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CONTINUOUS-TIME GAUSSIAN AUTOREGRESSION
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Abstract: The problem of fitting continuous-time autoregressions (linear and non-

linear) to closely and regularly spaced data is considered. For the linear case Jones

(1981) and Bergstrom (1985) used state-space representations to compute exact

maximum likelihood estimators, and Phillips (1959) did so by fitting an appropri-

ate discrete-time ARMA process to the data. In this paper we use exact conditional

maximum likelihood estimators for the continuously-observed process to derive ap-

proximate maximum likelihood estimators based on the closely-spaced discrete ob-

servations. We do this for both linear and non-linear autoregressions, and indicate

how the method can be modified also to deal with non-uniformly but closely-spaced

data. Examples are given to indicate the accuracy of the procedure.

Key words and phrases: Cameron-Martin-Girsanov formula, continuous-time au-

toregression, maximum likelihood, Radon-Nikodym derivative, sampled process,

threshold autoregression, Wiener measure.

1. Introduction

This paper is concerned with estimation for continuous-time Gaussian au-

toregressions, both linear and non-linear, based on observations made at closely-

spaced times. The idea is to use the exact conditional probability density of

the (p − 1)st derivative of an autoregression of order p with respect to Wiener
measure in order to find exact conditional maximum likelihood estimators of the

parameters under the assumption that the process is observed continuously. The

resulting estimates are expressed in terms of stochastic integrals which are then

approximated using the available discrete-time observations.

In Section 2 we define the continuous-time AR(p) (abbreviated to CAR(p))

process driven by Gaussian white noise and briefly indicate the relation between

the CAR(p) process {Y (t), t ≥ 0} and the sampled process {Y (h)
n := Y (nh),

n = 0, 1, 2, . . .}. The process {Y (h)
n } is a discrete-time ARMA process, a re-

sult employed by Phillips (1959) to obtain maximum likelihood estimates of

the parameters of the continuous-time process based on observations of {Y (h)
n ,

0 ≤ nh ≤ T}. From the state-space representation of the CAR(p) process it is

also possible to express the likelihood of observations of {Y (h)
n } directly in terms

of the parameters of the CAR(p) process, and thereby to compute maximum
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likelihood estimates of the parameters as in Jones (1981) and Bergstrom (1985).
For a CAR(2) process we use the asymptotic distribution of the maximum like-

lihood estimators of the coefficients of the ARMA process {Y (h)
n } to derive the

asymptotic distribution, as first T → ∞ and then h → 0, of the estimators of
the coefficients of the underlying CAR process.

In Section 3 we derive the probability density with respect to Wiener measure
of the (p − 1)st derivative of the (not-necessarily linear) autoregression of order
p. This forms the basis for the inference illustrated in Sections 4, 5 and 6.
In the non-linear examples considered we restrict attention to continuous-time
threshold autoregressive (CTAR) processes, which are continuous-time analogues
of the discrete-time threshold models of Tong (1983).

In Section 4 we apply the results to (linear) CAR(p) processes, deriving ex-
plicit expressions for the maximum likelihood estimators of the coefficients and
illustrating the performance of the approximations when the results are applied
to a discretely observed CAR(2) process. In Section 5 we consider applications
to CTAR(1) and CTAR(2) processes with known threshold, and in Section 6 we
show how the technique can be adapted to include estimation of the threshold it-
self. The technique is also applied to the analysis of the Canadian lynx trappings,
1821-1934.

2. The Gaussian CAR(p) and Corresponding Sampled Processes

A continuous-time Gaussian autoregressive process of order p > 0 is defined

symbolically to be a stationary solution of the stochastic differential equation

a(D)Y (t) = bDW (t), (2.1)

where a(D) = Dp + a1D
p−1 + · · · + ap, the operator D denotes differentiation

with respect to t, and {W (t), t ≥ 0} is standard Brownian motion. Since DW (t)

does not exist as a random function, we give meaning to (2.1) by rewriting it in

state-space form,

Y (t) = (b, 0, . . . , 0)X(t), (2.2)

where the state vector X(t) = (X0(t), . . . , Xp−1(t))
T satisfies the Itô equation,

dX(t) = AX(t)dt + edW (t), (2.3)

with

A =















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
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
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
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From (2.3) we see that Xj(t) is the jth mean-square and pathwise derivative

DjX0(t), j = 0, . . . , p− 1. We are concerned in this paper with inference for the

autoregressive coefficients, a1, . . . , ap, based on observations of the process Y at

times 0, h, 2h, . . . , h[T/h], where h is small and [x] denotes the integer part of x.

One approach to this problem, due to Phillips (1959), is to estimate the

coefficients of the discrete-time ARMA process {Y (h)
n := Y (nh), n = 0, 1, 2, . . .},

and from these estimates to obtain estimates of the coefficients a1, . . . , ap in (2.1).

The sampled process {Y (h)
n } is a stationary solution of the Gaussian ARMA(p′, q′)

equations

φ(B)Y (h)
n = θ(B)Zn, {Zn} ∼ WN(0, σ2), (2.4)

where φ(B) and θ(B) are polynomials in the backward shift operator B of orders

p′ and q′ respectively, where p′ ≤ p and q′ < p′. (For more details see, e.g.,

Brockwell (1995).)

An alternative approach is to use (2.2) and (2.3) to express the likelihood

of observations of {Y (h)
n } directly in terms of the parameters of the CAR(p)

process and then to compute numerically the maximum likelihood estimates of

the parameters, as in Jones (1981) and Bergstrom (1985).

In this paper we take a different point of view by assuming initially that the

process Y is observed continuously on the interval [0, T ]. Under this assumption,

it is possible to calculate exact (conditional on X(0)) maximum likelihood estima-

tors of a1, . . . , ap. To deal with the fact that observations are made only at times

0, h, 2h, . . ., we approximate the exact solution based on continuous observations

using the available discrete-time observations. This approach has the advantage

that for very closely spaced observations it performs well and is extremely simple

to implement.

This idea can be extended to non-linear (in particular threshold) continuous-

time autoregressions. We illustrate this in Sections 4, 5 and 6. The assumption

of uniform spacing, which we make in all our examples, can also be relaxed

providing the maximum spacing between observations is small.

Before considering this alternative approach, we first examine the method

of Phillips as applied to CAR(2) processes. This method has the advantage

of requiring only the fitting of a discrete-time ARMA process to the discretely

observed data and the subsequent transformation of the estimated coefficients

to continuous-time equivalents. We derive the asymptotic distribution of these

estimators as first T → ∞ and then h → 0.

Example 1. For the CAR(2) process defined by

(D2 + a1D + a2)Y (t) = bDW (t),
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the sampled process {Y (h)
n = Y (nh), n = 0, 1, . . .} satisfies

Y (h)
n − φ

(h)
1 Y

(h)
n−1 − φ

(h)
2 Y

(h)
n−2 = Zn + θ(h)Zn−1, {Zt} ∼ WN(0, σ2(h)).

For fixed h, as T → ∞, the maximum likelihood estimator of β = (φ
(h)
1 , φ

(h)
2 ,

θ(h))T based on observations Y
(h)
1 , . . . , Y

(h)
[T/h] satisfies (see Brockwell and Davis

(1991, p.258))

√

T

h
(β̂ − β) ⇒ N(0,M(β)), (2.5)

where

M(β) = σ2

[

EUtU
T
t EVtU

T
t

EUtV
T
t EVtV

T
t

]−1

, (2.6)

and Ut and Vt are defined as Ut = (Ut, . . . , Ut+1−p)
T and Vt = (Vt, . . . , Vt+1−q)

T ,

where {Ut} and {Vt} are stationary solutions of the autoregressive equations

φ(B)Ut = Zt and θ(B)Vt = Zt. (2.7)

In order to determine the asymptotic behaviour as T → ∞ of the maximum

likelihood estimators (φ̂1(h), φ̂2(h)), we consider the top left 2×2 submatrix M2

of the matrix M . For small h we find that M2 has the representation

M2 =

[

1 −1

−1 1

]

(

2a1h +
2√
3
(2 −

√
3)a2

1h
2 +

4

3
(2 −

√
3)a3

1h
3
)

+

[

0 1

1 0

]

a1a2h
3 + O(h4) as h → 0. (2.8)

The mapping from (φ1, φ2) to (a1, a2) is as follows:

a1 = − log(−φ2)

h
,

a2 =
1

h2
log

(

φ1

2
+

√

φ2
1

4
+ φ2

)

log

(

φ1

2
−
√

φ2
1

4
+ φ2

)

.

The matrix

C =

[

∂a1
∂φ1

∂a1
∂φ2

∂a2
∂φ1

∂a2
∂φ2

]
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therefore has the asymptotic expansion

C =





0 1
h

(

1 + a1h +
a2
1
2 h2 + · · ·

)

− 1
h2

(

1 + a1
2 h +

a2
1+2a2

12 h2 + · · ·
)

− 1
h2

(

1 + a1
2 h +

a2
1−4a2

12 h2 + · · ·
)



 .

(2.9)

From (2.8) and (2.9) we find that

CM2C
T =

1

h

[

2a1 0

0 2a1a2

]

(

1 + o(1)
)

as h → 0. (2.10)

and hence, from (2.5) that the maximum likelihood estimator â of a = (a1, a2)
T

based on observations of Y at times 0, h, 2h, . . . , h[T/h], satisfies
√

T (â − a) ⇒
N(0, V ), as T → ∞, where

V =

[

2a1 0

0 2a1a2

]

(

1 + o(1)
)

as h → 0. (2.11)

Remark 1. Since the moving average coefficient θ(h) of the sampled process

is also a function of the parameters a1 and a2, and hence of φ
(h)
1 and φ

(h)
2 , the

question arises as to whether the discrete-time likelihood maximization should

be carried out subject to the constraint imposed by the functional relationship

between φ
(h)
1 , φ

(h)
2 and θ(h). However, as we shall see, the unconstrained estima-

tion which we have considered in the preceding example leads to an asymptotic

distribution of the estimators which, as h → 0, converges to that of the max-

imum likelihood estimators based on the process observed continuously on the

interval [0, T ]. This indicates, at least asymptotically, that there is no gain in

using the more complicated constrained maximization of the likelihood, so that

widely available standard ARMA fitting techniques can be used.

Remark 2. As the spacing h converges to zero, the autoregressive roots

exp(−λjh) converge to 1, leading to numerical difficulties in carrying out the

discrete-time maximization. For this reason we consider next an approach which

uses exact results for the continuously observed process to develop approxi-

mate maximum likelihood estimators for closely-spaced discrete-time observa-

tions. The same approach can be used not only for linear continuous-time au-

toregressions, but also for non-linear autoregressions such as continuous-time

analogues of the threshold models of Tong (1983).

3. Inference for Continuously Observed Autoregressions

We now consider a more general form of (2.1), i.e.,

(Dp + a1D
p−1 + · · · + ap)Y (t) = b(DW (t) + c), (3.1)
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in which we allow the parameters a1, . . . , ap and c to be bounded measurable

functions of Y (t), and assume that b is constant. In particular if we partition the

real line into subintervals, (−∞, y1], (y1, y2], . . ., (ym,∞), on each of which the

parameter values are constant, then we obtain a continuous-time analogue of the

threshold models of Tong (1983), which we shall refer to as CTAR(p) processes.

Continuous-time threshold models have been used by a number of authors (e.g.,

Tong and Yeung (1991) and Brockwell and Williams (1997)) for the modelling

of financial and other time series.

The equation (3.1) has a state space representation analogous to (2.2) and

(2.3), namely

Y (t) = bX0(t), (3.2)

dX0 = X1(t)dt,

dX1 = X2(t)dt,

... (3.3)

dXp−2 = Xp−1(t)dt,

dXp−1 = [−apX0(t) − · · · − a1Xp−1(t) + c]dt + dW (t),

and we have abbreviated ai(Y (t)) and c(Y (t)) to ai and c respectively. We show

next that (3.3), with initial condition X(0) = x = (x0, x1, · · · , xp−1)
T , has a

unique (in law) weak solution X = (X(t), 0 ≤ t ≤ T ) and determine the proba-

bility density of the random function Xp−1 = (Xp−1(t), 0 ≤ t ≤ T ) with respect to

Wiener measure. For parameterized functions ai and c, this allows the possibility

of maximization of the likelihood, conditional on X(0) = x, of {Xp−1(t), 0 ≤ t ≤
T}. Of course a complete set of observations of {Xp−1(t), 0 ≤ t ≤ T} is not gen-

erally available unless X0 is observed continuously. Nevertheless the parameter

values which maximize the likelihood of {Xp−1(t), 0 ≤ t ≤ T} can be expressed

in terms of observations of {Y (t), 0 ≤ t ≤ T}, as described in subsequent sec-

tions. If Y is observed at discrete times, the stochastic integrals appearing in

the solution for continuously observed autoregressions will be approximated by

corresponding approximating sums. Other methods for dealing with the problem

of estimation for continuous-time autoregressions based on discrete-time obser-

vations are considered by Stramer and Roberts (2004), and by Tsai and Chan

(1999, 2000).

Assuming that X(0) = x, we can write X(t) in terms of {Xp−1(s), 0 ≤ s ≤ t}
using the relations, Xp−2(t) = xp−2 +

∫ t
0 Xp−1(s)ds, . . ., X0(t) = x0 +

∫ t
0 X1(s)ds.

The resulting functional relationship is denoted by

X(t) = F(Xp−1, t). (3.4)
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Substituting from (3.4) into the last equation in (3.3), we see that it can be

written in the form,

dXp−1 = G(Xp−1, t)dt + dW (t), (3.5)

where G(Xp−1, t), like F(Xp−1, t), depends on {Xp−1(s), 0 ≤ s ≤ t}.
Now let B be standard Brownian motion (with B(0) = xp−1) defined on the

probability space (C[0, T ],B[0, T ], Pxp−1 ) and, for t ≤ T , let Ft = σ{B(s), s ≤
t}∨N , where N is the sigma-algebra of Pxp−1 -null sets of B[0, T ]. The equations

dZ0 = Z1dt,

dZ1 = Z2dt,
... (3.6)

dZp−2 = Zp−1dt,

dZp−1 = dB(t),

with Z(0) = x = (x0, x1, · · · , xp−1)
T , clearly have the unique strong solution

Z(t) = F(B, t), where F is defined as in (3.4). Let G be the functional appearing

in (3.5), and suppose that Ŵ is the Itô integral defined by Ŵ (0) = xp−1 and

dŴ (t) = −G(B, t)dt + dB(t) = −G(Zp−1, t)dt + dZp−1(t). (3.7)

For each T , we now define a new measure P̂x on FT by

dP̂x = M(B, T )dPxp−1 , (3.8)

M(B, T ) = exp
[

− 1

2

∫ T

0
G2(B, s)ds +

∫ T

0
G(B, s)dW (s)

]

. (3.9)

Then by the Cameron-Martin-Girsanov formula (see e.g.,Øksendal (1998), p.152),

{Ŵ (t), 0 ≤ t ≤ T} is a standard Brownian motion under P̂x. Hence we see from

(3.7) that (3.5) and (2.3) with initial condition X(0) = x have, for t ∈ [0, T ],

the weak solutions (Zp−1(t), Ŵ (t)) and (Z(t), Ŵ (t)), respectively. Moreover, by

Proposition 5.3.10 of Karatzas and Shreve (1991), the weak solution is unique in

law, and by Theorem 10.2.2 of Stroock and Varadhan (1979) it is non-explosive.

If f is a bounded measurable functional on C[0, T ],

Êxf(Zp−1) = Exp−1(M(B, T )f(B))

=

∫

f(ξ)M(ξ, T )dPxp−1(ξ).

In other words, M(ξ, T ) is the density at ξ ∈ C[0, T ], conditional on X(0) =

x, of the distribution of Xp−1 with respect to the Wiener measure Pxp−1 and,
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if we observed Xp−1 = ξ, we could compute conditional maximum likelihood

estimators of the unknown parameters by maximizing M(ξ, T ).

4. Estimation for CAR(p) Processes

For the CAR(p) process defined by (2.1), denoting the realized state process

on [0, T ] by {x(s) = (x0(s), . . . , xp−1(s))
T , 0 ≤ s ≤ T}, we have, in the notation

of Section 3,

−2 log M(xp−1, s) =

∫ T

0
G2ds − 2

∫ T

0
Gdxp−1(s), (4.1)

G = −a1xp−1(s) − a2xp−2(s) − · · · − apx0(s). (4.2)

Differentiating log M partially with respect to a1, . . . , ap and setting the deriva-

tives equal to zero gives the maximum likelihood estimators, conditional on

X(0) = x(0),







â1
...

âp






= −







∫ T
0 x2

p−1ds · · ·
∫ T
0 xp−1x0ds

...
. . .

...
∫ T
0 xp−1x0ds · · ·

∫ T
0 x2

0ds







−1 





∫ T
0 xp−1dxp−1

...
∫ T
0 x0dxp−1






. (4.3)

Note that this expression for the maximum likelihood estimators is unchanged if

x is replaced throughout by y, where y0 denotes the observed CAR(p) process

and yj denotes its jth derivative.

Differentiating log M twice with respect to the parameters a1, . . . , ap, taking

expected values and assuming that the zeroes of the autoregressive polynomial a

all have negative real parts, we find that

−E
∂2 log M

∂a2
∼ TΣ as T → ∞, (4.4)

where Σ is the covariance matrix of the limit distribution as T → ∞ of the

random vector (Xp−1(t), Xp−2(t), . . . , X0(t))
T . It is known (see Arató (1982))

that

Σ−1 = 2[mij ]
p
i,j=1, (4.5)

where mij = mji and for j ≥ i,

mij =

{

0 if j − i is odd,
∑∞

k=0(−1)kai−1−kaj+k otherwise,
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where a0 := 1 and aj := 0 if j > p or j < 0, and that the estimators given by

(4.3) satisfy

√
T (â− a) ⇒ N(0,Σ−1), (4.6)

where Σ−1 is given by (4.5). The asymptotic result (4.6) also holds for the

Yule-Walker estimates of a, as found by Hyndman (1993).

In the case p = 1, Σ−1 = 2a1 and when p = 2, Σ−1 is the same as the leading

term in the expansion of the covariance matrix V in (2.11).

In order to derive approximate maximum likelihood estimators for closely-

spaced observations of the CAR(p) process defined by (2.1) we use the result

(4.3) with the stochastic integrals replaced by approximating sums. Thus if

observations are made at times 0, h, 2h, . . ., we replace, for example,

∫ T

0
x′(s)2ds by

1

h

[T/h]−1
∑

i=0

(

x((i + 1)h) − x(ih)
)2

,

∫ T

0
x′(s)dx′(s) by

1

h2

[T/h]−3
∑

i=0

(

x((i + 1)h) − x(ih)
)

×
(

x((i + 3)h) − 2x((i + 2)h
)

+ x
(

(i + 1)h)
)

,

taking care, as in the latter example, to preserve the non-anticipating property

of the integrand in the corresponding approximating sum.

Example 2. For the CAR(2) process defined by

(D2 + a1D + a2)Y (t) = bDW (t),

Table 1 shows the result of using approximating sums for the estimators defined

by (4.3) in order to estimate the coefficients a1 and a2.

Table 1. Estimated coefficients based on 1,000 replicates on [0, T ] of the

linear CAR(2) process with a1 = 1.8 and a2 = 0.5.

T=100 T=500

h Sample mean Sample variance Sample mean Sample variance

of estimators of estimators of estimators of estimators

0.001 a1 1.8120 0.03585 1.7979 0.006730

a2 0.5405 0.02318 0.5048 0.003860

0.01 a1 1.7864 0.03404 1.7727 0.006484

a2 0.5362 0.02282 0.5007 0.003799

0.1 a1 1.5567 0.02447 1.5465 0.004781

a2 0.4915 0.01902 0.4588 0.003217
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As expected, the variances of the estimators are reduced by a factor of ap-

proximately 5 as T increases from 100 to 500 with h fixed. As h increases with

T fixed, the variances actually decrease while the bias has a tendency to in-

crease. This leads to mean squared errors which are quite close for h = 0.001

and h = 0.01. The asymptotic covariance matrix Σ−1 in (4.6), based on con-

tinuously observed data, is diagonal with entries 3.6 and 1.8. For h = 0.001

and h = 0.01, the variances 3.6/T and 1.8/T agree well with the corresponding

entries in the table.

5. Estimation for CTAR(p) Processes

The density derived in Section 3 is not restricted to linear continuous-time

autoregressions as considered in the previous section. It applies also to non-

linear autoregressions and, in particular, to CTAR models as defined by (3.2)

and (3.3). In this section we illustrate the application of the continuous-time

maximum likelihood estimators and corresponding approximating sums to the

estimation of coefficients in CTAR(1) and CTAR(2) models.

Example 3. Consider the CTAR(1) process defined by

DY (t) + a
(1)
1 Y (t) = bDW (t), if Y (t) < 0,

DY (t) + a
(2)
1 Y (t) = bDW (t), if Y (t) ≥ 0,

with b > 0 and a
(1)
1 6= a

(2)
1 . We can write

Y (t) = b X(t),

dX(t) + a(X(t))X(t)dt = dW (t),

and a(x) = a
(1)
1 if x < 0 and a(x) = a

(2)
1 if x ≥ 0. Proceeding as in Section 4,

−2 log M is as in (4.1), with

G = −a
(1)
1 x(s)Ix(s)<0 − a

(2)
1 x(s)Ix(s)≥0. (5.1)

Maximizing log M as in Section 4, we find that

â
(1)
1 = −

∫ T
0 Ix(s)<0x(s)dx(s)
∫ T
0 Ix(s)<0x(s)2ds

,

â
(2)
1 = −

∫ T
0 Ix(s)≥0x(s)dx(s)
∫ T
0 Ix(s)≥0x(s)2ds

,

where, as in Section 4, x can be replaced by y in these expressions. For obser-

vations at times 0, h, 2h, . . ., with h small the integrals in these expressions were
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replaced by corresponding approximating sums and the resulting estimates are
shown in Table 2.

Table 2. Estimated coefficients based on 1,000 replicates on [0, T ] of the

threshold AR(1) with threshold r = 0, a
(1)
1 = 6, a

(2)
1 = 1.5.

T=100 T=500

h Sample mean Sample variance Sample mean Sample variance

of estimators of estimators of estimators of estimators

0.001 a
(1)
1 6.0450 0.41207 5.9965 0.07185

a
(2)
1 1.5240 0.04824 1.4986 0.00891

0.01 a
(1)
1 5.8978 0.39427 5.8472 0.06785

a
(2)
1 1.5135 0.04771 1.4875 0.00883

0.1 a
(1)
1 4.7556 0.27969 4.7085 0.04506

a
(2)
1 1.3891 0.03840 1.3682 0.00711

Again we see that as T increases from 100 to 500, the variances of the
estimators are reduced by a factor of approximately 5. As h increases with T
fixed, the variances decrease while the bias tends to increase, the net effect being
(as expected) an increase in mean squared error with increasing h.

Example 4. Consider the CTAR(2) process defined by

D2Y (t) + a
(1)
1 DY (t) + a

(1)
2 Y (t) = bDW (t), if Y (t) < 0,

D2Y (t) + a
(2)
1 DY (t) + a

(2)
2 Y (t) = bDW (t), if Y (t) ≥ 0,

with a
(1)
1 6= a

(2)
1 or a

(1)
2 6= a

(2)
2 , and b > 0. We can write

Y (t) = (b, 0)X(t),

dX(t) = AX(t)dt + e dW (t),

and A = A(1) if x < 0 and A = A(2) if x ≥ 0, where

A(1) =

[

0 1

−a
(1)
2 −a

(1)
1

]

, A(2) =

[

0 1

−a
(2)
2 −a

(2)
1

]

, e =

[

0

1

]

.

Proceeding as in Section 4, −2 log M is as in (4.1), with

G =
(

− a
(1)
1 x1(s) − a

(1)
2 x(s)

)

Ix(s)<0 +
(

− a
(2)
1 x1(s) − a

(2)
2 x(s)

)

Ix(s)≥0. (5.2)

Maximizing log M , we find that
[

â
(1)
1

â
(1)
2

]

= −
[

∫ T
0 Ix(s)<0x

2
1(s)ds

∫ T
0 Ix(s)<0x1(s)x0(s)ds

∫ T
0 Ix(s)<0x1(s)x0(s)ds

∫ T
0 Ix(s)<0x

2
0(s)ds

]−1

×
[

∫ T
0 Ix(s)<0x1(s)dx1(s)
∫ T
0 Ix(s)<0x0(s)dx1(s)

]

,
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while [â
(2)
1 , â

(2)
2 ]T satisfies the same equation with Ix(s)<0 replaced throughout by

Ix(s)≥0.

As in Section 4, x can be replaced by y in these expressions. For observations

at times 0, h, 2h, . . . , with h small, the integrals in these expressions were replaced

by corresponding approximating sums and the resulting estimates are shown in

Table 3.

Table 3. Estimated coefficients based on 1,000 replicates on [0, T ] of the

threshold AR(2) with threshold r = 0, a
(1)
1 = 1.5, a

(1)
2 = 0.4, a

(2)
1 = 4.6,

a
(2)
2 = 2.

T=100 T=500

h Sample mean Sample variance Sample mean Sample variance

of estimators of estimators of estimators of estimators

0.001 a
(1)
1 1.5187 0.05441 1.5071 0.01128

a
(1)
2 0.4763 0.04119 0.4163 0.00480

a
(2)
1 4.6084 0.21224 4.5755 0.03995

a
(2)
2 2.3186 0.72069 2.0456 0.08881

0.01 a
(1)
1 1.5262 0.05234 1.5163 0.01095

a
(1)
2 0.4729 0.04056 0.4135 0.00473

a
(2)
1 4.3819 0.19823 4.3480 0.03746

a
(2)
2 2.2697 0.68915 2.0025 0.08509

0.1 a
(1)
1 1.5091 0.04177 1.4928 0.00805

a
(1)
2 0.4402 0.03489 0.3851 0.00411

a
(2)
1 2.7053 0.11312 2.7014 0.01874

a
(2)
2 1.7654 0.41380 1.5599 0.05221

The pattern of results is more complicated in this case. As T is increased from

100 to 500 with h fixed, the sample variances all decrease, but in a less regular

fashion than in Tables 1 and 2. As h increases with T fixed, the variances also

decrease. The mean squared errors for h = 0.001 and h = 0.01 are again quite

close.

6. Estimation when the threshold is unknown

In the previous section we considered the estimation of the autoregressive

coefficients only, under the assumption that the threshold r is known. In this

section we consider the corresponding problem when the threshold is also to be es-

timated. The idea is the same, that is to maximize the (conditional) likelihood of

the continuously-observed process, using the closely spaced discrete observations

to approximate what would be the exact maximum likelihood estimators if the

continuously-observed data were available. We illustrate first with a CTAR(1)

process. The goal is to use observations {y(kh), k = 1, 2, . . .; 0 < kh ≤ T}, with
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h small, to estimate the parameters a
(1)
1 , a

(2)
1 , c

(1)
1 , c

(2)
1 , b and r in the following

model.

D(Y (t) − r) + a
(1)
1 (Y (t) − r) + c

(1)
1 = bDWt, Y (t) < r,

(6.1)
D(Y (t) − r) + a

(2)
1 (Y (t) − r) + c

(2)
1 = bDWt, Y (t) ≥ r.

The process Y ∗ = Y − r, satisfies the threshold autoregressive equations,

DY ∗(t) + a
(1)
1 Y ∗(t) + c

(1)
1 = bDWt, Y ∗(t) < 0,

DY ∗(t) + a
(2)
1 Y ∗(t) + c

(2)
1 = bDWt, Y ∗(t) ≥ 0,

with state-space representation,

Y ∗(t) = bX(t),

dX(t) = G(X, t)dt + dW (t),

as in (3.5), and

G(x, s) = −
(

a
(1)
1 x(s) +

c
(1)
1

b

)

Ix(s)<0 −
(

a
(2)
1 x(s) +

c
(2)
1

b

)

Ix(s)≥0.

Substituting for G in (4.1), we obtain

−2 log M(x(s), s)

=

∫ T

0
G2ds − 2

∫ T

0
Gdx(s)

=

∫ T

0

(

a
(1)
1 x(s) +

c
(1)
1

b

)2

Ix(s)<0ds +

∫ T

0

(

a
(2)
1 x(s) +

c
(2)
1

b

)2

Ix(s)≥0ds

+2

∫ T

0

(

a
(1)
1 x(s) +

c
(1)
1

b

)

Ix(s)<0dx(s) + 2

∫ T

0

(

a
(2)
1 x(s) +

c
(2)
1

b

)

Ix(s)≥0dx(s)

=
1

b2

[

∫ T

0

(

a
(1)
1 y∗ + c

(1)
1

)2
Iy∗<0ds +

∫ T

0

(

a
(2)
1 y∗ + c

(2)
1

)2
Iy∗≥0ds

+2

∫ T

0

(

a
(1)
1 y∗ + c

(1)
1

)

Iy∗<0dy∗ + 2

∫ T

0

(

a
(2)
1 y∗ + c

(2)
1

)

Iy∗≥0dy∗
]

.

Minimizing −2 log M(x(s), s) with respect to a
(1)
1 , a

(2)
1 , c

(1)
1 , and c

(2)
1 , with b fixed,
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gives

â
(1)
1 (r)

[

∫ T

0
y∗2Iy∗<0ds

∫ T

0
Iy∗<0ds −

(

∫ T

0
y∗Iy∗<0ds

)2
]

= −
[

∫ T

0
y∗Iy∗<0dy∗

∫ T

0
Iy∗<0ds −

∫ T

0
Iy∗<0dy∗

∫ T

0
y∗Iy∗<0ds

]

,

(6.2)

ĉ
(1)
1 (r)

[

∫ T

0
y∗2Iy∗<0ds

∫ T

0
Iy∗<0ds −

(

∫ T

0
y∗Iy∗<0ds

)2
]

= −
[

∫ T

0
Iy∗<0dy∗

∫ T

0
y∗2Iy∗<0ds −

∫ T

0
y∗Iy∗<0dy∗

∫ T

0
y∗Iy∗<0ds

]

,

with analogous expressions for â
(2)
1 and ĉ

(2)
1 . An important feature of these equa-

tions is that they involve only the values of y∗ = y − r and not b.

For any fixed value of r and observations y, we can therefore compute the

maximum likelihood estimators â
(1)
1 (r), â

(2)
1 (r), ĉ

(1)
1 (r) and ĉ

(2)
1 (r) and the cor-

responding minimum value, m(r), of −2b2 log M . The maximum likelihood esti-

mator r̂ of r is the value which minimizes m(r) (this minimizing value also being

independent of b). The maximum likelihood estimators of a
(1)
1 , a

(2)
1 , c

(1)
1 and

c
(2)
1 are the values obtained from (6.2) with r = r̂. Since the observed data are

the discrete observations {y(h), y(2h), y(3h), . . .}, the calculations just described

are all carried out with the integrals in (6.2) replaced by approximating sums as

described in Section 4.

If the data y are observed continuously, the quadratic variation of y on the

interval [0, T ] is exactly equal to b2T . The discrete approximation to b based on

{y(h), y(2h), . . .} is

b̂ =

√

√

√

√

√

[T/h]−1
∑

k=1

(

y((k + 1)h) − y(kh)
)2

T
. (6.3)

Example 5. Table 4 shows the results obtained when the foregoing estimation

procedure is applied to a CTAR(1) process defined by (6.1), with a
(1)
1 = 6,

c
(1)
1 = 0.5, a

(2)
1 = 1.5, c

(2)
1 = 0.4, b = 1, and r = 10.

The pattern of results is again rather complicated. As expected, however,

there is a clear reduction in sample variance of the estimators as T is increased

with h fixed. For T = 1, 000 the mean squared errors of the estimators all increase

as h increases, with the mean squared errors when h = 0.001 and h = 0.01 being

rather close, and substantially better than those when h = 0.1.



CONTINUOUS-TIME GAUSSIAN AUTOREGRESSION 77

Table 4. The sample mean and sample variance of the estimators of the

parameters of the model (6.1) based on 1,000 replicates of the process on

[0, T ]. The parameters of the simulated process are a
(1)
1 = 6, c

(1)
1 = 0.5,

a
(2)
1 = 1.5, c

(2)
1 = 0.4, b = 1, and r = 10.

T=100 T=500 T=1,000

h Sample Sample Sample Sample Sample Sample

mean variance mean variance mean variance

0.001 a
(1)
1 5.9179 1.5707 5.9758 0.1950 5.9835 0.0904

c
(1)
1 0.3787 0.7780 0.3448 0.1561 0.3832 0.0753

a
(2)
1 1.7149 0.4105 1.5370 0.0511 1.5178 0.0224

c
(2)
1 0.2891 0.1476 0.3415 0.0273 0.3601 0.0133

b 0.9996 5.00×10−6 0.9991 4.78×10−7 0.9991 4.84×10−7

r 9.9963 0.0244 9.9769 0.0041 9.9818 0.0020

0.01 a
(1)
1 5.7201 1.3175 5.7507 0.1834 5.7614 0.0910

c
(1)
1 0.4271 0.7524 0.3235 0.1699 0.3535 0.0705

a
(2)
1 1.7373 0.4248 1.5567 0.0538 1.5360 0.0239

c
(2)
1 0.2877 0.1598 0.3227 0.0357 0.3407 0.0162

b 0.9914 4.82×10−5 0.9913 4.55×10−6 0.9907 4.91×10−6

r 10.011 0.0278 9.9807 0.0058 9.984 0.0024

0.1 a
(1)
1 4.1166 0.7861 4.1087 0.1587 4.1115 0.0720

c
(1)
1 0.3953 0.5638 0.2834 0.2287 0.2708 0.0944

a
(2)
1 1.7308 0.5109 1.5924 0.0805 1.5851 0.0324

c
(2)
1 0.2636 0.2391 0.2658 0.1003 0.2666 0.0472

b 0.9191 5.00×10−4 0.9208 4.60×10−5 0.9160 4.79×10−5

r 10.074 0.0425 10.038 0.0191 10.030 0.0086

Example 6. Although the procedure described above is primarily intended for

use in the modelling of very closely spaced data, in this example we illustrate

its performance when applied to the natural logarithms of the annual Cana-

dian lynx trappings, 1821 - 1934 (see e.g., Brockwell and Davis (1991), p.559).

Linear and threshold autoregressions of order two were fitted to this series by

Tong and Yeung (1991), and a linear CAR(2) model using a continuous-time

version of the Yule-Walker equations was employed by Hyndman (1993).

The threshold AR(2) model fitted by Tong and Yeung (1991) to this series

was

D2Y (t) + a
(1)
1 DY (t) + a

(1)
2 Y (t) = b1DW (t), if Y (t) < r,

(6.4)
D2Y (t) + a

(2)
1 DY (t) + a

(2)
2 Y (t) = b2DW (t), if Y (t) ≥ r,

a
(1)
1 = 0.354, a

(2)
1 = 0.521, b1 = 0.707,

(6.5)
a

(2)
1 = 1.877, a

(2)
2 = 0.247, b2 = 0.870,
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and threshold r = 0.857.

An argument exactly parallel to that for the CTAR(1) process at the begin-

ning of this section permits the estimation of the coefficients and threshold of a

CTAR(2) model of this form with b1 = b2 = b, h = 1, and with time measured

in years. It leads to the coefficient estimates,

a
(1)
1 = 0.3163, a

(2)
1 = 0.1932, b1 = 1.150,

(6.6)
a

(2)
1 = 1.2215, a

(2)
2 = 0.9471, b2 = 1.150,

with estimated threshold r = 0.478. (Because of the large spacing of the obser-

vations in this case it is difficult to obtain a good approximation to the quadratic

variation of the derivative of the process. The coefficient b was therefore esti-

mated by a simple one-dimensional maximization of the Gaussian likelihood (GL)

of the original discrete observations (as described by Brockwell (2001)), with the

estimated coefficients fixed at the values specified above.)

In terms of the Gaussian likelihood of the original data, the latter model

(with −2 log(GL) = 220.15) is considerably better than the Tong and Yeung

model (for which −2 log(GL) = 244.41). Using our model as an initial approx-

imation for maximizing the Gaussian likelihood of the original data, we obtain

the following more general model that has higher Gaussian likelihood than both

of the preceding models (−2 log(GL) = 161.06).

D2Y (t) + DY (t) + 0.308Y (t) − 0.345 = 1.050DW (t), if Y (t) < −0.522,
(6.7)

D2Y (t) + 0.0715DY (t) + 0.452Y (t) + 0.500 = 0.645DW (t),

if Y (t) ≥ −0.522.

Simulations of (6.4) with parameters as in (6.5) and (6.6), and of the model (6.7),

are shown together with the logged and mean-corrected lynx data in Figure 1.

As expected, the resemblance between the sample paths and the data appears to

improve with increasing Gaussian likelihood.

7. Conclusions

From the Radon-Nikodym derivative with respect to Wiener measure of the

distribution of the (p − 1)th derivative of a continuous-time linear or non-linear

autoregression, observed on the interval [0, T ], we have shown how to compute

maximum likelihood parameter estimators, conditional on the initial state vector.

For closely-spaced discrete observations, the integrals appearing in the estimators

are replaced by approximating sums.

The examples illustrate the accuracy of the approximations in special cases.

If the observations are not uniformly spaced but the maximum spacing is small,
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appropriately modified approximating sums can be used in order to approximate

the exact solution for the continuously observed process.
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Figure 1. Figures (a) and (b) show simulations of the CTAR model (6.4) for

the logged and mean-corrected lynx data when the parameters are given by

(6.5) and (6.6) respectively. Figure (c) shows a simulation (with the same

driving noise as in Figures (a) and (b)) of the model (6.7). Figure (d) shows

the logged and mean-corrected lynx series itself.

Acknowledgement

The authors are indebted to the National Science Foundation for support

of this work under Grant DMS-0308109 and PB for the additional support of

Deutsche Forschungsgemeinschaft, SFB 386, at Technische Universität München.

We are also indebted to two referees for valuable comments and suggestions.

References
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