, . . . , ξn, so that an average over the obser-

vations can be written as an expectation with respect to Pn:

1

n

n
∑

i=1

f(ξi) ≡ Pnf =

∫

fdPn.

The following two theorems concerning the uniform law of large numbers (ULLN)

taken from Pollard (1984, p.8) will be useful below.

Theorem 1. Suppose that for each ε > 0 there exists a finite class Fε containing

lower and upper approximations to each f in F , for which

fε,L ≤ f ≤ fε,U and P (fε,U − fε,L) < ε. (C.1)

Then supF |Pnf − Pf | → 0 a.s..

Theorem 2. Suppose that for each ε > 0 there exists a finite class Fε of functions

such that for each f in F there exists an fε in Fε such that fε ≤ f and Pfε ≥
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Pf − ε. Then, as n → ∞

lim inf
n

inf
F

(Pnf − Pf) ≥ 0 a.s..

Remark. The independence condition on the ξ’s can be replaced by weaker

assumptions, such as stationarity and ergodicity; see Pollard (1984, p.9).

If f depends on an unknown parameter θ, i.e., f(·) = fθ(·), and θn minimizes

Pnfθ, the above theorem suggests that θn might converge to the θ0 that minimizes

Pf . The preceding strategy is applied to study the convergence properties of

the least squares estimator of the SETAR model which has been proved by Chan

(1993) but we give an alternative proof here because it can be adapted to proving

the consistency of the least squares estimator of the RETAR model.

Theorem 3. Let {Y1, . . . , Yn} be generated from the TAR model

Yt = (B′
1Zt + et)I(Yt−d ≤ r) + (B′

2Zt + et)I(Yt−d > r), (C.2)

where B1, B2 are p-dimensional coefficients and Zt = (1, Yt−1, . . . , Yt−p). Assume

that (i) there exists an z = (1, y1, . . . , yp) with yd = r such that B ′
1z 6= B′

2z, (ii)

the errors {et} are i.i.d. with absolutely continuous distribution and finite second

moment, (iii) {Yt} is stationary and ergodic, with finite second moments and the

stationary pdf of (Y1, . . . , Yp+1) is positive everywhere, and (iv) d is less than

some known fixed upper integer bound D. Then the conditional least squares

estimator of θn = (B1n, B2n, rn, qn), which minimizes
∑

t(Yt − B′
1Zt)

2I(Yt−q ≤
r) +

∑

t(Yt − B′
2Zt)

2I(Yt−q > r), converges almost surely to the true parameters

θ0 = (B10, B20, r0, d0) as n → ∞.

Proof. We first consider the case p = d = 1 with d known; hence qn = d.

Let B1 = (c1, b1)
′ and B2 = (c2, b2)

′. Throughout the proof, the ULLN will be

applied a number of times, the validity of which can be routinely checked using

Theorem 6 and hence omitted; a prototype of such checking is given at the end

of this proof. The model (C.2) becomes

Yt = (c1 + b1Yt−1)I(Yt−1 ≤ r) + (c2 + b2Yt−1)I(Yt−1 > r) + et.

Denote by P the joint distribution of Qt = (Yt, Yt−1) and Pn the empirical mea-

sure constructed by sampling from P . Let

W (c1, c2, b1, b2, r, Pn) = Pnfc1,c2,b1,b2,r,

where

fc1,c2,b1,b2,r(y1, y2) = (y1 − c1 − b1y2)
2I(y2 ≤ r) + (y1 − c2 − b2y2)

2I(y2 > r).
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Note the finiteness of W (·, ·, ·, ·, ·, P ), because P |y1|2 < ∞. Since Qt has a density

positive everywhere, the true θ0 = (c10, c20, b10, b20, r0) is the unique argument

minimizing W (·, ·, ·, ·, ·, P ).

We first show that with probability 1, rn 6→ ∞ and rn 6→ −∞. Define

gθ(y) = (c1 + b1y)2I(y ≤ r) + (c2 + b2y)2I(y > r).

Then for r > r0,

Pnfc1,c2,b1,b2,r

≥ Pn[(Yt − c1 − b1Yt−1)
2I(Yt−1 ≤ r)]

= Pn[(et + gθ0
(Yt−1) − c1 − b1Yt−1)

2I(Yt−1 ≤ r)]

= Pne2
t I(Yt−1 ≤ r) + Pn[(gθ0

(Yt−1) − c1 − b1Yt−1)
2I(Yt−1 ≤ r)]

+2Pn[et(gθ0
(Yt−1) − c1 − b1Yt−1)I(Yt−1 ≤ r)]. (C.3)

However, as r is large,

Pne2
t I(Yt−1 ≤ r) → Pe2

t I(Yt−1 ≤ r) by the ULLN

→ σ2
e if r → ∞ by the Dominated Convergence Theorem,

and for r ≥ r0,

Pn[(gθ0
(Yt−1) − c1 − b1Yt−1)

2I(Yt−1 ≤ r)]

= Pn[(c10 + b10Yt−1 − c1 − b1Yt−1)
2I(Yt−1 ≤ r0)]

+Pn[(c20 + b20Yt−1 − c1 − b1Yt−1)
2I(r0 < Yt−1 ≤ r)]

= ((c1 − c10)
2 + (b1 − b10)

2)Pn[(
c10 − c1

√

(c1 − c10)2 + (b1 − b10)2

+
(b10 − b1)Yt−1

√

(c1 − c10)2 + (b1 − b10)2
)2I(Yt−1 ≤ r0)]

+((c1 − c20)
2 + (b1 − b20)

2)Pn[(
c20 − c1

√

(c1 − c20)2 + (b1 − b20)2

+
(b20 − b1)Yt−1

√

(c1 − c20)2 + (b1 − b20)2
)2I(r0 < Yt−1 ≤ r)].

Applying the ULLN to {Pn[(c + bYt−1)
2I(Yt−1 ≤ r0)], c

2 + b2 = 1}, and also to

{Pn[(c + bYt−1)
2I(r0 + 4 ≤ Yt−1 < r)], c2 + b2 = 1,4 > 0, 0 < r < ∞}, it holds

almost surely that for n sufficiently large and r ≥ r0 + 4,

Pn[(gθ0
(Yt−1) − c1 − b1Yt−1)

2I(Yt−1 ≤ r)]

> κ[(c1 − c10)
2 + (b1 − b10)

2 + (c1 − c20)
2 + (b1 − b20)

2],



S10 MING-CHUNG LI AND KUNG-SIK CHAN

where κ = inf{P [(c+ bYt−1)
2I(Yt−1 ≤ r0)], P [(c+ bYt−1)

2I(r0 < Yt−1 < r)]}/2 >

0, and the infinmum is taken over r ≥ r0+4. Applying the ULLN to Pn[etI(Yt−1

≤ r)] and Pn[etYt−1I(Yt−1 ≤ r)], it holds almost surely that for all ε > 0, for n

sufficiently large,

|Pn[et(gθ0
(Yt−1) − c1 − b1Yt−1)I(Yt−1 ≤ r)]|

< ε[(c1 − c10)
2 + (b1 − b10)

2 + (c1 − c20)
2 + (b1 − b20)

2]
1

2 .

We can then adapt an argument given in Chan (1993, pp.525-526) to show that

lim infn Pn[fc1,c2,b1,b2,r(Y1, Y2)] > σ2 as r sufficiently large. This shows that rn 6→
∞ a.s.. A similar argument shows that rn 6→ −∞ a.s..

Since rn 6→ ±∞, there exists an M1 > 0 such that −M1 < rn < M1 for n

sufficiently large a.s.. We will henceforth in this proof assume rn ∈ [−M1,M1].

Using a similar argument, we can show that there exists an M2 > 0 such that

(c1n, c2n, b1n, b2n) ∈ [−M2,M2]
4 a.s..

Let M = max(M1,M2) and C = [−M,M ]5. Then we have shown that the

optimal (c1n, c2n, b1n, b2n, rn) lies in C. Assuming there exists a finite class Fε

containing lower and upper approximations to {fc1,c2,b1,b2,r : (c1, c2, b1, b2, r) ∈ C}
in the manner as required by (C.1), then from Theorem 7,

lim inf
n

inf
C

(Pnfc1,c2,b1,b2,r − Pfc1,c2,b1,b2,r) ≥ 0.

Thus

lim inf
n

(W (c1n, c2n, b1n, b2n, rn, Pn) − W (c1n, c2n, b1n, b2n, rn, P )) ≥ 0 a.s..

Since

W (c1n, c2n, b1n, b2n, rn, Pn) ≤ W (c10, c20, b10, b20, r0, Pn)

→ W (c10, c20, b10, b20, r0, P ) a.s..

≤ W (c1n, c2n, b1n, b2n, rn, P ),

it follows that

W (c1n, c2n, b1n, b2n, rn, P ) → W (c10, c20, b10, b20, r0, P ) a.s..

Because W (θ, P ) is continuous in θ and W (θ, P ) > W (θ0, P ) for θ 6= θ0, we

deduce that (c1n, c2n, b1n, b2n, rn) converges almost surely to (c10, c20, b10, b20, r0).

To complete the proof we need to construct the finite approximating class

alluded to above. We first note that

fc1,c2,b1,b2,r(y1, y2) ≤ (|y1| + M + M |y2|)2
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for (c1, c2, b1, b2, r) in C. Write F (y1, y2) for the upper bound. Because PF < ∞,

there exists a constant D, larger than M , for which PF ([−D,D]× [−D,D]2)c <

∞. Hence, we shall restrict the domain of fc1,c2,b1,b2,r to [−D,D]2.

By suitably enlarging D, we may assume that (c1, c2, b1, b2, r) ∈ [−3D, 3D]5.

Let Cε be a finite subset of [−3D, 3D]5 such that each (c1, c2, b1, b2, r) in that

subset has an (c∗1, c
∗
2, b

∗
1, b

∗
2, r

∗) with ||c1 − c∗1|| < ε/D3, ||c2 − c∗2|| < ε/D3, ||b1 −
b∗1|| < ε/D3, ||b2 − b∗2|| < ε/D3 and |r − r∗| < ε/D. Then for each (y1, y2) in

[−D,D]2 and, without loss of generality, assuming r < r∗,

|fc1,c2,b1,b2,r,d(y1, y2) − fc∗
1
,c∗

2
,b∗

1
,b∗

2
,r∗,d(y1, y2)|

= |(y1 − c1 − b1y2)
2I(y2 ≤ r) + (y1 − c2 − b2y2)

2I(y2 > r)

−(y1 − c∗1 − b∗1y2)
2I(y2 ≤ r∗) − (y1 − c2 − b∗2y2)

2I(y2 > r∗)|
≤ |(y1 − c1 − b1y2)

2I(y2 ≤ r) + (y1 − c2 − b2y2)
2I(y2 > r∗)

+(y1 − c2 − b2y2)
2I(r < y2 ≤ r∗) − (y1 − c∗1 − b∗1y2)

2I(y2 ≤ r)

−(y1 − c∗1 − b∗1y2)
2I(r < y2 ≤ r∗) − (y1 − c2 − b∗2y2)

2I(y2 > r∗)|

≤ |2(c1 − c∗1 + (b1 − b∗1)y2)(y1 −
c1 + c∗1

2
− b1 + b∗1

2
y2)I(y2 ≤ r)|

+|2(c2 − c′2 + (b2 − b∗2)y2)(y1 −
c2 + c∗2

2
− b2 + b∗2

2
y2)I(y2 > r∗)|

+|2(c1 − c2 + (b∗1 − b2)y2)(y1 −
c∗1 + c2

2

b∗1 + b2

2
y2)I(r < y2 < r∗)|

≤ 2
ε

D3
D(4D + 3pD2) + 2

ε

D3
D(4D + 3pD2)

+12pD2(4D + 3pD3)I(|y2 − r| < |r∗ − r|)
≤ 7pε + 7pε

= 14pε.

The class Fε consists of all functions (fc∗
1
,c∗

2
,b∗

1
,b∗

2
,r∗(y1, y2)−14ε)I(|y1| ≤ D, |y2| ≤

D) for (c∗1, c
∗
2, b

∗
1, b

∗
2, r

∗) ranging over Cε. This completes the proof.

Proof of Theorem 3. Since Γ is known, we shall, without loss of generality,

assume that Γ = I. To simplify our proofs for Theorem 3 and 4, we consider

the case m = 2 and p = 1 as the proof for the general case is similar and hence

omitted. In practice, we may and shall assume d to be known. (The proof here

can be readily generalized to the case of unknown d.) Let n = 6 and r = 1.

Define

f(A,B),γ(y, x) = tr[(y − ABx)(y − ABx)′].
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The optimal ÂT , B̂T and γ̂T are chosen to minimize

W ((A,B), γ, PT ) = PT f(A,B),γ

=
1

T

∑

t

f(A,B),γ(yt, xt).

where PT denotes the empirical measure of (Yt, Xt) based on the observations
(Y1, X1), . . . , (YT , XT ), with A and B satisfying the normalization conditions.

The finiteness of W ((·, ·), ·, P ) follows from the condition that Ptr(yty
′
t) <

∞. Because (Yt, Xt) has a positive density everywhere, the true parameter
((vec(A0)

′, vec(B0)
′), γ′

0)
′ is the unique argument minimizing W ((·, ·), ·, P ). Ap-

plying a similar argument as in the proof of Theorem 8, we can show that
((vec(ÂT )′, vec(B̂T )′), γ̂′

T )′, which minimizes W ((A,B), γ, PT ), falls into the re-
gion

C = [−M,M ]r(m+n−r) × M2

for some suitably large M .
We claim that the collection of f(A,B),γ(y1, y2) over C admits a finite ap-

proximation as stated in Theorem 7. Assuming this claim, we can deduce using
arguments similar to those employed in the proof of Theorem 8 that

W ((ÂT , B̂T ), γ̂T , P ) → W ((A0, B0), γ0, P ) a.s..

Because W ((A,B), γ, P ) is continuous over C and the true parameter ((A0, B0),
γ0) is the unique argument minimizing W ((·, ·), ·, P ), we have the consistency
of ((vec(ÂT )′, vec(B̂T )′), γ̂′

T )′. The weak consistency of Σ̂ to Σ follows from the
consistency of the other parameter estimators.

It remains to verify the claim on the finite approximating class for f(A,B),γ(y1,
y2) over C. To construct the finite approximating class, we first note that

f(A,B),γ(y1, y2) ≤ 2tr[(|y1| + rM2|y2|)(|y1| + rM2|y2|)′]
for ((vec(A)′, vec(B)′), γ′)′ in C. The notation |yi| is defined as |yi| = (|y1i|, |y2i|)′.
Write F (y1, y2) for the preceding upper bound. Because PF < ∞, there exists a
constant D, larger than M , such that PF ([−D,D]m × [−D,D]n)c < ∞. Hence,
we need only consider the approximation of f(A,B),r over [−D,D]m × [−D,D]n.

Without loss of generality, we assume that ((vec(A)′, vec(B)′), γ′)′ ∈ [−3D,
3D]r(m+n−r)× [−3D, 3D]2. Let Cε be a finite subset of S = [−3D, 3D]r(m+n−r)×
[−3D, 3D]2 such that for all ((vec(A)′, vec(B)′), γ′)′ ∈ S there exists
((vec(A∗)′, vec(B∗)′), γ∗′)′ ∈ Cε such that

||vec(A) − vec(A∗)|| < ε

rD5
,

||vec(B) − vec(B∗)|| < ε

rD5
,

||γ − γ∗|| < ε

rD5
.
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Write

f (i) = y − ABx(i), g(i) = y − A∗B∗x(i)

and X(1) to X(4) are defined in (5.5) to (5.8). Then for each y ∈ [−D,D]2 and

x = (x1, x2, x3, x4, x5, x6)
′ ∈ [−D,D]6,

|fA,B,γ(y, x) − fA∗,B∗,γ∗(y, x)|
= |tr[(y − ABx)(y − ABx)′] − tr[(y − A∗B∗x)(y − A∗B∗x)′]|
= |tr(f (1)f (1)′)I(x1 > γ1, x2 > γ2) + tr(f (2)f (2)′)I(x1 ≤ γ1, x2 > γ2)

+tr(f (3)f (3)′)I(x1 ≤ γ1, x2 ≤ γ2) + tr(f (4)f (4)′)I(x1 > γ1, x2 ≤ γ2)

−tr(g(1)g(1)′ )I(x1 > γ∗
1 , x2 > γ∗

2) − tr(g(2)g(2)′)I(x1 ≤ γ∗
1 , x2 > γ∗

2)

−tr(g(3)g(3)′ )I(x1 ≤ γ∗
1 , x2 ≤ γ∗

2) − tr(g(4)g(4)′)I(x1 > γ∗
1 , x2 ≤ γ∗

2)|. (C.4)

Without loss of generality, assume that γ1 ≤ γ∗
1 , γ2 ≤ γ∗

2 . Below we will show

that the RHS of (C.4) is bounded by some multiple of ε. It is clear that the

RHS of (C.4) equals to tr(f (i)f (i)′ − g(j)g(j)′) for some 1 ≤ i, j ≤ 4 dependent on

which two of the indicator functions equal 1. We provide the proof for the case

x1 > γ∗
1 , x2 > γ∗

2 and omit the similar proofs for the other cases. Consider

|tr[(y − ABx(1))(y − ABx(1))′]I(x1 > γ1, x2 > γ2)

−tr[(y − A∗B∗x(1))(y − A∗B∗x(1))′]I(x1 > γ1, x2 > γ2)|
≤ |(y − ABx(1))′(y − ABx(1)) − (y − A∗B∗x(1))′(y − A∗B∗x(1))|
= |(y − ABx(1))′(y − ABx(1)) − (y − A∗B∗x(1))′(y − ABx(1))

+(y − A∗B∗x(1))′(y − ABx(1)) − (y − A∗B∗x(1))′(y − A∗B∗x(1))|
= |[(A∗B∗ − AB)x(1)]′(y − ABx(1)) + (y − A∗B∗x(1))′(A∗B∗ − AB)x(1)|
= |x(1)′ [A∗(B∗ − B) − (A − A∗)B]′(y − ABx(1))

+(y − A∗B∗x(1))′[A∗(B∗ − B) − (A − A∗)B]x(1)|
≤ 2

√
nD2(2

√
rnD2

ε

D5
)(
√

2D2 +
√

2rD2
√

nrD2
√

nD2)

≤ 6rn
√

pε.

To sum up, we have shown that the RHS of (C.4) is ≤ kε for some k > 0. The class

Fε consists of all functions (f(A∗,B∗),γ∗(y, x) − kε)I(y ∈ [−D,D]2, x ∈ [−D,D]n)

for ((vec(A∗)′, vec(B∗)′), γ∗′)′ ranging over Cε. This completes the proof.

Appendix D. Proof of Theorem 4

Since θ̂T is strongly consistent, without loss of generality, the parameter

space can be restricted to a neighborhood of θ0 = (A0, B0, γ0), say,

w(4) = {θ ∈ Ω : |A − A0| < 4, |B − B0| < 4 and |z − γ0| < 4},
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for some 0 < 4 < 1 to be determined below. For simplicity of proof, we assume

γ0 = 0. Then it suffices to verify the following claims.

Claim 1. For all ε > 0, there exists a constant, say, K such that with proba-

bility greater than 1 − ε, θ ∈ w(4) and the L2-norm ||z|| > K/T implies that

LT (A,B, z) − LT (A,B, 0) > 0.

First, consider the case that z1 > 0, z2 > 0. Define f
(i)
t = Yt − ABX

(i)
t , i =

1, . . . , 4; see the notation X (i) defined in (5.5)-(5.8). Then

LT (A,B, z) − LT (A,B, 0)

=
∑

tr(f
(1)
t f

(1)′

t )I(Y1,t−1 > z1, Y2,t−1 > z2)

+
∑

tr(f
(2)
t f

(2)′

t )I(Y1,t−1 ≤ z1, Y2,t−1 > z2)

+
∑

tr(f
(3)
t f

(3)′

t )I(Y1,t−1 ≤ z1, Y2,t−1 ≤ z2)

+
∑

tr(f
(4)
t f

(4)′

t )I(Y1,t−1 > z1, Y2,t−1 ≤ z2)

−
∑

tr(f
(1)
t f

(1)′

t )I(Y1,t−1 > 0, Y2,t−1 > 0)

−
∑

tr(f
(2)
t f

(2)′

t )I(Y1,t−1 ≤ 0, Y2,t−1 > 0)

−
∑

tr(f
(3)
t f

(3)′

t )I(Y1,t−1 ≤ 0, Y2,t−1 ≤ 0)

−
∑

tr(f
(4)
t f

(4)′

t )I(Y1,t−1 > 0, Y2,t−1 ≤ 0)

=
∑

tr(f
(2)
t f

(2)′

t − f
(1)
t f

(1)′

t )I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

+
∑

tr(f
(4)
t f

(4)′

t − f
(1)
t f

(1)′

t )I(Y1,t−1 > z1, 0 < Y2,t−1 ≤ z2)

+
∑

tr(f
(3)
t f

(3)′

t − f
(4)
t f

(4)′

t )I(0 < Y1,t−1 ≤ z1, Y2,t−1 ≤ 0)

+
∑

tr(f
(3)
t f

(3)′

t − f
(1)
t f

(1)′

t )I(0 < Y1,t−1 ≤ z1, 0 < Y2,t−1 ≤ z2)

+
∑

tr(f
(3)
t f

(3)′

t − f
(2)
t f

(2)′

t )I(Y1,t−1 ≤ 0, 0 < Y2,t−1 ≤ z2). (D.1)

The first term on the RHS of (D.1) can be simplified as follows:

∑

tr(f
(2)
t f

(2)′

t − f
(1)
t f

(1)′

t )I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

=
∑

tr[(Yt − ABX
(2)
t )(Yt − ABX

(2)
t )′ − (Yt − ABX

(1)
t )(Yt − ABX

(1)
t )′]

×I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

=
∑

tr[(et + A0B0X
(1)
t − ABX

(2)
t )(et + A0B0X

(1)
t − ABX

(2)
t )′

−(et + (A0B0 − AB)X
(1)
t )(et + (A0B0 − AB)X

(1)
t )′]

×I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)
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=
∑

tr[2et(A0B0X
(1)
t −ABX

(2)
t )′+(A0B0X

(1)
t −ABX

(2)
t )(A0B0X

(1)
t −ABX

(2)
t )′

−2et((A0B0 − AB)X
(1)
t )′ − ((A0B0 − AB)X

(1)
t )((A0B0 − AB)X

(1)
t )′]

×I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

=
∑

tr[2et(AB(X
(1)
t − X

(2)
t ))′]I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

−2
∑

[A0B0X
(1)
t (ABX

(2)
t )′]I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

+
∑

tr[ABX
(2)
t (ABX

(2)
t )′]I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

+2
∑

tr[A0B0X
(1)
t (ABX

(1)
t )′]I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

−
∑

tr[ABX
(1)
t (ABX

(1)
t )′]I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

=
∑

tr[2et(AB(X
(1)
t − X

(2)
t ))′]I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

+2
∑

tr[A0B0X
(1)
t (ABX

(1)
t − ABX

(2)
t )′]I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

−
∑

tr[ABX
(1)
t (ABX

(1)
t )′ − ABX

(2)
t (ABX

(2)
t )′]

×I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2). (D.2)

If 4 is sufficiently small, then it follows from Condition 4 that the sum of

the second and third terms is greater than or equal to δ2
∑

I(Y1,t−1 ≤ 0, 0 <

Y2,t−1 ≤ z2), because

∑

tr[2A0B0X
(1)
t (ABX

(1)
t − ABX

(2)
t )′]I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

−
∑

tr[ABX
(1)
t (ABX

(1)
t )′−ABX

(2)
t (ABX

(2)
t )′]I(0<Y1,t−1≤z1, Y2,t−1 >z2)

≈
∑

tr[A0B0X
(1)
t (A0B0X

(1)
t )′ − 2A0B0X

(1)
t (A0B0X

(2)
t )′

+A0B0X
(2)
t (A0B0X

(2)
t )′]I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

=
∑

tr[A0B0(X
(1)
t X

(1)′

t + X
(2)
t X

(2)′

t − 2X
(1)
t X

(2)′

t )B′
0A

′
0]

×I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

≥ δ2
∑

I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2).

The first term on the RHS of (D.2) is bounded in absolute value by ν|∑ e′t(X
(1)
t −

X
(2)
t )I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)| for some constant ν independent of T .

Define

Q(z1) = EI(0 < Y1,t−1 ≤ z1) (D.3)

and it is clear that Q(z1) = O(z1) for small z1.
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Claim 2. For any ε > 0, η > 0, there exists K > 0 such that, for all T,

P
(

sup
K/T<z1≤4

0<z2≤4

∣

∣

∣

∑ I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

TQ(z1)
− 1

∣

∣

∣ < η
)

> 1 − ε

P
(

sup
K/T<z1≤4

0<z2≤4

∣

∣

∣

∑

tr[etX
(1)′

t ]
I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

TQ(z1)

∣

∣

∣
< η

)

> 1 − ε

P
(

sup
K/T<z1≤4

0<z2≤4

∣

∣

∣

∑

tr[etX
(2)′

t ]
I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

TQ(z1)
| < η

)

> 1 − ε.

Suppose the above claim is valid. Let ε > 0 be given and η > 0 be chosen so

that −2νη + δ2(1 − η) > 0. It follows from the preceding claim that there exists

a K(ε, η) > 0 such that with probability greater than 1 − 3ε, K/T < z1 ≤ 4
implies that

∑

tr(f
(2)
t f

(2)′

t − f
(1)
t f

(1)′

t )
I(0 < Y1,t−1 ≤ z1, Y2,t−1 > z2)

TQ(z1)

≥ −2νη + δ2(1 − η) > 0.

which verifies Claim 1 under the condition that z1 > 0, z2 > 0. The other cases,

namely the 2nd, 3rd and 5th term of the RHS of (D.1) are similar and hence

omitted with the 4th term being negligible compared to the other term.

Finally, note that claim 2 can be proved by making use of Conditions 1 to 4

and employing arguments as in Chan (1993, pp.528-529).

Appendix E. Proof of Theorem 5

The proof is similar to the case of reduced-rank linear regression, which

relies on the use of perturbation expansion of matrices and the limiting behavior

of T 1/2vec(UT ) where UT = T−1
∑

t Xtε
′
t; see Reinsel and Velu (1998, pp.42-44).

Since the perturbation expansion of matrices is the same whether or not the

threshold parameter is known, we need only consider the limiting distribution of

T 1/2vec(UT ).

If Xt is free of unknown parameters, it is known that

T 1/2vec(UT )
D−→ N(0,Σεε ⊗ Σxx) as T → ∞. (E.1)

See Anderson (1971, p.200) for a proof for the case when (Yt) is a linear pro-

cess. In the general case, the result follows from the martingale CLT (Hamilton

(1994)). We shall show that (E.1) holds even if the unknown parameter γ in

Xt is replaced by super-consistent estimator γ̂. Then we can mimic the proof in
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Reinsel and Velu (1998) to prove Theorem 5. The rest of this proof is devoted
to verifying the preceding claim (E.1). For simplicity, we assume p = d = 1 and
define the following random variables:

Wt = vec(Xtε
′
t) = vec









Yt−1

I(Yt−1 > γ̂)

Yt−1I(Yt−1 > γ̂)



 ε′t



 ,

W ∗
t = vec(X∗

t ε′t) = vec









Yt−1

I(Yt−1 > γ)

Yt−1I(Yt−1 > γ)



 ε′t



 .

So,

√
Tvec(UT ) =

1

T
1

2

∑

t

Wt

=
1

T
1

2

∑

t

W ∗
t +

1

T
1

2

∑

t

vec









0

I(Yt−1 > γ̂) − I(Yt−1 > γ)

Yt−1[I(Yt−1 > γ̂) − I(Yt−1 > γ)]



 ε′t



 . (E.2)

Clearly, (1/T )
∑

t W ∗
t

D→ N(0,Σεε⊗Σxx). We shall show the second term of RHS
of (E.2) converges to 0 in probability; hence the proof is done by appealing to
Slutsky’s theorem.

Let Vt = [I(Yi,t−1 > γ̂i)−I(Yi,t−1 > γi)]εj,t where Yi,t denotes the ith element
of vector Yt and so εj,t the jth element of εt. Let fi(·) be the stationary density
function of Yi,1. Since γ̂i = γi + Op(1/T ), without loss of generality, we assume
that |γ̂i − γi| ≤ M/T for some M > 0. Then

E|T−1/2
∑

t

Vt| ≤
1

T

T
∑

t=1

E|Vt|

≤ T− 1

2

T
∑

t=1

E|I(Yi,t−1 > γ̂i) − I(Yi,t−1 > γi)||εj,t|

≤ T− 1

2

T
∑

t=1

EI(γi −
M

T
< Yi,t−1 < γi +

M

T
)|εj,t|

= T− 1

2

T
∑

t=1

EI(γi −
M

T
< Yi,t−1 < γi +

M

T
)E|εj,t|

= T− 1

2

T
∑

t=1

∫ γi+
M
T

γi−
M
T

fi(yi)dyiE|εj,t|

= O(
1

T
1

2

) → 0 as T → ∞,
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where E|εj,t| < ∞ by Condition 2. Consequently, T−1/2
∑

t vec((I(Yt−1 > γ) −
I(Yt−1 > γ̂)εt)

p→ 0. Similarly, it can be shown that T−1/2
∑

t vec(Yt−1[I(Yt−1 >

γ̂) − I(Yt−1 > γ)]ε′t)
p→ 0.
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