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Abstract: This article proposes omnibus goodness-of-fit tests of a parametric re-

gression time series model. We use a general class of residual marked empirical
processes as the buildingblocks for our testing problem. First, we establish a new

weak convergence theorem under mild assumptions, one that extends previous ex-

isting asymptotic results and which may be of independent interest. This result

allows us to study the asymptotic null distribution of the tests statistics and their

asymptotic behavior against Pitman’s local alternatives in a unified way. To ap-

proximate the asymptotic null distribution of test statistics we give a theoretical

justification of a bootstrap procedure. Our bootstrap tests are robust to conditional

higher moments of unknown form, in particular to conditional heteroskedasticity.

Finally, a Monte Carlo study shows that the bootstrap and the asymptotic results

provide good approximations for small sample sizes and an empirical application

to the Canadian lynx data set is considered.

Key words and phrases: Canadian lynx data set, conditional mean, diagnostic tests,
marked empirical processes, time series, weak convergence, wild bootstrap.

1. Introduction

The last decades have seen increased interest in time series modelling. Much

of the existing statistical and econometrics literature has been concerned with the

parametric modelling of the conditional mean function of a response variable Yt ∈
R, given some information set at time t−1, It−1 ∈ R

d, say. More precisely, let Zt

be an m-dimensional observable random variable and let Wt−1 = (Yt−1, . . . , Yt−s).

The information set we consider at time t − 1 is It−1 = (W ′
t−1, Z

′
t)
′, so d =

s + m. We assume throughout that the time series process {(Yt, I
′
t−1)

′ : t =

0,±1,±2, . . .} is strictly stationary and ergodic. It is well-known that under

integrability of Yt, we can write the tautological expression

Yt = f(It−1) + εt,

where f(z) = E[Yt | It−1 = z], is the conditional mean function and εt =

Yt − E[Yt | It−1] satisfies E[εt | It−1] = 0 a.s..

In parametric regression modelling one assumes the existence of a parametric

family of functions M = {f(·, θ) : θ ∈ Θ ⊂ R
p}, and proceeds to make inferences
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on θ or to test the hypothesis that f(·) ∈ M. Parametric time series regression

models continue to be attractive among practitioners because the parameter θ to-

gether with the functional form f(It−1, θ) describe, in a concise way, the relation

between the response Yt and the information set It−1. Examples of models M
include classes of linear and nonlinear regression models and linear and nonlin-

ear autoregression models, such as Markov-switching, exponentical or threshold

autoregressive models, among many others, see e.g., Tong (1990), or more re-

cently, Fan and Yao (2003). Define et(θ0) = Yt − f(It−1, θ0). When f(It−1, θ) is

correctly specified for f(It−1),

E[et(θ0) | It−1] = 0 a.s., for some θ0 ∈ Θ ⊂ R
p. (1)

There is a huge literature on testing the correct specification of regression mod-

els. In an independent and identically distributed (i.i.d.) framework, some ex-

amples of those tests have been proposed by Bierens (1982, 1990), Eubank

and Spiegelman (1990), Eubank and Hart (1992), Wooldridge (1992), Yatchew

(1992), Härdle and Mammen (1993), Horowitz and Härdle (1994), Hong and

White (1995), Fan and Li (1996), Zheng (1996), Stute (1997), Stute, Thies and

Zhu (1998), Li and Wang (1998), Fan and Huang (2001), Horowitz and Spokoiny

(2001), Li, Hsiao and Zinn (2003), Zhu (2003), Zhu and Ng (2003), Khmaladze

and Koul (2004), Koul and Ni (2004), Escanciano (2006) and Guerre and Lavergne

(2005), to mention a few. Whereas in a time series context some examples

are Bierens (1984), Li (1999), de Jong (1996), Bierens and Ploberger (1997),

Koul and Stute (1999), Chen, Härdle and Li (2003), Escanciano (2006), Hong

and Lee (2005) and Guerre and Guay (2005). This huge literature can be di-

vided into two approaches. The first approach is called the “local approach”,

because is based on nonparametric estimators of the local measure of dependence

E[et(θ0) | It−1]. The local approach requires smoothing of the data in addition

to the estimation of the finite-dimensional parameter vector θ0 and leads to less

precise fits, see Hart (1997) for some review of the local approach when d = 1.

The second class of tests avoids smoothing estimation by means of an in-

finite number of unconditional moment restrictions over a parametric family of

functions, i.e., it is based on the equivalence

E[et(θ0) | It−1] = 0 a.s. ⇐⇒ E[et(θ0)w(It−1, x)] = 0,

almost everywhere (a.e.) in Π ⊂ R
q, (2)

where Π ⊂ R
q is a properly chosen space, and the parametric family of func-

tion {w(·, x) : x ∈ Π} is such that (2) holds, see Stinchcombe and White (1998)

and Escanciano (2006) for primitive conditions on the family {w(·, x) : x ∈ Π}
to satisfy this equivalence. We call the approach based on (2) the “integrated
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apporach”, because it uses integrated (or cumulative) measures of dependence.

In the integrated approach, test statistics are based on a distance from the sam-

ple analogue of E[et(θ0)w(It−1, x)] to zero. This integrated approach is well

known in the literature and was first proposed by Bierens (1982), who used

the exponential function w(It−1, x) = exp(ix′It−1), see also Bierens (1990) and

Bierens and Ploberger (1997). Stute (1997) using empirical process theory, pro-

posed to use the indicator function w(It−1, x) = 1(It−1 ≤ x) in an i.i.d. context,

see also Stute, Thies and Zhu (1998). More recently, Koul and Stute (1999) have

proposed asymptotic distribution-free tests for nonlinear autoregressive models

of order 1, using again the indicator function. The exponentical and indica-

tor families are the most used in the literature. Stinchcombe and White (1998)

emphasized that there are many other possibilities in the choice of w, such as

w(It−1, x) = sin(x′It−1) or w(It−1, x) = 1/(1+exp(c−x′It−1)), both of them with

Π ⊂ R
d. Recently, Escanciano (2006) has considered, in an i.i.d. setup, the fam-

ily w(It−1, x) = 1(β′It−1 ≤ u), x = (β ′, u)′ ∈ Πpro, where Πpro = S
d × [−∞,∞]

is the auxiliary space with S
d = {β ∈ R

d : |β| = 1}. This new family has the

property that overcomes the curse of dimensionality because it is based on one-

dimensional projections and, at the same time, avoids the choice of a subjective

integrating measure in the Cramér-von Mises (CvM) test. In addition, the CvM

test based on this new family has excellent power properties in finite samples and

formalizes traditional inferences based on residual-fitted values plots for linear

models, see Escanciano (2006) for details. Note that different families w have

different power properties of the integrated-based test. The “optimal” w will

depend on the true alternative at hand as well as the functional used to measure

the orthogonality restrictions. It is worth stressing that the choice of w gives

us flexibility to direct power in desired directions. So, it would be important to

establish a general theory for integrated-based tests that covers a large class of

weighting functions w.

The main aim of this article is to present a unified theory for the goodness-

of-fit tests of regression time series models based on the integrated approach

for a general weighting function w. The main contributions of the article are

as follows. We establish a new weak convergence theorem for marked processes

under martingale difference conditions, which improves previous results. As an

application of the new weak convergence theorem, we extend the tests used in

Stute (1997) to a multivariate time series framework under mild conditions. We

also extend the test of Escanciano (2006) to a time series setup. We theoretically

justify a new bootstrap method based on the wild bootstrap to approximate the

asymptotic critical values for general integrated-based tests. Finally, we compare

the proposed and existing tests in a Monte Carlo experiment to show that the

proposed tests can play a valuable role in time series model checks.
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The layout of the article is as follows. In Section 2 we consider the general

theory for the integrated approach and we introduce the residual marked empir-

ical processes that are the basis for the test statistics. We begin by establishing

a weak convergence theorem for a general class of marked empirical processes.

This allows us to study, in a unified way, the asymptotic distribution of the test

statistics under the null and under local alternatives. In Section 3 a bootstrap

procedure for approximating the asymptotic null distribution of the omnibus

tests is considered and theoretically justified. In Section 4 a simulation exercise

compares different test under the null and under the alternative, and we study

the well-known Canadian lynx data set. Proofs are deferred to an appendix.

In the sequel, C is a generic constant that may change from one expression to

another. Throughout, A′, Ac and |A| denote the matrix transpose, the complex

conjugate and the Euclidean norm of A, respectively. As usual, OP (1) and oP (1)

denote bounded in probability and convergence in probability to zero under the

probability P , respectively. All limits are taken as the sample size n → ∞.

2. Asymptotic Theory: Residual Marked Empirical Processes

Denote by S the class of all strictly stationary ergodic processes with marginals

in R
d+1, d ∈ N, such that the first marginal component is integrable, and let

{Yt, I
′
t−1)

′ : t = 0,±1,±2, . . .} with 0 < E|Yt| < ∞, be one of these processes.

Let (Ω,A, P ) denote the probability space in which previous random variables

(r.v’s) are defined. The main goal in this article is to test the null hypothesis

H0 : E[Yt | It−1] = f(It−1, θ0) a.s., for some θ0 ∈ Θ ⊂ R
p,

against the general nonparametric alternative

HA : P (E[Yt | It−1] 6= f(It−1, θ)) > 0, for all θ ∈ Θ ⊂ R
p.

Note that we have restricted ourselves under both hypotheses to processes in S.

One way to characterize H0 is by the infinite number of unconditional moment

restrictions

E[et(θ0)w(It−1, x)] = 0 a.e., x ∈ Π, (3)

where {w(·, x) : x ∈ Π} is such that the equivalence in (2) holds, see Section 1.

In view of a sample {(Yt, I
′
t−1)

′ : 1 ≤ t ≤ n}, define the marked empirical

process

Rn,w(x, θ) = n− 1

2

n
∑

t=1

et(θ)w(It−1, x),
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where et(θ) = Yt − f(It−1, θ), θ ∈ Θ, t ∈ Z. The associated error-marked process

is Rn,w = Rn,w(x, θ0) and the residual-marked process is R1
n,w(x) = Rn,w(x, θn),

for an estimator θn for θ0.

Because of (2), test statistics are based on a distance from the standardized

sample analogue of E[et(θ0)w(It−1, x)] to zero, i.e., on a norm of R1
n,w, Γ(R1

n,w),

say. The most common of these are

CvMn,w =

∫

Π
|R1

n,w(x)|2Ψ(dx),

KSn,w = sup
x∈Πc

|R1
n,w(x)|,

where Ψ(x) is an integrating function satisfying some mild conditions, see A4(b)

below. Other functionals are possible. Then, the tests we consider reject the null

hypothesis H0 for “large” values of Γ(R1
n,w).

To study the asymptotic distribution of functionals of R1
n,w for different

families w, we need a sufficiently general weak convergence theorem that allows

for continuous and discontinuous (with respect to x) weighting functions. The

next section gives the answer to this problem under very mild assumptions. This

result is the main result of the article and may be of independent interest.

2.1. Weak convergence theorem

In this section we consider a weak convergence theorem for a large class

of marked empirical processes of which Rn,w is a special case. Let, for each

n ≥ 1, X ′
n,0, . . . , X

′
n,n−1 be an array of random vectors in R

d, and let Fn,t =

σ(X ′
n,t, X

′
n,t−1, . . . , X

′
n,0), 0 ≤ t ≤ n, be the σ-field generated by the observations

obtained up to time t. Furthermore let, for each n ≥ 1, εn,1, . . . , εn,n be an

array of square integrable real r.v’s such that for each t, 1 ≤ t ≤ n, εn,t is

Fn,t-measurable and such that a.s.

E[εn,t | Fn,t−1] = 0 1 ≤ t ≤ n, ∀n ≥ 1. (4)

Denote by (Ωn,An, Pn), n ≥ 1, the probability space in which all the r.v’s

{εn,t, X
′
n,t−1 : 1 ≤ t ≤ n} are defined. The main goal of this section is to

establish the weak convergence of the marked empirical process

αn,w(x) = n− 1

2

n
∑

t=1

εn,tw(Xn,t−1, x), x ∈ Π ⊂ R
q.

Usually, different families w deliver different technical approaches for the asymp-

totic theory, essentially due to the continuity of the family w with respect to

the auxiliary parameter x. Compare, for instance, the tightness conditions in
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Bierens and Ploberger (1997) and Khmaladze and Koul (2004). One possibility

for a unified theory is to embed the empirical process αn,w in a suitable large func-

tion space. Here, we formulate assumptions that guarantee the weak convergence

of αn,w to a Gaussian limit in `∞(Π), the space of all complex-valued functions

that are uniformly bounded on any compact subset of Π ⊂ R
q. Throughout

the article Πc denotes a general compact subset of Π. Of course, the sample

paths of αn,w are usually contained in much a smaller space (such as the cadlag

space D(Π)), but as long as this space is equipped with the supermum metric,

this is irrelevant for the weak convergence theorem. For the indicator family

w(Xt, x) = 1(Xt ≤ x) our assumptions are weaker than those considered in

related weak convergence theorems, and similar to the mildest obtained in the

i.i.d. case, see Stute (1997). More concretely, for non-smooth functions only

finite second moments and a mild smooth condition on a conditional distribu-

tion is necessary. For the family w(It−1, x) = 1(β′It−1 ≤ u), our results are new

and are similar to those obtained in the i.i.d. setup by Escanciano (2006). For

i.i.d. sequences, our assumptions reduce to those considered by Stute (1997) and

Escanciano (2006). The weak convergence theorem that we give is founded on re-

sults by Levental (1989), Bae and Levental (1995) and Nishiyama (2000). From

now on, the symbol ⇒ denotes weak convergence on compacta in `∞(Π), see

Definition 1.3.3 and Chapter 1.6 in van der Vaart and Wellner (1996, hereafter

VW).

Define the conditional quadratic variation of the empirical process αn,w on

a finite partition B = {Hk; 1 ≤ k ≤ N} of Π as

αn,w(B) = max
1≤k≤N

n−1
n

∑

t=1

E[ε2
n,t | Xn,t−1]

∣

∣

∣
sup

x1,x2∈Hk

|w(Xn,t−1, x)−w(Xn,t−1, x2)|
∣

∣

∣

2
.

Then we need the following assumptions.

Assumption W1. For each n ≥ 1, {(εn,t, X
′
n,t)

′ : 1 ≤ t ≤ n} is a strictly sta-

tionary and ergodic process with E[εn,t | Fn,t−1] = 0 a.s., εn,t is Fn,t-measurable

and 0 < Eε2
n,t < ∞, ∀t, 1 ≤ t ≤ n. Also, there exists a function Kw(x1, x2) on

Π × Π to R such that, uniformly in (x1, x2) ∈ Πc × Πc,

n−1
n

∑

t=1

ε2
n,tw(Xn,t−1, x1)w

c(Xn,t−1, x2) = Kw(x1, x2) + oPn(1).

Assumption W2. For every compact subset Πc, the family w(·, x) is uniformly

bounded (a.s) on Πc and for every ε ∈ (0, 1) of the form ε = 2−q there exists

a finite partition Pq = {Hk; 1 ≤ k ≤ Nε} of Πc, with Nε the elements of such
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partition, such that

∫ 1

0

√

log(Nε)dε < ∞, (5)

sup
q∈N

αn,w(Pq)

2−2q
= OPn(1). (6)

Let αn,w(·) be a Gaussian process with zero mean and covariance function given

by Kw(x1, x2).

Theorem 1. If Assumptions W1 and W2 hold, then αn,w ⇒ α∞,w.

Condition W1 allows us to establish the convergence of the finite-dimensional

distributions of αn,w, whereas W2 is responsible for the asymptotic tightness.

Loosely speaking, (5) controls the size of the family {w(·, x) : x ∈ Π}, and (6)

allows us to control the suprema over the links in a chaining argument by means

of Freedman’s (1975) inequality after applying a truncation at level
√

n, see (11).

Now we show that assumption W2 is satisfied (under W1 and some mild

conditions) for all the families w considered in the literature. We start with

the smooth case. Note that under W1 and for smooth functions w(Xn,t−1, x)

satisfying

|w(Xn,t−1, x1) − w(Xn,t−1, x2)| ≤ Kn,tρ(x1, x2),

where ρ(·, ·) such that (Πc, ρ) is a totally bounded metric space and Kn,t is, for

each n ≥ 1, a stationary process with E[ε2
n,tK

2
n,t] < ∞, ∀t, 1 ≤ t ≤ n, a sufficient

condition for W2 is that
∫ ∞

0

√

log(N(Πc, ρ, ε))dε < ∞,

where N(Πc, ρ, ε) is the ε-covering number of Πc with respect to ρ, i.e., the

minimum number of ρ-balls needed to cover Πc. This assumption is satis-

fied, for instance, for w(Xt−1, x) = exp(ix′Xt−1), w(Xt−1, x) = sin(x′Xt−1) or

w(Xt−1, x) = 1/(1 + exp(c − x′Xt−1)), c ∈ R.

For non-smooth functions, such as w(Xt, x) = 1(Xt−1 ≤ x) or w(Xt−1, x) =

1(β′Xt−1≤u), x=(β ′, u)′, the situation is much more involved. For w(Xt−1, x) =

1(Xt−1 ≤ x), Koul and Stute (1999) proved the weak convergence of the process

αn,w for d = 1 under slightly more than fourth moment, Markov and bounded

densities assumptions, see Domı́nguez and Lobato (2003) for the case d > 1.

To the best of our knowledge, these are the weakest assumptions in the litera-

ture for the stationary and ergodic case. The fourth moment assumption can

be restrictive in applications, for instance it rules out most empirically relevant

conditional heteroskedastic processes whose fourth moments are often infinite.

For w(Xt−1, x) = 1(β′Xt−1 ≤ u), x = (β ′, u)′, Escanciano (2006) proved a weak
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convergence theorem in an i.i.d. setup using the techniques of VW. These tech-

niques cannot be applied directly in a time series context. The next result is an

application of Theorem 1 to these particular weighting functions and provides an

improvement of Lemma 3.1 in Koul and Stute (1999) and an extension to time

series of Escanciano (2006). We need some further notation and an assumption.

Define the semimetric

dw(x1, x2) = lim
n→∞

(

n−1
n

∑

t=1

E[ε2
n,t{w(Xn,t−1, x1) − w(Xn,t−1, x2)}2]

)
1

2

(7)

and let Gn,t,w(x) = E[E[ε2
n,t | Xn,t−1]w(Xn,t−1, x) | Fn,t−2].

Assumption W3. |Gn,t,w(x1)−Gn,t,w(x2)| ≤ Mn,td
2
w(x1, x2), for each (x1, x2) ∈

Π × Π, where Mn,t is, for each n ≥ 1, a stationary process with E[|Mn,t|] < ∞,

∀t, 1 ≤ t ≤ n.

Assumption W3 is sufficient for W2 (under W1) for the weighting functions

w(·, x) = 1(· ≤ x) or w(·, x) = 1(β ′· ≤ u). Notice that W3 is a mild condition.

For i.i.d. sequences it is trivially satisfied, whereas for time series sequences it

follows if, for instance, the conditional density of Xn,t−1 given Fn,t−2, fn,Fn,t−2
(·)

say, satisfies (a.s) fn,Fn,t−2
(·) ≤ Cfn(·) for some C > 0, where fn(·) is the density

of Xn,t−1.

Corollary 1. Under W1 and W3 the weak convergence of Theorem 1 holds for

w(·, x) = 1(· ≤ x) and w(·, x) = 1(β ′· ≤ u).

2.2. Asymptotic distribution under the null

We establish the limit distribution of R1
n,w under the null hypothesis H0. To

derive asymptotic results we consider the following assumptions. First, define

the score g(It−1, θ0) = (∂/∂θ′)f(It−1, θ0). Let Ft = σ(I ′t, I
′
t−1, . . . , I

′
0), be the

σ-field generated by the information set obtained up to time t. Recall that

εt = Yt − E[Yt | It−1] and et(θ0) = εt a.s.

Assumption A1.

A1(a): {Yt, I
′
t−1)

′ : t = 0,±1,±2, . . .} ∈ S with joint cumulative distribution

function (cdf) F (·) and marginal distributions FY (·) and FI(·), respec-

tively.

A1(b): E[εt | Ft−1] = 0 a.s. for all t ≥ 1, and E|ε1|2 < C.

Assumption A2. f(·, θ) is twice continuously differentiable in a neighborhood

of θ0 ∈ Θ. There exists a function M(It−1) with |g(It−1, θ)| ≤ M(It−1), such

that M(It−1) is FI(·)-integrable.
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Assumption A3.

A3(a): The parameter space Θ is compact in R
p. The true parameter θ0 belongs

to the interior of Θ. There exists a unique θ1 such that |θn−θ1| = oPn(1).

A3(b): Under H0,
√

n(θn − θ0) = n−1/2
∑n

t=1 et(θ0)k(It−1, θ0) + oP (1), where

k(·) is such that L(θ0) = E[e2
t (θ0)k(It−1, θ0)k

′(It−1, θ0)] exists and is

positive definite.

Assumption A4.

A4(a): The weighting function w(·) is such that the equivalence in (2) holds.

For any compact set Πc of Π, w(It−1, x) is uniformly bounded (a.s) on

Πc, and satisfies, under the null, the assumption W2 above.

A4(b): w(It−1, x) satisfies the uniform law of large numbers (ULLN)

sup
x∈Πc

∣

∣

∣
n−1

n
∑

t=1

εtw(Xt, x) − E[εtw(Xt, x)]
∣

∣

∣

as∗−→ 0,

whenever Z = {(εt, X
′
t)
′, t = 0,±1, . . .} ∈ S.

A4(c): The integrating function Ψ(·) is a probability distribution function which

is absolutely continuous with respect to Lebesgue measure.

Assumption A1(a) is standard in the model checks literature under time se-

ries, see, e.g., Koul and Stute (1999). A1(b) is weaker than other related moment

conditions and allows for most empirically relevant conditional heteroskedastic

models. Assumption A2 is classical in the model checks literature, see, e.g.,

Stute and Zhu (2002). Assumption A3 is satisfied, for instance, for the nonlin-

ear least squares estimator (NLSE), or its robust modifications (under further

regularity assumptions), see Koul (2002). The assumption that w satisfies (2) is

needed only for the consistency of the tests against nonparametric alternatives.

W2 usually holds under previous assumptions, see Section 2.1. The ULLN in

A4(b) usually follows from the Ergodic Theorem and a Glivenko-Cantelli argu-

ment. Note that under A4, R1
n,w can be viewed as a random element with values

in `∞(Π). The choice of Ψ(·) depends on the space Π and w, and is crucial for

the power properties of the CvM test. Some discussion about the choice of Ψ(·)
for a given w can be found in a similar context in Escanciano and Velasco (2003).

A4(c) is only needed for the consistency of the CvM tests.

Under A1, using the Central Limit Theorem (CLT) for stationary ergodic

martingale difference sequences, cf., Billingsley (1961), we have that the finite-

dimensional distributions of Rn,w converge to those of a multivariate normal

distribution with a zero mean vector and variance-covariance matrix given by

the covariance function

Kw(x1, x2) = E[ε2
t w(It−1, x1)w

c(It−1, x2)]. (8)
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The next result is an extension of this convergence to weak convergence in the
space `∞(Π).

Theorem 2. Under the null hypothesis H0, A1 and A4(a), Rn,w ⇒ R∞,w, where

R∞,w(·) is a Gaussian process with zero mean and covariance function given by

(8).

In practice, θ0 is unknown and has to be estimated from a sample {(Yt, I
′
t−1)

′ :
1 ≤ t ≤ n} by an estimator θn. The next result shows the effect of the parameter
uncertainty on the asymptotic null distribution of R1

n,w. To this end, define the
function Gw(x) ≡ Gw(x, θ0) = E[g(It−1, θ0)w(It−1, x)] and let V be a normal
random vector with zero mean and variance-covariance matrix given by L(θ0).

Theorem 3. Under the null hypothesis H0 and Assumptions A1−A3 and A4(a-
b), R2

n,w(·) ⇒ R∞,w(·)−G′
w(·)V ≡ R2

∞,w(·), where R∞,w is the same process as in

Theorem 2 and Cov (R∞,w(x1), V ) = E[ε2
t k(It−1, θ0)w(It−1, x1)]. Consequently,

for any continuous functional Γ(·), Γ(R1
n,w)

d→ Γ(R1
∞,w).

Notice that the integrating measure Ψ(dx) in CvMn,w can be chosen as a
random measure Ψn(x), say. An application of Lemma 3.1 in Chang (1990)
shows that this shoice does not change the asymptotic theory for CvMn,w as
long as Ψn(x) converges uniformly a.s. on compacta to a measure satisfying
A4(c), i.e., supx∈Πc

|Ψn(x)−Ψ(x)| → 0 a.s., for every compact set Πc ⊂ Π. This
is the case for the family w(It−1, x) = 1(It−1 ≤ x), where the natural integrating
measure is the empirical distribution function of the information sample {It−1 :
1 ≤ t ≤ n}, or for w(It−1, x) = 1(β′It−1 ≤ u) where the integrating measure is
the product of Fn,β(du) and dβ, the empirical distribution function of the series
{β′It−1 : 1 ≤ t ≤ n} and the uniform density on the unit sphere, respectively, see
Escanciano (2006). By the Glivenko-Cantelli Theorem for ergodic and stationary
time series, see e.g., Dehling and Philipp (2002, p.4) and Wolfowitz (1954), the
uniform convergence holds for 1(It−1 ≤ x) and 1(β ′It−1 ≤ u), respectively.

2.3. Consistency and local alternatives

In this section we study the consistency properties of the test based on
continuous functionals Γ(R1

n,w). First, we show that these tests are consistent,

that is, they are able to detect any alternative in S. Throughout the paper
P ∗

→
denotes convergence in outer probability, see Definition 1.9.1 in VW.

Theorem 4. Under the alternative hypothesis HA and A1−A4(a-b), n−1/2R1
n,w(·)

P ∗

−→ E[et(θ1)w(It−1, ·)].
Consequently, since HA implies that E[et(θ0)w(It−1, ·)] 6= 0 in a set with

positive measure, the test statistic Γ(R1
n,w) will diverge to +∞ under the alter-

native.
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The next result shows the asymptotic distribution of R1
n,w under a sequence

of local alternatives converging to null at a parametric rate n−1/2, say

HA,n : Yt,n = f(It−1, θ0) +
a(It−1)

n
1

2

+ εt, a.s., (9)

where the function a(·) : R
d → R is FI -measurable and FI -integrable.

Assumption A3’. Under HA,n,
√

n(θn−θ0) = ξa+n−1/2
∑n

t=1 et(θ0)k(It−1, θ0)+

oP (1), where the function k(·) is as in A3 and ξa ∈ R
p.

Take Dw,a(·) = E[a(It−1)w(It−1, ·)] − G′
w(·)ξa.

Theorem 5. Under (9), Assumptions A1, A2, A3′ and A4(a-b), R1
n,w ⇒ R1

∞,w+

Dw,a, where R1
n,w is the process defined in Theorem 3.

Note that from (2), Dw,a = 0 a.e. ⇔ a(It−1) = ξ′ag(It−1, θ0) a.s. Therefore,

for directions a(·) not collinear to the score, the shift function Dw,a is non-trivial.

As a matter of fact, it can be shown that for such alternatives the test based on

any continuous even functional Γ(·) is asymptotically unbiased.

3. Bootstrap Approximation of Residual Marked Empirical Processes

We have seen that the asymptotic null distribution of continuous func-

tions of R1
n,w depends in a complicated way on the data generating process

(DGP) as well as the specification under the null hypothesis. Therefore, crit-

ical values for the tests statistics cannot be tabulated for general cases. A

rather recently approach to solving this problem is that of Khmaladze and Koul

(2004), who consider a martingale transformation of the process R1
n,w, with

w(It−1, B) = 1(It−1 ∈ B), B a Borel set, that delivers asymptotically distributed-

free tests. As they comment, their approach can be easily generalized to time

series autoregressions. In fact, our theory can help to this end. Unfortunately,

their approach is only useful for the indicator weighting family and, more impor-

tantly when d > 1 the asymptotic null distribution of the transformed process

still depends on the cdf FI . Here, we propose a bootstrap method to solve

the problem of approximating the asymptotic null distribution of an integrated-

based test under time series and a general w. Resampling methods have been

used extensively in the goodness-of-fit literature of regression models, see, e.g.,

Härdle and Mammen (1993), Stute, González-Manteiga and Presedo-Quindimil

(1998) and Li, Hsiao and Zinn (2003) in the i.i.d. context, and Franke, Kreiss

and Mammen (2002) for time series sequences. It is shown in these articles

that the most relevant bootstrap method for regression problems is the wild

bootstrap (WB) introduced in Wu (1986) and Liu (1988). Our approach is an
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extension to nonlinear time series regressions of the WB approach. Other resam-

pling schemes are of course possible in our context, e.g., the stationary bootstrap

of Politis and Romano (1994). More concretely, we approximate the asymptotic

null distribution of R1
n,w by that of

R1∗
n,w(x) = n− 1

2

n
∑

t=1

e∗t (θ
∗
n)w(It−1, x) x ∈ Π,

where the sequence {e∗t (θ∗n)}n
t=1 are the fixed design wild bootstrap (FDWB)

residuals obtained from the following algorighm.

(1) Estimate the original model and obtain the residuals et(θn) for t = 1, . . . , n.

(2) Generate WB residuals according to e∗t (θn) = et(θn)Vt for t = 1, . . . , n, where

{Vt : 1 ≤ t ≤ n} is a sequence of independent random variables (r.v’s) with

zero mean, unit variance, bounded support, and independent of the sequence

{(Yt, I
′
t−1)

′ : 1 ≤ t ≤ n}.
(3) Given θn and e∗t (θn), generate bootstrap data for the dependent variable Y ∗

t

as Y ∗
t = f(It−1, θn) + e∗t (θn) for t = 1, . . . , n.

(4) Compute θ∗n from the data {(Y ∗
t , I ′t−1)

′ : 1 ≤ t ≤ n} and compute the residuals

e∗t (θ
∗
n) = Y ∗

t − f(It−1, θ
∗
n) for t = 1, . . . , n.

Examples of {Vt} sequences are i.i.d. Bernoulli variates with

P (Vt = 0.5(1 −
√

5)) = b, P (Vt = 0.5(1 +
√

5)) = 1 − b, (10)

where b = (1 +
√

5)/2
√

5, used in, e.g., Stute, González-Manteiga and Presedo-

Quindimil (1998), or P (Vt = 1) = 0.5 and P (Vt = −1) = 0.5 as in Liu (1988). To

justify this bootstrap approximation we need an additional assumption on the

behaviour of the bootstrap estimator.

Assumption A5.

A5(a): The estimator θ∗n satisfies
√

n(θ∗n−θn) = n−1/2
∑n

t=1 e∗t (θn)k(It−1, θn)+

oP (1) a.s., where the function k(·) is as in A3 with

A5(b): |k(It−1, θ)| ≤ K(It−1), such that K(It−1) is FI -integrable.

This bootstrap procedure allows us to approximate the asymptotic critical

values of the tests based on Γ(R1
n,w).

Theorem 6. Assume A1−A5. Then, under the null Hypothesis H0, under any

fixed alternative hypothesis or under the local alternatives (9), R1∗
n,w=⇒

*
R̃1

∞,w,

a.s., where R̃1
∞,w is the Gaussian process of Theorem 3, but with θ1 replacing θ0,

and =⇒
*

denoting weak convergence almost surely under the bootstrap law, see

Giné and Zinn (1990).
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Note that under the null θ1 coincides with θ0, and then R̃1
∞,w = R1

∞,w in

distribution. Therefore, we can approximate the asymptotic null distribution of

the process R1
n,w by that of R1∗

n,w. In particular, we can simulate the critical values

for the tests statistics Dn = Γ(R1
n,w) by the usual bootstrap algorithm. Section

4 below shows that this bootstrap procedure provides good approximations in

finite samples.

4. Finite Sample Performance and Empirical Application

In order to examine the finite sample performance of some integrated-based

tests we carry out a simulation experiment. We compare the CvM tests based on

the weighting functions w(It−1, x) = exp(ix′It−1), w(It−1, x) = 1(It−1 ≤ x), and

w(It−1, x=1(β′It−1 ≤ u), x = (β ′, u)′. Throughout the simulations It ≡ It−1,P =

(Yt−1, . . . , Yt−P ) will be the information set at time t − 1.

Let Fn,β,P (u) be the empirical distribution function of the projected infor-

mation set {β ′It−1,P : 1 ≤ t ≤ n}. Escanciano (2006) proposed in the i.i.d. setup

the CvM test

CV Mn,pro,P =

∫

Πpro

(R1
n,pro,P (β, u))2Fn,β,P (du)dβ,

where R1
n,pro,P (β, u) = σ̂−1

e n−1/2
∑n

t=1 et(θn)1(β′It−1,P ≤ u) and σ̂2
e = n−1

∑n
t=1

e2
t (θn). For a simple algorithm to compute CV Mn,pro,P see Appendix B in

Escanciano (2006).

Bierens (1982) proposed to use w(It−1, x) = exp(iI ′t−1x) as the weighting

function in (2) and Ψ(dx) = φ(x), where φ(x) is the probability density function

of the standard normal P -variate r.v, delivering the CvM test statistic

CvMn,exp,P =
1

σ̂2
en

n
∑

t=1

n
∑

s=1

et(θn)es(θn) exp(−1

2
| It−1,P − Is−1,P |2).

We also consider the two test statistics based on the usual indicator function,

CvMn,ind,P =
1

σ̂2
en

2

n
∑

j=1

[

n
∑

t=1

et(θn)1(It−1,P ≤ Ij−1,P )
]2

,

KSn,ind,P = max
1≤i≤n

∣

∣

∣

1

σ̂e
√

n

n
∑

t=1

et(θn)1(It−1,P ≤ Ii−1,P )
∣

∣

∣
.

Note that, CvM1 and PCvMn,1 are the same test statistic by definition.

We use the FDWB approximation for all the test statistics. Our theory

applies to these test statistics and, in particular, our Theorem 6 validates these

bootstrap approximations. In the sequel εt ∼ i.i.d. N(0, 1). Our models are
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motivated by the well-studied Canadian lynx data set. Moran (1953) fitted an

AR(2) model Yt = a+bYt−1+cYt−2 +εt to these data. We examine the adequacy

of this model under the following DGP.

1. An AR(2) model: Yt = 1.05 + 1.41Yt−1 − 0.77Yt−2 + εt.

2. An AR(2) with heteroskedasticity (ARHET): Yt = 1.05+1.41Yt−1−0.77Yt−2+

htεt, where h2
t = 0.1 + 0.1Y 2

t−1.

3. An AR(3) model: Yt = 1.05 + 1.41Yt−1 − 0.77Yt−2 + 0.33Yt−3 + εt.

4. ARMA(2, 2) model: Yt = 1.05+1.41Yt−1−0.77Yt−2 +0.33εt−1 +0.21εt−2 +εt.

5. A TAR(2) model: Yt =

{

0.62 + 1.25Yt−1 − 0.43Yt−2 + εt, if Yt−2 ≤ 3.25,

2.25 + 1.52Yt−2 − 1.24Yt−2 + εt, if Yt−2 > 3.25.
6. An EXPAR(2) model: Yt = atYt−1−btYt−2+0.2εt, where at = 0.138+(0.316+

0.982Yt−1) exp(−3.89Y 2
t−1) and bt =0.437+(0.659+1.260Yt−1) exp(−3.89Y 2

t−1).

All the models except the ARHET have been fitted to the Canadian lynx

data set, see Tong (1990) for a survey. We consider for the experimens under

the null a sample size of n = 100, and under the alternative, n = 100, and 200.

The number of Monte Carlo experiments is 1,000 and the number of bootstrap

replications is B = 500. In all the replications 200 pre-sample data values of the

processes were generated and discarded. For the information set we consider the

values P = 3, 5 and 7. We employ a sequence {Vt} of i.i.d. Bernoulli variates as

in (10).

In Table 1 we show the empirical rejection probabilities (RP) associated

with the nominal level 5%. The results with other nominal levels are similar.

The empirical levels of the test statistics are closed to the nominal level. Only

the heteroskedastic case CvMn,exp,P presents some small size distortion (under-

in-rejection).

Table 1. Size of 5% tests.

n =100 AR(2) ARHET

P 3 5 7 3 5 7

CV Mn,pro,P 4.6 5.2 5.1 5.3 4.3 4.2

CvMn,exp,P 4.4 5.4 5.4 3.2 2.1 2.0

CvMn,ind,P 5.2 5.0 4.0 5.5 5.1 5.1
KSn,ind,P 4.7 5.4 5.1 6.0 7.4 5.5

In Table 2 we report the empirical power against the AR(3) and ARMA(2,

2) processes. The empirical power increases with the sample size n for all test

statistics, as expected. It is shown that the Cramér-von Mises test CV Mn,pro,P

has the best empirical power in all cases. The empirical power of CvMn,exp,P

is low for these alternatives and, in general, less than those of CvMn,ind,P and

KSn,ind,P , especially for large P . In Table 3 we show the RP for the TAR
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and EXPAR models. Again, the test statistic CV Mn,pro,P has more empirical
power in almost all cases. CvMn,exp,P has good empirical power proterties for
these models, in particular, it overtakes CvMn,ind,P and KSn,ind,P . For the last
two models the empirical power of the test statistics CvMn,ind,P and KSn,ind,P

decrease as the lag parameter P increases.

Table 2. Power of 5% tests.

AR(3) ARMA(2, 2)

P 3 5 7 3 5 7

CV Mn,pro,P 61.9 56.4 40.7 30.7 46.7 34.7

n =100 CvMn,exp,P 25.0 18.2 14.2 11.3 10.6 9.1
CvMn,ind,P 22.1 33.2 25.9 15.2 25.4 12.9

KSn,ind,P 22.0 26.3 17.7 13.7 21.9 12.4

CV Mn,pro,P 91.2 88.4 76.7 61.2 80.7 71.2

n =200 CvMn,exp,P 45.9 32.3 21.8 16.4 12.6 10.8

CvMn,ind,P 34.3 54.7 46.1 24.1 49.1 24.4

KSn,ind,P 36.5 48.4 36.5 21.6 44.9 20.4

Table 3. Power of 5% tests.

TAR EXPAR

P 3 5 7 3 5 7

CV Mn,pro,P 76.2 40.0 27.9 81.2 57.1 47.9

n =100 CvMn,exp,P 52.2 31.3 19.4 73.1 65.7 62.6

CvMn,ind,P 60.9 4.9 9.0 72.7 11.5 6.5

KSn,ind,P 40.4 7.4 11.5 53.3 4.7 0.0

CV Mn,pro,P 98.2 79.3 57.4 98.9 94.4 80.2
n =200 CvMn,exp,P 89.0 69.4 44.1 97.8 96.6 92.6

CvMn,ind,P 90.9 15.2 16.1 97.3 34.4 4.4

KSn,ind,P 73.6 22.0 27.6 89.3 12.8 0.6

The well-known Canadian lynx data set consists of the annual record of
the Canadian lynx trapped in the Mackenzie River district of northwest Canada
for the period 1821-1834 inclusive, with a total of 114 observations. For an
exhaustive description of these data see Tong (1990, pp.357-418) and references
therein. The first time series model built on this particular data set was probably
that of Moran (1953), a linear AR(2) model to the logarithm of the lynx data, Yt,
say. We consider this specification under the null and the same implementation
as in the Monte Carlo simulations, except that now we take P = 2, 4, 6 and 10.
We report the empirical p-values for the test statistics CV Mn,pro,P , CvMn,exp,P ,
CvMn,ind,P and KSn,ind,P in Table 4.
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Table 4. p-values for the Canadian lynx data.

P 2 4 6 10

CVMn,pro,P 0.000 0.000 0.042 0.000
CvMn,exp,P 0.002 0.000 0.016 0.000

CvMn,ind,P 0.000 0.004 0.066 0.090

KSn,ind,P 0.000 0.008 0.196 0.090

The AR(2) specification is rejected at 5% by CV Mn,pro,P and CvMn,exp,P

for all values of P , whereas CvMn,ind,P and KSn,indP fail to reject it for large

values of P (P = 6 and 10). Therefore, this specification is not satisfactory;
this fact was realized by many authors, including Moran (1953). Two further

specifications for this data set were considered in Tong (1990). First we consider

the TAR(2, 2, 2) model given in DGP 5, with P = 2, 4, 6 and 10, and we report

the empirical p-values for the test statistics in Table 5.

Table 5. p-values for the Canadian lynx data TAR(2, 2, 2) model.

P 2 4 6 10

CV Mn,pro,P 0.322 0.008 0.086 0.012

CV Mn,exp,P 0.180 0.004 0.094 0.016
CvMn,ind,P 0.174 0.002 0.098 0.114

KSn,ind,P 0.408 0.022 0.182 0.140

For P = 2 all the test statistics fail to reject the TAR(2, 2, 2) specification,

whereas for P = 4 and 10, CV Mn,pro,P and CvMn,exp,P reject it at 5% level.

The test statistics CvMn,ind,P and KSn,ind,P support the TAR(2, 2, 2) model

for P = 4 and 10, but this may be due to the curse of dimensionality and not
because of a correct specification. The model selected by the AIC among some

TAR models, see (Tong, 1990, p.387), is the following TAR(2, 7, 2):

Yt =











0.54+1.032Yt−1−0.173Yt−2+0.171Yt−3−0.431Yt−4

+0.332Yt−5 − 0.284Yt−6 + 0.210Yt−7, if Yt−2 ≤ 3.116

2.25 + 1.52Yt−1 − 1.24Yt−2 + εt, if Yt−2 > 3.116.

For this specification we consider P = 7, 8, 9 and 10. The empirical p-values are

reported in Table 6.

Table 6. p-values for the Canadian lynx data TAR(2, 7, 2) model.

P 7 8 9 10

CV Mn,pro,P 0.990 0.974 0.958 0.966

CV Mn,exp,P 0.966 0.874 0.834 0.824

CvMn,ind,P 0.674 0.178 0.476 0.600

KSn,ind,P 0.342 0.132 0.390 0.486
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The results in Table 6 show that the TAR(2, 7, 2) is a well-specified model

for this data set. For this model CV Mn,pro,P has the highest p-value for all values

of the lag parameter P . The worth of the TAR(2, 7, 2) model for the Canadian

lynx data was pointed out by Tong (1990).

Appendix A. Proofs

The next lemma corresponds to Theorem 1.5.4 and Theorem 1.5.6 of VW.

Lemma A1. Let T be a non-empty set. For every n, let (Ωn,Fn, Pn) be a

probability space and Xn be a mapping from Ωn to `∞(T ). Consider the following

statements:

(i) Xn converges weakly to a tight, Borel law;

(ii) every finite-dimensional marginal of Xn converges weakly to a (tight,) Borel

law;

(iii) for every ε, η > 0 there exists a finite partition B = {Tk; 1 ≤ k ≤ N} to T
such that

lim sup
n→∞

P ∗
[

max
1≤k≤N

sup
t,s∈Tk

|Xn(t) − Xn(s)| > ε
]

≤ η.

Then there is the equivalence (i)⇐⇒(ii)+(iii). Furthermore, if the marginals

of a stochastic process X have the same laws as the limits in (ii), there exists

a version X̃ of X such that Xn ⇒ X̃ in `∞(T ).

Proof of Theorem 1. Apply the Central Limit Theorem (CLT) for stationary

and ergodic martingale difference sequences, cf., Billingsley (1961), to show that

the finite dimensional distributions of αn,w converge to those of the Gaussian

process α∞,w. To complete the proof we need to show that (iii) in the previous

lemma holds. To this end, fix a compact subset Πc ⊂ Π and, using W2, choose

a nested sequence of finite partitions Pq = {Bqk; 1 ≤ k ≤ Nq} of Πc, q ≥ 1, such

that
∑∞

q=1 2−q
√

log Nq < ∞. Define aq = 2−q/
√

log(Nq+1). Now, choose an

element xqk for each Bqk and define for every x ∈ Πc the events

πqx = xqk

Bqx = Bqk

if x ∈ Bqk.

To simplify notation define Mn
t (x) = n−1/2εn,tw(Xn,t−1, x). Then, by Lemma

A1, see also the proof of Theorem 2.5.6 of VW, it is sufficient to prove that for

every ε, η > 0 there exists a q0 such that

lim sup
n→∞

P ∗
[
∥

∥

∥

n
∑

t=1

Mn
t (x) −

n
∑

t=1

Mn
t (πq0

x)
∥

∥

∥

Πc

> ε
]

≤ η,
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where ‖ ·‖Πc denotes the uniform norm on Πc. To this end, fix any q0 for a while,
and let us define for each fixed n and large q ≥ q0, ∆n

t (B) = supx1,x2∈B |Mn
t (x1)−

Mn
t (x2)|, and the indicator functions Cn

t,q−1 = 1(∆n
t (Bq0

x) ≤ aq0
, . . . ,∆n

t (Bq−1x)
≤ aq−1), Dn

t,q = 1(∆n
t (Bq0

x) ≤ aq0
, . . . ,∆n

t (Bq−1x) ≤ aq−1, ∆n
t (Bqx) > aq) and

Dn
t,q0

= 1(∆n
t (Bq0x) > aq0

). Now, similarly to VW p.131, we apply a truncation
argument at level

√
n and write

Mn
t (x)−Mn

t (πq0
x) = (Mn

t (x)−Mn
t (πq0

x))Dn
t,q0

+
∞

∑

q=q0+1

(Mn
t (x) − Mn

t (πqx))Dn
t,q

+

∞
∑

q=q0+1

(Mn
t (πqx) − Mn

t (πq−1x))Cn
t,q−1. (11)

On the other hand, by (4),

0 = E[(Mn
t (x)−Mn

t (πq0
x))Dn

t,q0
| Fn,t−1]

+

∞
∑

q=q0+1

E[(Mn
t (x) − Mn

t (πqx))Dn
t,q | Fn,t−1]

+

∞
∑

q=q0+1

E[(Mn
t (πqx) − Mn

t (πq−1x))Cn
t,q−1 | Fn,t−1].

Now, by (11) and the last display

∥

∥

∥

m
∑

t=1

Mn
t (x) −

n
∑

t=1

Mn
t (πqx)

∥

∥

∥

Πc

≤ I1 + I2 + II1 + II2 + III,

where

I1 =
∥

∥

∥

n
∑

t=1

∆n
t (Bq0

x)Dn
t,q0

∥

∥

∥

Πc

,

I2 =
∥

∥

∥

n
∑

t=1

E[∆n
t (Bq0

x)Dn
t,q0

| Fn,t−1]
∥

∥

∥

Πc

,

II1 =
∥

∥

∥

n
∑

t=1

∞
∑

q=q0+1

∆n
t (Bqx)Dn

t,q

∥

∥

∥

Πc

,

II2 =
∥

∥

∥

n
∑

t=1

∞
∑

q=q0+1

E[∆n
t (Bqx)Dn

t,q | Fn,t−1]
∥

∥

∥

Πc

,

III =
∥

∥

∥

n
∑

t=1

∞
∑

q=q0+1

(Mn
t (πqx) − Mn

t (πq−1x))Cn
t,q−1

−E[(Mn
t (πqx) − Mn

t (πq−1x))Cn
t,q−1 | Fn,t−1]

∥

∥

∥

Πc

.
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Further, it holds by the triangle inequality that II1 ≤ II3 + II2, where

II3 =
∥

∥

∥

n
∑

t=1

∞
∑

q=q0+1

∆n
t (Bqx)Dn

t,q − E[∆n
t (Bqx)Dn

t,q | Fn,t−1]
∥

∥

∥

Πc

.

Hereafter, we perform estimations for terms I1, I2, II3, II2 and III. First, from

∆n
t (Bqx) ≤ 2‖Mn

t (x)‖Πc , we have that ∆n
t (Bq0

x)Dn
t,q0

≤ Cn−1/2|εn,t|1(|εn,t >

C
√

naq0
) eventually. Then from (4) and W1 it can be easily proved that I1 and

I2 converge in probability to zero for any fixed q0, see for instance Lemma A2 in

Stute, González-Manteiga and Presedo-Quindimil (1998).

By assumption W2, for any η > 0 there exists a constant K = Kη > 0, such

that lim supn→∞ P (Ωn\Ωn
K) ≤ η, where Ωn

K = {supq∈N αn,w(Bε)/2
−2q ≤ K}.

Then, for the estimation of II2, we see that

II2 ≤
∥

∥

∥

n
∑

t=1

∞
∑

q=q0+1

1

aq
E[|∆n

t (Bqx)|2Dn
t,q | Fn,t−1]

∥

∥

∥

Πc

≤ sup
q≥q0+1

∥

∥

∥

n
∑

t=1

E[|∆n
t (Bqx)|2Dn

t,q | Fn,t−1]

2−2q

∥

∥

∥

Πc

∞
∑

q=q0+1

2−2q

aq

≤ K

∞
∑

q=q0+1

2−q
√

log Nq+1 a.s. on the set Ωn
K .

As for II3, since |∆n
t (Bqx)Dn

t,q − E[∆n
t (Bqx)Dn

t,q | Fn,t−1]| ≤ 2aq−1 eventually,

and
∑n

t=1 E[|∆n
t (Bqx)|2Dn

t,q | Fn,t−1] ≤ K2−2q a.s. on the set Ωn
K , it follows

from the Freedman’s (1975) inequality, which plays here the same role as the

Bernstein’s inequality does in the i.i.d. setup, and Lemma 2.11.17 of VW, that

for any measurable set A

E
∣

∣

∣

n
∑

t=1

∆n
t (Bqx)Dn

t,q − E[∆n
t (Bqx)Dn

t,q | Fn,t−1]
∣

∣

∣
1(A ∩ Ωn

K)

≤ C
(

2aq−1 log(Nq) +
√

K2−q
√

log(Nq)
)(

P (A) +
1

Nq

)

≤ C
(

(2 +
√

K)2−q
√

log(Nq)
)(

P (A) +
1

Nq

)

.

Thus using the last inequality and defining, for q ≥ 1, a partition {Ωn
qk : 1 ≤ k ≤

Nq} of Ωn such that the maximum

∥

∥

∥

n
∑

t=1

∆n
t (Bqx)Dn

t,q − E[∆n
t (Bqx)Dn

t,q | Fn,t−1]
∥

∥

∥

Πc
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is achieved at Bqk on the set Ωn
qk, we have

E|II3|1(Ωn
K)

≤ E
∥

∥

∥

n
∑

t=1

∞
∑

q=q0+1

∆n
t (Bqx)Dn

t,q − E[∆n
t (Bqx)Dn

t,q | Fn,t−1]
∥

∥

∥

Πc

1(Ωn
K)

≤
∞
∑

q=q0+1

E
∥

∥

∥

n
∑

t=1

∆n
t (Bqx)Dn

t,q − E[∆n
t (Bqx)Dn

t,q | Fn,t−1]
∥

∥

∥

Πc

1(Ωn
K)

≤
∞
∑

q=q0+1

Nq
∑

k=1

E
∣

∣

∣

n
∑

t=1

∆n
t (Bqx)Dn

t,q − E[∆n
t (Bqx)Dn

t,q|Fn,t−1]
∣

∣

∣
1(Ωn

qk ∩ Ωn
K)

≤ C(2 +
√

K)

∞
∑

q=q0+1

Nq
∑

k=1

2−q
√

log(Nq)
(

P (Ωn
qk) +

1

Nq

)

≤ C(2 +
√

K)
∞

∑

q=q0+1

2−q
√

log(Nq).

Finally, the estimation of III follows from the same arguments as for II3, and

therefore we obtain E|III| as with II3 ≤ C(2+
√

K)
∑∞

q=q0+1 2−q
√

log(Nq). The

theorem follows from choosing a large K, a large q0, and then letting n → ∞.

Proof of Corollary 1. Throughout this proof w(·, x) = 1(· ≤ x) or w(·, x) =

1(β′· ≤ u). Define the marked process α̃n,w = n−1
∑n

t=1 E[ε2
n,t | Xn,t−1]w(Xn,t−1,

x), and the oscillation modulus of α̃n,w as $n,d(a) = supd2(x,y)≤a |α̃n,w(x) −
α̃n,w(y)|. Write

α̃n,w(x) = n−1
n

∑

t=1

{E[ε2
n,t|Xn,t−1]w(Xn,t−1, x) − Gn,t,w(x)} + n−1

n
∑

t=1

Gn,t,w(x)

≡ β̃n,w(x) + Fn,w(x).

Hence, by triangle inequality,

|α̃n,w(x)− α̃n,w(y)| ≤ |β̃n,w(x)− β̃n,w(y)|+ |Fn,w(x)−Fn,w(y)|. (12)

Notice that {β̃n,w(x),Fn,t−2} is a martingale for each x ∈ Π, by construction. By

a truncation argument, it can be assumed without loss of generality and by W1

that |εn,t| ≤ Cn1/2 on a set with arbitrarily large probability, see (11). Hence, on

that set E[ε2
n,t | Xn,t−1] ≤ Cn. Now, Freedman’s (1975) inequality and Lemma

2.2.10 in VW, jointly with fact that {·w(·, x) : x ∈ Π} is a VC class, yield

E sup

d2
w(x,y)≤n−

1
2

|β̃n,w(x) − β̃n,w(y)| = OPn(n− 1

4 ).
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On the other hand, W3 implies that supd2
w(x,y)≤n−1/2 |Fn,w(x) − Fn,w(y)| = OPn

(n−1/4). Hence for an = n−1/2, $n,dw(an) = OPn(a2
n). Take a partition of Π

in ε-brackets Hk = [xk, yk] with respect to the semimetric dw(x1, x2). Then (5)

follows because the class is VC, and (6) follows from the previous arguments.

Proof of Theorem 2. It follows from Theorem 1.

Proof of Theorem 3. Applying the classical mean value theorem argument we

have

R1
n,w(x) = Rn,w(x) − n1/2(θn − θ0)

′(I − II − III),

where I = n−1
∑n

t=1{g(It−1, θni) − g(It−1, θ0)}w(It−1, x), II = n−1
∑n

t=1[g(It−1,

θ0)w(It−1, x) − Gw(x, θ0)], and III = Gw(x, θ0), where θni satisfies |θni − θ0| ≤
|θn − θ0| a.s.. By A1−A3, A4(b) and the uniform law of large numbers (ULLN)

of Jennrich (1969, Theorem 2), it is easy to show that I = oP (1) and II = oP (1)

uniformly in x ∈ Πc. So, the theorem follows from Theorem 2 and A3(b).

Proof of Theorem 4. From A4(b), under A1−A3, uniformly in x ∈ Πc,

1

n

n
∑

t=1

[et(θn)w(It−1, x) − E[et(θ1)w(It−1, x)] = oP (1).

Proof of Theorem 5. Under the local alternatives (9) write

R1
n,w(x) = Rn,w(x) + A1 + A2, (13)

with Al = n−1/2
∑n

t=1{f(It1 , θ0) − f(It−1, θn)}w(It−1, x) and A2 = n−1
∑n

t=1

a(It−1)w(It−1, x). Using A3’ as in Theorem 3, we obtain |A1+n1/2(θn−θ0)
′Gw(x,

θ0)| = oP (1), uniformly in x ∈ Πc. On the other hand, A4(b) yields that,

uniformly in x ∈ Πc, A2 − E[a(It−1)w(It−1, x)]| = oP (1). Using the preceding

and (13), the theorem holds by A3’ and Theorem 3.

Proof of Theorem 6. We need to show that the process R1∗
n,w (conditionally

on the sample) has the same asymptotic finite dimensional distributions as the

process R1
n,w, with θ1 replacing θ0, and that R1∗

n,w is asymptotically tight, both

with probability one. Then, similarly to Theorem 3 we obtain, uniformly in

x ∈ Πc,

R1∗
n,w(x) = R∗

n,w(x) − n
1

2 (θ∗n − θn)′Gw(x, θ1) + oP (1)a.s..

The convergence of the finite-dimensional distributions follows from the last ex-

pression, A5 and from the Cramér-Wold device. The tightness (a.s.) follows

from the same steps as in Theorem 1 in Stute, González-Manteiga and Presedo-

Quindimil (1998). The proof is finished.
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