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Abstract: Urn models are popular and useful for adaptive designs in clinical studies.

Among various urn models, the drop-the-loser rule is an efficient adaptive treatment

allocation scheme, recently proposed for comparing different treatments in a clinical

trial. This rule is superior to other randomization schemes in terms of variability

and power. In this paper, the drop-the-loser rule is generalized to cope with more

popular and practical circumstances, including (1) delayed responses when test

results cannot be obtained immediately, (2) continuous responses, and (3) a pre-

specified target of allocation proportion. In addition, our proposed procedure has

several favorable asymptotic properties such as strong consistency and asymptotic

normality of the allocation proportions.
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1. Introduction

In clinical trials, patients usually accrue sequentially. One of the fundamen-

tal concerns treatment allocation. Which treatment should be assigned to the

next patient? The general consensus is that a randomization scheme should be

adopted to minimize selection bias and to provide a solid basis for statistical

inference. Adaptive designs can be valuable and ethical randomization schemes

that formulate treatment allocation as a function of previous responses. One

major objective of research in adaptive design is to develop treatment allocation

schemes, so that more patients receive the better treatment.

Pioneering works in the area of adaptive design can be traced to Thompson

(1933) and Robbins (1952). Since then, an unremitting generation of research

products in this area offers various approaches to treatment allocation schemes

applicable to clinical studies. For a discussion of recent developments in this

area, refer to Rosenberger (1996), Rosenberger and Lachin (2002), and references

therein.

Among different classes of adaptive designs, the one based on urn models

receives the most attention. Early works include Athreya and Karlin (1968),
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Wei and Durham (1978) and Wei (1979). The basic idea is as follows: there

are various types of balls representing particular treatments; patients accrue se-

quentially; at each stage, the probability of allocating a particular treatment

to a patient depends on the numbers of various types of balls in the urn. The

response of each patient after treatment plays an essential role in the determi-

nation of subsequent urn compositions. The basic strategy is to “reward” more

balls to successful treatments. The multi-treatment randomized play-the-winner

rule (Andersen, Faries and Tamura (1994)) is an illustrative example. An urn

contains K different types of balls, representing K different treatments. When a

patient arrives, a ball is drawn at random with replacement. If it is a type i ball,

the patient receives treatment i. A successful response to the treatment brings

an addition of a type i ball to the urn. If the response is a failure, a ball is added

to the urn. This ball is partitioned according to the existing proportion of balls

for other treatments in the urn.

A sophisticated formulation of the urn model was given by Durham, Flournoy

and Li (1998). They derived a valuable randomized version of the generalized

Pólya urn that does not satisfy the regularity conditions of those studied by

Athreya and Ney (1972). One major feature of the randomized Pólya urn scheme

is to reward only successful treatments, balls are not added to the urn if the

treatment is a failure. Parallel ideas can be useful in other areas besides clini-

cal applications. For example, Beggs (2005) and Hopkins and Posch (2005) use

related urn concepts to model reinforcement learning in their study of economic

behaviors.

The importance of the randomized Pólya urn scheme is that it can be em-

bedded in the family of continuous-time pure birth processes with linear birth

rate (Yule processes). This enables the formulation of important limiting be-

haviors of the urn process (Ivanova and Flournoy (2001)). With the frame-

work of embedding the urn scheme in a continuous-time birth and death pro-

cess (Ivanova, Rosenberger, Durham and Flournoy (2000), Ivanova and Flournoy

(2001), Ivanova (2003)) constructed the drop-the-loser (DL) urn.

The DL rule differs from the randomized Pólya urn of Durham, Flournoy and

Li (1998). Instead of adding balls to reward successes, balls are removed when

failures are observed. In the urn, besides treatment balls, there are immigration

balls. When an immigration ball is selected, balls will be added to all types

(except immigration), preventing extinction of types of treatment balls. The

mechanism, and other properties of the DL rule, will be outlined in Section 2.

The DL rule was reported to have small variability and high statistical power

(Ivanova (2003)). One sensible objective of clinical studies is to increase the

power of treatment comparisons. Power depends heavily on the variability of
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the treatment allocation scheme. Simulation evidence indicating the strong as-

sociation between power and variability can be found in Melfi and Page (1998),

as well as in Rosenberger, Stallard, Ivanova, Harper and Ricks (2001). A proof

in Hu and Rosenberger (2003) confirmed that average power of a randomization

procedure is a decreasing function of the variability of the randomization proce-

dure. Therefore, adaptive designs with smaller variability are much preferred.

Recently Hu and Rosenberger (2003) launched a comparative study of sev-

eral recent adaptive randomization procedures for binary responses: the se-

quential maximum likelihood procedure (SMLP) (Melfi and Page (2000)), the

doubly adaptive biased coin design (DBCD) (Eisele (1994)), the generalized

DBCD (Hu and Zhang (2004a)), the randomized play-the-winner (RPW) rule

(Wei and Durham (1978)), and the drop-the-loser (DL) rule (Ivanova (2003)).

Their study yielded results favoring the adoption of the DL rule due to its vari-

ability. For details, one can refer to Hu and Rosenberger (2003) and Hu, Rosen-

berger and Zhang (2006).

The DL rule has been shown to yield satisfactory results in terms of reducing

the number of failures and variability (Rosenberger and Hu (2004)). Neverthe-

less, it has limitations. First, there is a lack of clear methodology to cope with de-

layed test responses which are common in clinical studies. Second, the application

of the rule is limited to clinical trials with binary responses. Third, it can only

be applied to target one particular allocation proportion (Ivanova (2003)) while

different targets might be of interest in clinical studies (Rosenberger and Lachin

(2002)). In fact, there is a growing interest in target-based designs which are

derived with a pre-specified allocation target (see for example Eisele (1994),

Eisele and Woodroofe (1995), Melfi and Page (1998, 2000)).

We derive a generalized DL (GDL) rule that differs from other popular urn

models in its capability to handle delayed responses and to include pre-specified

targets. In Section 2, the DL rule and its major properties will be outlined. Then

the GDL rule is defined. Simulation results indicate that with delayed responses,

our proposed scheme performs reasonably well. In Section 3, asymptotic prop-

erties and variability comparisons are presented. Some general comments and

remarks are given in Section 4. When the responses are dichotomous, the GDL

rule is shown to be asymptotically most powerful. Proofs are given in the last

section. The main technique used in this paper involves the strong approximation

of a martingale, and is different from the techniques employed in Ivanova (2003)

and Ivanova et al. (2000). Furthermore, we show that the allocation process can

be approximated by a standard Wiener process. The asymptotic normality, the

rate of convergence and a law of the iterated logarithm are directly obtained from

this approximation.
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2. The Generalized Drop-the-Loser Rule

In this section we first describe the drop-the-loser rule (Ivanova (2003)) and

its major statistical properties. Then our proposed generalized drop-the-loser

rule will be introduced.

2.1. Drop-the-loser rule

For explanatory purpose, assume that we have two treatments even though

the DL rule can be applied to multi-treatments. The DL rule is as follows.

Consider an urn containing three types of balls. Balls of types 1 and 2 rep-

resent treatments. Balls of type 0 are termed immigration balls. We start with

Z0,i balls of type i, i = 0, 1, 2. Let Z0 = (Z0,0, Z0,1, Z0,2) be the initial urn com-

position. After m draws, the urn composition becomes Zm = (Zm,0, Zm,1, Zm,2).

When a subject arrives, one ball is drawn at random. If a treatment ball of

type k (1 or 2) is selected, the kth treatment is given to the subject and the re-

sponse is observed. If it is a failure, the ball is not replaced, Zm+1,k = Zm,k − 1,

Zm+1,j = Zm,j , j 6= k. If the treatment is a success, the ball is replaced and

consequently, the urn composition remains unchanged, Zm+1 = Zm. If an immi-

gration ball (type 0) is selected, no subject is treated, and the ball is returned to

the urn together with two additional treatment balls, one of each treatment type.

Therefore, Zm+1,0 = Zm,0 and Zm+1,k = Zm,k + 1, k = 1, 2. This procedure is

repeated until a treatment ball is drawn and the subject treated accordingly. The

function of the immigration ball is to avoid the extinction of a type of treatment

ball.

Let Pk be the probability of success on treatment k, and Qk = 1 − Pk,

k = 1, 2. Ivanova (2003) studied the properties of the DL rule by embedding

the urn composition process Zm in an immigration-death process. She defined

a two-dimensional process Z∗(t) = (Z∗
1 (t), Z∗

2 (t)), which is a collection of two

continuous-time linear immigration-death processes having common immigra-

tion processes with immigration rate Z0,0 and independent death processes with

death rates Q1, Q2, such that Zm,k = Z∗
k(tm), k = 1, 2. Here tm is the “time” of

the mth draw and it is the partial sum of a sequence of independent exponen-

tially distributed random variables with rate parameter 1. Note that t represents

a “virtual” time instead of the real time. The embedding technique was devel-

oped by Athreya and Karlin (1968) and Athreya and Ney (1972) for the study of

the Pólya urn model. Later it was adopted by Durham, Flournoy and Li (1998),

Ivanova et al. (2000), Ivanova and Flournoy (2001) for studying sequential clini-

cal trials.

Now, let us state a couple of important asymptotic results of the DL rule.

Let Nk(t) be the number of trials on treatment k up to time t, k = 1, 2. Ivanova
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(2003) showed that

N1(t)

N1(t) + N2(t)

P→ v1 :=

1
Q1

1
Q1

+ 1
Q2

as t → ∞, (2.1)

√
N1(t) + N2(t)

(
N1(t)

N1(t) + N2(t)
− v1

)
D→ N(0, σ2

DL) as t → ∞, k = 1, 2, (2.2)

where

σ2
DL =

Q1Q2(P1 + P2)

(Q1 + Q2)3
, (2.3)

is the asymptotic variance. The DL rule has two fundamental properties: (1) it

preserves the randomization ingredient of the randomized play-the-winner rule,

which yields a non-deterministic scheme; (2) when compared with many other

adaptive designs which have the same limit proportions of the DL rule, such as

the SMLP, the DBCD and the RPW rules, the DL rule generates an allocation

procedure with the minimum asymptotic variance, hence produces higher power

for the test of the difference of proportions (Hu and Rosenberger (2003)).

In practice, subjects frequently do not respond immediately. Therefore, the

response of an individual may not be available prior to the randomization of

the next subject. Delayed response is a scenario in clinical trials that deserves

much attention. Besides delayed response, the DL rule is incapable of dealing

with non-dichotomous responses. Basically, when the outcomes are delayed or

non-dichotomous, it is difficult to embed the sequence of urn compositions in an

immigration-birth-death process.

2.2. Generalized drop-the-loser rule

In this section, the GDL is outlined. The treatment allocation scheme is more

flexible than the DL rule and accommodates the possibility of delayed responses

and pre-assigned allocation proportion targets.

Similar to the DL rule, there are three types of balls in the urn. Balls of types

1 and 2 represent treatments, balls of type 0 are immigration balls. We start with

Z0,i (> 0) balls of type i, i = 0, 1, 2. Let Z0 = (Z0,0, Z0,1, Z0,2) be the initial urn

composition, and Zm = (Zm,0, Zm,1, Zm,2) be the urn composition after m draws.

Let Z+
m,i = max(0, Zm,i), i = 0, 1, 2, and Z+

m = (Z+
m,0, Z

+
m,1, Z

+
m,2). When a

subject arrives to be allocated to a treatment, a ball is drawn at random according

to the urn composition Z+
m for the appropriate m. That is, the probability of

selecting type i ball is Z+
m,i/|Z+

m|, with |Z+
m| = Z+

m,0 + Z+
m,1 + Z+

m,2.



392 LI-XIN ZHANG, WAI SUM CHAN, SIU HUNG CHEUNG AND FEIFANG HU

If an immigration ball (type 0) is drawn, no treatment is assigned and the

ball is returned to the urn along with ak type k treatment balls, k = 1, 2. Let

A = a1 + a2 where a1, a2 > 0. This step is repeated until a treatment ball is

drawn.

If a type k (k = 1, 2) treatment ball is drawn, the subject is assigned to

treatment k and the ball is not replaced immediately. To allow for delayed

responses, the addition of balls is made after the subject’s response is observed.

We denote the outcome of this subject on treatment k by Ym,k. The outcome Ym,k

may not be available prior to the arrival of the next subject. In fact, the delayed

outcome may only be available after several subjects (a random variable) have

been allocated to treatments. After the response Ym,k is observed, Dm,k (≥ 0)

balls of type k are added to the urn.

We allow the urn to have a fractional or negative number of treatment balls.

According to the definition of Z+
m,i, the treatment balls with negative numbers

will never be selected. As a result, the number of treatment balls of each type

will not decrease when it is negative. So Zi,m ≥ −1 for all m and i.

Let Nn,k be the number of subjects assigned to treatment k, k = 1, 2, after

the allocation of treatments to n subjects. It is important to study the statistical

behavior of the proportions of patients Nn,k/n, k = 1, 2, assigned to the two

treatments.

Let pk = E[Dm,k], k = 1, 2. We assume 0 ≤ pk < 1 and qk = 1− pk, k = 1, 2.

Thus, after each treated subject, the expected number of balls added according

to the outcome observed is not larger than the number of outgoing balls (which

is 1).

The DL rule is a particular case of our GDL allocation scheme. For instance,

with dichotomous responses and two treatments, the DL rule corresponds to the

GDL rule with a1 = 1, a2 = 1 and Dm,k = 1 if the outcome of treatment k is a

success, and 0 otherwise. In addition, pk = Pk, the success probability of a trial

on treatment k, k = 1, 2.

When the outcomes are not dichotomous, one may choose suitable adding

rules {Dm,k} to define a design. For example, the outcome of a patient after treat-

ment of cancer can be classified as “clinically ineffective”, “gradual improvement

with extended treatment” or “fully recovered”; one may define Dm,k = 1 if the

outcome is a “fully recovered”, Dm,k = Λ (0 < Λ < 1) if the outcome is “grad-

ual improvement with extended treatment”, and Dm,k = 0 if the outcome is

“clinically ineffective”.

Under some suitable conditions (stated in Section 3), we can show that the

proportion of subjects assigned to treatment k is

Nn,k

n
→ vk :=

ak

qk

a1
q1

+ a2
q2

a.s. k = 1, 2. (2.4)
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With dichotomous outcomes, if a1 = a2, Dm,k = 1 for success and Dm,k =

0 for failure when type k treatment is assigned, the limiting proportions vk,

k = 1, 2, are the same as in (2.1). One can choose a′
ks to adjust the allocation

proportions. By choosing a′
ks suitably, the GDL rule can be used to target any

desired allocation.

A more convenient approach to target a pre-specified allocation proportion

is to take Dm,k ≡ 0 for all m and k. Hence, qk = 1 − EDm,k ≡ 1. If the

target allocation proportions is vk (k = 1, 2), we can simply define a design by

choosing ak = Cvk where C is a constant and vk is a function of Pk. For example,

Rosenberger et al. (2001) studied the allocation proportions
√

Pk√
P1 +

√
P2

, k = 1, 2, (2.5)

which minimize the expected number of failures under fixed variance of the esti-

mator of the treatment difference. In this case, we take

ak = C

√
Pk√

P1 +
√

P2
, k = 1, 2 (2.6)

and the balls are added only through immigration. The superior treatment (the

one with larger probability of success) will be rewarded more balls each time an

immigration ball is selected. Simulation study in the following section indicates

that there is no significant difference among various choices of C.

Remark 2.1. In practice, the Pk are usually unknown. In these cases, simply

substitute P̂k for Pk, where P̂k is the current estimate of Pk, k = 1, 2. We propose

the estimate

P̂k =
(number of observed successes on treatment k) + 1

(number of observed outcomes on treatment k) + 2
,

which is the Bayesian estimate of Pk with a uniform prior distribution, k = 1, 2.

Variously, one can replace 1 in the numerator by α and 2 in the denominator by

α + β if the beta distribution beta(α, β) is employed as the prior distribution,

with the constants α and β estimated from earlier trials.

2.3. Simulation results

In this section, a simulation study is performed to investigate the perfor-

mance of our allocation scheme. Two different allocation targets, (2.1) and (2.5),

are employed as our study cases. Given treatments 1 and 2 with success prob-

abilities P1 and P2 respectively, our simulation study is performed with P1 and

P2 being selected with reference to those choices of Hu and Rosenberger (2003).

For the allocation process, P̂k given in Remark 2.1 is utilized.
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For both the delayed times for the two treatments and the patient entry

times, exponential distributions are used. The mean parameters of the delay

times for treatments 1 and 2 are λ1 and λ2 respectively. For patient entry times,

the mean parameter is λ3. There are three different configurations for the mean

parameters. The first one corresponds to the case where there are no delayed

responses. The second one corresponds to (λ1, λ2, λ3) = (1, 1, 1), which represents

similar delayed times for the responses of the two treatments. Finally, we select

(λ1, λ2, λ3) to be (5, 1, 1) to represent a large difference in delayed times for the

responses of the two treatments. As explained earlier, for simplicity we pick

Dm,k = 0 for the GDL rules.

The number of subjects n is chosen to be 100 and 500. The number of

replications in our simulation study is 10,000. The proportions of subjects being

allocated to treatment 1, Nn,1/n, are tabulated in Tables 1 and 2, since Nn,2/n

is simply 1 − Nn,1/n.

Table 1. Simulated allocation proportion (Nn,1/n) of DL rule, GDL rule and

DBCD with allocation target v1 given in (2.1).

DL GDL (1) DBCD

p1, p2 v1 n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

Immediate Response

0.8, 0.8 0.50 0.50(0.069) 0.50(0.041) 0.50(0.102) 0.50(0.058) 0.50(0.103) 0.50(0.049)

0.8, 0.6 0.67 0.62(0.060) 0.66(0.031) 0.63(0.079) 0.66(0.042) 0.65(0.076) 0.66(0.037)

0.7, 0.5 0.63 0.60(0.053) 0.62(0.026) 0.60(0.067) 0.62(0.035) 0.62(0.065) 0.62(0.030)

0.5, 0.5 0.50 0.50(0.047) 0.50(0.022) 0.50(0.057) 0.50(0.029) 0.50(0.056) 0.50(0.026)

0.5, 0.2 0.62 0.61(0.035) 0.61(0.016) 0.60(0.042) 0.61(0.021) 0.61(0.043) 0.61(0.020)

0.2, 0.2 0.50 0.50(0.025) 0.50(0.011) 0.50(0.030) 0.50(0.015) 0.50(0.034) 0.50(0.016)

(λ1, λ2, λ3) = (1, 1, 1)

0.8, 0.8 0.50 0.50(0.066) 0.50(0.041) 0.50(0.099) 0.50(0.057) 0.50(0.103) 0.50(0.049)

0.8, 0.6 0.67 0.62(0.058) 0.66(0.031) 0.63(0.078) 0.66(0.042) 0.65(0.076) 0.66(0.037)

0.7, 0.5 0.63 0.60(0.052) 0.62(0.026) 0.60(0.066) 0.62(0.034) 0.62(0.065) 0.62(0.030)

0.5, 0.5 0.50 0.50(0.046) 0.50(0.022) 0.50(0.058) 0.50(0.029) 0.50(0.056) 0.50(0.026)

0.5, 0.2 0.62 0.61(0.035) 0.61(0.016) 0.60(0.041) 0.61(0.021) 0.61(0.043) 0.61(0.020)

0.2, 0.2 0.50 0.50(0.025) 0.50(0.011) 0.50(0.030) 0.50(0.015) 0.50(0.034) 0.50(0.016)

(λ1, λ2, λ3) = (5, 1, 1)

0.8, 0.8 0.50 0.47(0.060) 0.49(0.040) 0.49(0.099) 0.50(0.057) 0.50(0.104) 0.50(0.049)

0.8, 0.6 0.67 0.59(0.055) 0.65(0.030) 0.63(0.077) 0.66(0.042) 0.65(0.078) 0.66(0.037)

0.7, 0.5 0.63 0.58(0.049) 0.62(0.026) 0.60(0.066) 0.62(0.035) 0.61(0.066) 0.63(0.030)

0.5, 0.5 0.50 0.50(0.045) 0.50(0.022) 0.50(0.056) 0.50(0.029) 0.50(0.057) 0.50(0.026)

0.5, 0.2 0.62 0.60(0.033) 0.61(0.016) 0.60(0.042) 0.61(0.021) 0.61(0.044) 0.61(0.020)

0.2, 0.2 0.50 0.50(0.025) 0.50(0.011) 0.50(0.030) 0.50(0.015) 0.50(0.035) 0.50(0.016)

Simulated standard deviations are given in parentheses.

GDL(1):a1 = 2v1, a2 = 2(1 − v1)
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Table 2. Simulated allocation proportion (Nn,1/n) of two GDL rules and
DBCD with allocation target v1 given in (2.5)

GDL (2) GDL (3) DBCD

p1, p2 v1 n = 100 n = 500 n = 100 n = 500 n = 100 n = 500.

Immediate Response

0.8, 0.8 0.50 0.50(0.019) 0.50(0.008) 0.50(0.018) 0.50(0.008) 0.50(0.027) 0.50(0.012)

0.8, 0.6 0.54 0.53(0.023) 0.54(0.011) 0.53(0.023) 0.54(0.011) 0.54(0.030) 0.54(0.013)

0.7, 0.5 0.54 0.54(0.028) 0.54(0.013) 0.54(0.028) 0.54(0.013) 0.54(0.033) 0.54(0.014)

0.5, 0.5 0.50 0.50(0.032) 0.50(0.015) 0.50(0.032) 0.50(0.016) 0.50(0.036) 0.50(0.017)

0.5, 0.2 0.61 0.59(0.042) 0.61(0.024) 0.59(0.042) 0.61(0.024) 0.61(0.049) 0.61(0.022)

0.2, 0.2 0.50 0.50(0.051) 0.50(0.029) 0.50(0.051) 0.50(0.029) 0.50(0.058) 0.50(0.026)

(λ1, λ2, λ3) = (1, 1, 1)

0.8, 0.8 0.50 0.50(0.018) 0.50(0.008) 0.50(0.018) 0.50(0.008) 0.50(0.027) 0.50(0.012)

0.8, 0.6 0.54 0.53(0.023) 0.54(0.011) 0.53(0.022) 0.54(0.011) 0.54(0.030) 0.54(0.013)

0.7, 0.5 0.54 0.54(0.028) 0.54(0.013) 0.54(0.027) 0.54(0.013) 0.54(0.033) 0.54(0.015)

0.5, 0.5 0.50 0.50(0.032) 0.50(0.015) 0.50(0.032) 0.50(0.015) 0.50(0.036) 0.50(0.016)

0.5, 0.2 0.61 0.59(0.042) 0.61(0.024) 0.59(0.042) 0.61(0.024) 0.61(0.049) 0.61(0.022)

0.2, 0.2 0.50 0.50(0.051) 0.50(0.029) 0.50(0.051) 0.50(0.029) 0.50(0.058) 0.50(0.026)

(λ1, λ2, λ3) = (5, 1, 1)

0.8, 0.8 0.50 0.50(0.019) 0.50(0.008) 0.50(0.017) 0.50(0.008) 0.50(0.027) 0.50(0.012)

0.8, 0.6 0.54 0.53(0.023) 0.53(0.011) 0.53(0.023) 0.53(0.011) 0.54(0.030) 0.54(0.013)

0.7, 0.5 0.54 0.54(0.028) 0.54(0.013) 0.54(0.028) 0.54(0.013) 0.54(0.033) 0.54(0.015)

0.5, 0.5 0.50 0.50(0.031) 0.50(0.015) 0.50(0.032) 0.50(0.015) 0.50(0.037) 0.50(0.016)

0.5, 0.2 0.61 0.59(0.042) 0.61(0.024) 0.59(0.041) 0.61(0.024) 0.61(0.049) 0.61(0.022)

0.2, 0.2 0.50 0.50(0.050) 0.50(0.029) 0.50(0.052) 0.50(0.029) 0.50(0.058) 0.50(0.026)

Simulated standard deviations are given in parentheses.

GDL (2): a1 = 2v1, a2 = 2(1 − v1)

GDL (3): a1 = 2(
√

p1 +
√

p2)(v1) = 2
√

p1, a2 = 2(
√

p1 +
√

p2)(1 − v1) = 2
√

p2

For comparison purposes, the DBCD is also included. The allocation scheme

used in this simulation study follows that of Rosenberger and Hu (2004) closely.

In addition their suggested value of 2, for the parameter that determines the

variability of the allocation proportions arising from the randomized procedure,

is adopted.

For Table 1, the allocation target given in (2.1) is used. Even though the

DL rule was not designed for delayed responses, for exploratory purposes it is

included in the cases with delayed responses. A simplistic approach is adopted.

When a treatment ball is chosen, the action of whether to return the ball or

not is deferred until the response is observed. We have the following findings.

For large sample sizes (n = 500) and/or without delayed responses, both the

DL rule and the GDL rules are able to provide allocation proportions very close

to the target. For smaller sample sizes (n = 100) and delayed responses, the
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DL rule is outperformed by the GDL rule and the DBCD, especially when both

treatments have high success rates (example: P1 = 0.8, P2 = 0.6). Note that

the variances of the GDL rule and the DBCD are slightly larger due to the

requirement of estimating P1 and P2 at each stage when an immigration ball is

selected. In return, these estimates provide precise estimates of the efficacies of

the treatments, especially when delayed responses are present. This also explains

why the GDL rule and the DBCD surpass the DL rule in terms of the convergence

of the allocation proportions in such cases.

In Table 2, the optimal allocation target in (2.5) is used. All allocation

proportions are quite close to the pre-specified target. In addition, the two

choices of C for the immigration rates, a1 and a2, which represent the addition

of roughly two treatment balls when an immigration ball is selected, do not yield

much differences in terms of the allocation proportions. In fact several other

possible values of C were tried and, as long as the number of balls added to the

urn remained less than 4, similar results were obtained and hence not reported.

The immigration ball has two important functions: the first is to prevent the

possibility of extinction of a particular type of treatment ball; the second is to

add treatment balls to the urn according to the current estimates of P1 and P2.

Therefore, to allow the immigration ball to play these two roles continuously

during the allocation process, the principle is not to add so many treatment balls

to the urn that the chance of selecting an immigration ball becomes too small.

Simulation results in Table 2 also reveal that the DBCD’s performance is

comparable to the GDL rule. The DBCD has an infinitesimal advantage in

accuracy in attaining the target allocation, but has slightly larger variances for

n = 100. However a complete theoretical justification of DBCD with delayed

responses, similar to the one provided for the GDL rule in this paper, is still

unavailable.

Finally, the use of the Bayesian estimates of Pk (k = 1, 2) works very well.

We have also computed the final estimates of the success probabilities, and these

are always close to the actual values.

3. Asymptotic Properties of the GDL Rule

In this section several useful asymptotic properties for the GDL rule are

given. We consider only the case in which the numbers of the immigrated balls

ak, k = 1, 2, are fixed. More complicated scenarios in which aks vary from time

to time are an interesting topic for future study.

Now, let tm be the entry time of the mth subject. Assume that {tm+1 −
tm;m ≥ 1} is a sequence of independent and identically distributed random

variables. The response time of the mth subject with treatment k is denoted by
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rm(k). Suppose {rm(k);m ≥ 1} are sequences of independent random variables,

k = 1, 2. Further, let the response times be independent of the entry times. We

also assume that the draw, removal and addition of balls requires no time, and

so the mth subject is randomized at time tm. For the response time rm(k), we

have the following assumption.

Assumption 3.1. Let δk(m,n) = I{rm(k) > tm+n−tm} be an indicator function

that takes the value 1 if the outcome of the mth subject on treatment k occurs

after at least another n subjects are randomized, and 0 otherwise. Suppose

for some constants C > 0 and γ > 2, µk(m,n) = P{δk(m,n) = 1} ≤ Cn−γ,

m,n = 1, 2, . . ., k = 1, 2.

Since the above probability is a decreasing function of n with a power rate,

the chance is slim that too many patients arrive before a delayed response is

observed.

Remark 3.1. For generalized Friedman’s urn models (also known as generalized

Pólya urn models) with delayed responses, the assumptions of delayed time have

been discussed by Bai, Hu and Rosenberger (2002) and Hu and Zhang (2004b)).

Similar to the arguments in Bai, Hu and Rosenberger (2002), we can show that

Assumption 3.1 is satisfied if (i) the γth moment of rm(k) exists and (ii) E(tm+1−
tm) > 0 and E|tm+1 − tm|2γ < ∞. These two conditions can be easily verified in

applications.

Assumption 3.2. {Dm,k; m ≥ 1}, k = 1, 2, are two sequences of i.i.d. random

variables with 0 ≤ pk = E[Dm,k] < 1 and E|Dm,k|p < ∞ for any p > 0, k = 1, 2.

Let σ2
k = Var (Dm,k) be the variance of the adding rules and qk = 1 − pk,

k = 1, 2.

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 are satisfied. Let vk, k = 1, 2,

be defined in (2.4). Then there exists a standard Brownian motion {W (t); t ≥
0} such that for any δ > 0, Nn,1 − nv1 = σW (n) + o(n(γ+1)/(3γ)+δ) a.s., and

Nn,2 − nv2 = −σW (n) + o(n(γ+1)/(3γ)+δ) a.s., where

σ2 =
a1a2(a2q2σ

2
1 + a1q1σ

2
2)

(a2q1 + a1q2)3
. (3.1)

The proof of the theorem will be given in the last section. By the properties

of Wiener processes, the following is an immediate corollary of the theorem.

Corollary 3.1. Under Assumptions 3.1 and 3.2,

Nn,k

n
− vk = O

(√
log log n

n

)
a.s., k = 1, 2, (3.2)
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√
n
(Nn,k

n
− vk

)
D→ N(0, σ2), k = 1, 2, (3.3)

where vk, k = 1, 2, are defined in (2.4), and σ2 is defined in (3.1).

Equation (3.2) gives strong consistency with its rate of convergence for the
proportions Nn,k/n, k = 1, 2. Comparing with (2.2), where the result is given
through a “virtual” time, (3.3) provides the direct asymptotic distributions of
the proportions. The asymptotic distributions and the asymptotic variance can
be used to compare with other adaptive designs (Hu and Rosenberger (2003)).

Remark 3.2. From Corollary 3.1, the asymptotic properties of the GDL process
does not depend on the delayed mechanism as long as Assumption 3.1 is satisfied.
However, in Theorem 3.1, the convergence rate of the error depends on γ which
is affected by the degree of the delayed responses.

Example 3.1. Binary response: Based on the result of Hu, Rosenberger and
Zhang (2006), we can calculate the lower bound of the asymptotic variance for
the allocation proportion v1 given as in (2.4). For the case with dichotomous
outcomes, σ2

k = pkqk, k = 1, 2. Here pk = Pk, qk = 1 − Pk, and Pk is the
probability of a success on treatment k, k = 1, 2. Let p = (p1, p2) and

f(y) =

a1
1−y1

a1
1−y1

+ a2
1−y2

.

According to Theorem 1 of Hu, Rosenberger and Zhang (2006), the lower bound
of the asymptotic variance is

σ2
min(p) :=

(∂f

∂y

∣∣∣
p

)
I−1(p)

(∂f

∂y

∣∣∣
p

)′
,

where I(p) = diag( v1
p1q1

, v2
p2q2

) is Fisher’s information matrix. Taking derivatives
of f we find that

∂f

∂y

∣∣∣
p

=
( ∂f

∂y1

∣∣∣
p
,

∂f

∂y2

∣∣∣
p

)
=
(
− v1v2

q1
,
v1v2

q2

)
.

It follows that σ2
min(p) = σ2 by some elementary calculation, where σ2 is defined

in (3.1). Based on Corollary 3.1, the GDL rule attains this lower bound and
hence it is asymptotically the most powerful design.

When a1 = a2, Dm,k = 1 for success and Dm,k = 0 for failure when type
k treatment is assigned, the GDL rule becomes the DL rule. The asymptotic
variance, nV ar(Nn,1/n), is

σ2
DL =

q1q2(p1 + p2)

(q1 + q2)3
=

Q1Q2(P1 + P2)

(Q1 + Q2)3
,

which is the smallest among all the adaptive designs considered in Hu and Rosen-
berger (2003).
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4. Discussion

One important application of the GDL rule in clinical studies is that it can

be used for continuous responses. For instance, we may apply the GDL rule

to the example studied in Section 8 of Eisele and Woodroofe (1995), where the

responses are normally distributed and the desired target proportion is the pop-

ular Neyman allocation. Similar to Remark 2.1, we can choose the ak and Dm,k

sequentially to target the desired proportion. It would be interesting to com-

pare this design with the doubly adaptive biased coin designs (Hu and Zhang

(2004a)) in which the allocation probabilities are functions of sequential estima-

tors of unknown parameters, and the sequential estimation-adjusted urn models

(Zhang, Hu and Cheung (2006)). However, when the ak depend on the process

(as indicated in Remark 2.1), the asymptotic properties of the allocation propor-

tion Nn,1/n are unknown. This is an interesting future research topic.

For the randomized play-the-winner rule with delayed responses, Wei (1988)

suggested updating the urn when responses become available. For a generalized

Friedman’s urn model (the randomized play-the-winner rule is a special case) with

delayed responses, the limiting distribution of the urn composition was derived

in Bai, Hu and Rosenberger (2002). Further, Hu and Zhang (2004b) obtained

the limiting distribution of the allocation proportion. Both papers showed that

the delayed responses do not affect the asymptotic properties of the generalized

Friedman’s urn model. Here we obtain similar results for the GDL rule. Never-

theless, the arguments are only valid in the context of large samples. In practice,

the delayed mechanism is important and should not be ignored, as indicated by

our simulation findings.

5. Proofs

Theorem 3.1 is proved in this section. Recall that Zn = (Zn,0, Zn,1, Zn,2)

represents the numbers of balls after n draws and |Z+
n | = Z+

n,0 + Z+
n,1 + Z+

n,2.

Because every immigration ball is replaced, Z+
n,0 = Zn,0 = Z0,0 for all n. Let

Xn be the result of the nth draw, where Xn,k = 1 if the selected ball is of type

k and Xn,k = 0 otherwise, k = 0, 1, 2. Further, let N∗
n = (N∗

n,0, N
∗
n,1, N

∗
n,2) =∑n

m=1 Xm, so N∗
n,k is the number of selected type k balls in the first n draws.

Let un = max{m : N ∗
m,1 + N∗

m,2 ≤ n}. Then un is the total number of draws of

treatment type balls in the first n assignments, and Nn,k = N∗
un,k, k = 1, 2.

Let Ik(m,n) be the indicator function, which takes value 1 if the outcome

Ym,k on treatment k of the subject assigned at the mth draw occurs after the

(m + n)th draw and before the (m + n + 1)th draw, k = 1, 2. Remember that,

when Ym,k occurs, we add Dm,k = D(Ym,k) balls of type k into the urn. So, for

given m and n, if Ik(m,n) = 1, we add Xm,kDm,k balls of type k to the urn.



400 LI-XIN ZHANG, WAI SUM CHAN, SIU HUNG CHEUNG AND FEIFANG HU

Consequently, if m = 0, Ik(n − m,m) = Ik(n, 0) and the outcome on treatment

k assigned at time n occurs after the nth draw and before the (n + 1)th draw;

. . .; if m = n − 1, Ik(n − m,m) = Ik(1, n − 1) and the outcome on treatment

k assigned at time 1 occurs after the nth draw and before the (n + 1)th draw.

Hence, after the nth draw and before the (n + 1)th draw, the numbers of balls

of each type added according to the outcomes are

Wn,k =
n−1∑

m=0

Ik(n − m,m)Xn−m,kDn−m,k

=

n∑

m=1

Ik(m,n − m)Xm,kDm,k, k = 1, 2.

The change in the number of type k balls after n draws from the time of the

(n − 1)th draw is Zn,k − Zn−1,k = akXn,0 − Xn,k + Wn,k, k = 1, 2. Recall that

ak here is the number of added type k balls when an immigration ball is drawn.

So, for k = 1, 2, the number of type k balls added after n draws is

Zn,k − Z0,k = ak

n∑

j=1

Xj,0 −
n∑

j=1

Xj,k +

n∑

j=1

Wj,k

= ak

n∑

m=1

Xm,0 −
n∑

m=1

Xm,k +
n∑

m=1

n∑

j=m

Xm,kDm,kIk(m, j − m)

= ak

n∑

m=1

Xm,0 −
n∑

m=1

Xm,k +

n∑

m=1

∞∑

j=m

Xm,kDm,kIk(m, j − m)

−
n∑

m=1

∞∑

j=n+1

Xm,kDm,kIk(m, j − m)

= ak

n∑

m=1

Xm,0 +
n∑

m=1

Xm,k(Dm,k − 1) −
n∑

m=1

∞∑

j=n+1

Xm,kDm,kIk(m, j − m)

=: ak

n∑

m=1

Xm,0 +

n∑

m=1

Xm,k(Dm,k − 1) − Rn,k. (5.1)

That is

∆Zn,k = akXn,0 + Xn,k(Dn,k − 1) − ∆Rn,k, k = 1, 2,

(5.2)

where ∆ denotes the differencing operand of a sequence {zn}. From (5.1), it
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follows that

Zn,k − Z0,k = akN
∗
n,0 − qkN

∗
n,k +

n∑

m=1

Xm,k(Dm,k − E[Dm,k]) − Rn,k

=: akN
∗
n,0 − qkN

∗
n,k + Mn,k − Rn,k, k = 1, 2. (5.3)

We prove Theorem 3.1 by showing that Rn,k and Zn,k can be neglected, and the

major term Mn,k can be approximated by a Wiener process. Notice that Zn,k is

a function of {Ik(m, j)}. We show that Zn,k can be neglected by using the fact

that E[Ik(n, j)] decays very rapidly. So we first replace Assumption 3.1 by the

following one on Ik(n, j).

Condition A. For some ϕ > 1,
∑∞

j=n E[Ik(m, j)] ≤ Cn−ϕ, for all n, m and

k = 1, 2.

The summation in Condition A is the probability of the event that the subject

who is assigned to treatment k at the mth draw responds after at least another n

draws, and it is required that this probability decays with a power rate, similar

to Assumption 3.1. The following claim provides the connection.

Claim. Assumption 3.1 implies Condition A with ϕ = γ − 1 − ε for any ε > 0.

Proof. Let N ∗
m = N∗

m,1 + N∗
m,2. Notice that E[Ik(m,n)] is the probability of

the event that the N ∗
mth subject (who is assigned after the mth ball is drawn)

on treatment k responds after the (m + n)th draw and before the (m + n + 1)th

draw. So E[Ik(m,n)|N ∗
m = p] ≤ P(E1|N∗

m = p) + P(E2|N∗
m = p), where E1 is the

event that the pth subject responds after at least another n1−ε subjects arrive,

and E2 is the event that there at least n − n1−ε draws of type 0 balls from the

mth draw to the (m + n)th draw. The event E1 depends only on the response

time of the pth subject and the waiting times for future subjects. However,

the event {N ∗
m = p} depends only on past draws and assignments. So, E1 and

{N∗
m = p} are independent. It follows that P(E1|N∗

m = p) = P(E1) ≤ Cn−γ(1−ε)

by Assumption 3.1. For P(E2|N∗
m = p), we consider the event E3 that the largest

run of “1”s in Xm,0, . . . , Xm+n,0 is at least nε. Notice that, for event EC
3 , there

are at least n/nε zeros in Xm,0, . . . , Xm+n,0, and then at most n−n/nε ones. So,

E2 does not occur. It follows that P(E2|N∗
m = p) ≤ P(E3|N∗

m = p). Hence we

conclude that

E[Ik(m,n)] ≤ Cn−γ(1−ε) + P(E3)

≤ Cn−γ(1−ε) +

m+n∑

i=m

P{Xi,0 = · · · = Xi+[nε],0 = 1}.
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On the other hand,

P{Xi,0 = · · · = Xi+[nε],0 = 1}
= E

[
I{Xi,0 = · · · = Xi+[nε]−1,0 = 1}P[Xi+[nε],0 = 1|Fi+[nε]−1]

]

= E

[
I{Xi,0 = · · · = Xi+[nε]−1,0 = 1} Z0,0

|Z+
i+[nε]−1|

]

≤ P{Xi,0 = · · · = Xi+[nε]−1,0 = 1} Z0,0

Z0,0 + A([nε] − 1)
,

since at each stage from stage i to i + [nε] − 1 at least A = a1 + a2 balls are
added to the run and no ball is removed, where Fn = σ(X1, . . . ,Xn,Y1, . . . ,Yn)
is the history sigma field. Here and in the remainder of this paper, we take
Yn = (Yn,1, . . . , Yn,K), n ≥ 1. So,

P{Xi,0 = · · · = Xi+[nε],0 = 1} ≤
[nε]∏

j=1

Z0,0

Z0,0 + A(j − 1)
≤ C exp{−nε}.

It follows that E[Ik(m,n)] ≤ Cn−γ(1−ε) + Cn exp{−nε} ≤ Cn−γ(1−ε). Hence∑∞
j=n E[Ik(m, j)] ≤ Cn−γ(1−ε)+1.

The next lemma gives the convergence rate of the remainders Rn,k, k = 1, 2.

Lemma 5.1. Assume E[|Dm,k|p] < ∞ for any p > 0 and Condition A is satisfied.

Then for any δ > 0, we have

E

[
max
m≤n

|Rm,k|
]

= o
(
n

1
(ϕ+1)+δ

)
, k = 1, 2, (5.4)

|Rn,k| = o
(
n

1
(ϕ+1)+δ

)
a.s., k = 1, 2. (5.5)

Proof. (5.5) is implied by (5.4) if we notice that

∞∑

i=1

P

(
max

2i≤n≤2i+1

|Rn,k|
n

1
(ϕ+1)+2δ

≥ ε
)
≤ C

∞∑

i=1

2−iδ < ∞.

Now we need to verify (5.4). Fix k. For any 1 ≤ i ≤ n,

|Ri,k| =
∣∣∣

i∑

m=1

∞∑

j=i−m+1

Xm,kIk(m, j)Dm,k

∣∣∣

≤
i∑

m=1

∞∑

j=i−m+1

Ik(m, j)|Dm,k |I{|Dm,k| ≤ n
δ
3 } +

i∑

m=1

|Dm,k|I{|Dm,k| > n
δ
3 }

≤ n
δ
3

i∑

m=1

∞∑

j=i−m+1

Ik(m, j)+

n∑

m=1

|Dm,k|I{|Dm,k| > n
δ
3 }.
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The expectation of the second term does not exceed

nE[|D1,k|I{|D1,k| > n
δ
3 }] ≤ n1− δp

3 E[|D1,k|p] ≤ C

whenever p ≥ 3/δ. So, it is enough to show that

E

[
max
i≤n

Ri,k

]
= O

(
n

1
(ϕ+1)

+ δ
2

)
, (5.6)

where Ri,k =
∑i

m=1

∑∞
j=i−m+1 Ik(m, j). Let 1 ≤ P ≤ n be an integer whose

value will be specified later. Then Ri,k ≤ P if i ≤ P . For P ≤ i ≤ n,

Ri,k =

i∑

m=i−P+1

∞∑

j=i−m+1

Ik(m, j) +

i−P∑

m=1

∞∑

j=i−m+1

Ik(m, j)

≤ P +
i−P∑

m=1

∞∑

j=P

Ik(m, j) ≤ P +
n∑

m=1

∞∑

j=P

Ik(m, j).

It follows that E[maxi≤n Ri,k] ≤ P +
∑n

m=1

∑∞
j=P E[Ik(m, j)] ≤ P + CnP−ϕ.

Choosing P = [n1/(ϕ+1)+δ/2 ] yields (5.6).

Lemma 5.2. Let Fn = σ(X1, . . . ,Xn,Y1, . . . ,Yn). Let Vn,0 =
∑n

m=1(Xm,0 −
E[Xm,0|Fm−1]) and Vn,k =

∑n
m=1{Xm,k(Dm,k − 1) − E[Xm,k(Dm,k − 1)|Fn−1]},

k = 1, 2. Assume E[|Dm,k|p] < ∞ for p ≥ 2. Then there exists a constant Cp > 0

such that the martingales {Yn,k,Fn; n ≥ 1}, k = 0, 1, 2, satisfy

E

[
max
i≤n

|Vm+i,k − Vm,k|p
]
≤ Cpn

p
2 for all m and n, k = 0, 1, 2. (5.7)

Proof. Notice that |∆Vn,0| ≤ 1 and

E

[
|∆Vn,k|p

∣∣∣Fn−1

]
≤ 2p−1(1 + E[|Dn,k|p]) ≤ Cp, k = 1, 2.

(5.7) follows from the Rosenthal type inequality.

Let Un,k = akVn,0 + Vn,k, k = 1, 2. Un,k is the sum of conditionally centered

changes in number of type k balls in the first n draws, k = 1, 2. It can be shown

that {Un,k,Fn; n ≥ 1} is a martingale satisfying a similar inequality as (5.7),

k = 1, 2. The next lemma gives the convergence rate of the urn proportions Zn.

Lemma 5.3. Under Assumption 3.2 and Condition A, for each k = 1, 2 and

any δ > 0,

max
j≤n

Zj,k ≤ Z0,k ∨ akZ0,0

qk
+ 2max

j≤n
|Uj,k| + max

j≤n
|Rj,k|, (5.8)
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E|Zn,k| = o
(
n

1
ϕ+1

+δ
)
, (5.9)

max
j≤n

|Zj,k| = o
(
n

1
3
+ 1

3ϕ+3
+δ
)

in L1, (5.10)

Zn,k = o
(
n

1
3
+ 1

3ϕ+3
+δ
)

a.s.. (5.11)

Proof. According to (5.2), it is obvious that

Zn,k = Zn−1,k +
akZ

+
n−1,0 − qkZ

+
n−1,k

|Z+
n−1|

+ ∆Un,k − ∆Rn,k

= Zn−1,k +
akZ0,0 − qkZ

+
n−1,k

|Z+
n−1|

+ ∆Un,k − ∆Rn,k. (5.12)

Then

Zn,k ≤ Zn−1,k + ∆Un,k − ∆Rn,k, if Zn−1,k ≥ ak
Z0,0

qk
; (5.13)

Zn,k ≤ Zn−1,k + ak + ∆Un,k − ∆Rn,k, if Zn−1,k < ak
Z0,0

qk
.

Let Sn = max{1 ≤ j ≤ n : Zj,k < akZ0,0/qk}, where max(∅) = 0. Then,

according to (5.13),

Zn,k ≤ Zn−1,k + ∆Un,k − Rn,k + Rn−1,k ≤ · · ·
≤ ZSn,k + ∆USn+1,k + · · · + ∆Un,k − Rn,k + RSn,k

≤ Z0,k ∨
{

ak
Z0,0

qk

}
+ Un,k − USn,k − Rn,k + RSn,k

≤ Z0,k ∨
{

ak
Z0,0

qk

}
+ Un,k − USn,k + max

m≤n
|Rm,k|. (5.14)

(5.8) is proved. Notice that Sn ≤ n is a stopping time. It follows that EUn,k =

EUSn,k. By (5.4) and (5.14) we conclude that EZn,k ≤ o(n1/(ϕ+1)+δ). (5.9) is

proved by the fact that Zn,k ≥ −1 and |Zn,k| = Zn,k + 2Z−
n,k.

Next, we verify (5.11). Fix m. By replacing Zj,k with Zm+j,k in the definition

of the stopping time Sn, with similar arguments as in showing (5.8) we can show

that

max
0≤i≤n

Zi+m,k ≤ Zm,k ∨ akZ0,0

qk
+ 2 max

0≤i≤n
|Um+i,k − Um,k| + max

j≤n+m
|Rj,k|. (5.15)
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Now, for each p ≥ 2 and 0 < t < 1/2, if n ≥ 1/(4t), then by (5.7), (5.9) and

(5.15),

E max
m≤n

Zm,k ≤ E

[
max

i
max

i[nt]≤m≤(i+1)[nt]
Zm,k

]

≤ ak
Z0,0

qk
+
∑

i

E

[
|Zi[nt],k|

]
+ E

[
max
j≤n

|Rj,k|
]

+2E
[
max

i
max

i[nt]≤m≤(i+1)[nt]
|Um,k − Ui[nt],k|

]

≤ C
{
t−1n

1
ϕ+1

+δ + n
1

ϕ+1
+δ
}

+ 2
(
E

[
max

i
max

i[nt]≤m≤(i+1)[nt]
|Um,k − Ui[nt],k|p

]) 1
p

≤ C
{
t−1n

1
ϕ+1

+δ + n
1

ϕ+1
+δ
}

+ 2
(∑

i

E

[
max

i[nt]≤m≤(i+1)[nt]
|Um,k − Ui[nt],k|p

]) 1
p

≤ C
{
t−1n

1
ϕ+1

+δ + n
1

ϕ+1
+δ +

(∑

i

([nt])
p
2

) 1
p
}

≤ C
{
t−1n

1
ϕ+1

+δ + t
1
2
− 1

p n
1
2

}
,

where the sums and maximums are taken over {i ≥ 0 : i[nt] ≤ n}. Here C > 0

is a constant and does not depend on t and n. Notice that Zm,k ≥ −1. If

t = n−1/3+2/(3ϕ+3), we have

E

[
max
m≤n

|Zm,k|
]
≤ 2 + E

[
max
m≤n

Zm,k

]
≤ Cn

1
3
+ 1

3(ϕ+1)
+δ

+ Cn
1
3
+ 1

3(ϕ+1)
+ 1

p
( 1
3
− 2

3(ϕ+1)
)
.

Choosing p such that 1/p(1/3 − 2/[3(ϕ + 1)]) ≤ δ yields (5.10) immediately.

With the same arguments as in showing (5.4) from (5.7), (5.11) can be derived

easily from (5.10) and the Borel-Cantelli Lemma. The proof of the lemma is now

complete. (5.11) and (5.4) indicates that the terms Zn,k and Rn,k in (5.3) can be

neglected.

Now we begin the proof of Theorem 3.1. Let s = a1/q1 + a2/q2. Then

vk = (ak/qk)/s, k = 1, 2. Let An = σ(X1, . . . ,Xn,Xn+1,Y1, . . . ,Yn), Mn,k =∑n
m=1 Xm,k(Dm,k − EDm,k), k = 1, 2. Then {(Mn,1,Mn,2),An; n ≥ 1} is a

martingale with

n∑

m=1

E

[
(∆Mm,k)

2|Am−1

]
=

n∑

m=1

Xm,kVar (Dm,k) = N∗
n,kσ

2
k, (5.16)

E[∆Mn,k · ∆Mn,j|An−1] = 0, j 6= k, and E[|∆Mn,k|p|An−1] ≤ 2p
E[|D1,k|p]. Ac-

cording to the law of the iterated logarithm for martingales, we have

Mn,k = O(
√

n log log n) a.s..

(5.17)
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Combining (5.3), (5.5), (5.11) and (5.17) yields that, for any δ > 0,

akN
∗
n,0 − qkN

∗
n,k = −Mn,k + o

(
n

1
3
+ 1

3ϕ+3
+ δ

2

)

= −Mn,k + o
(
n

γ+1
3γ

+δ
)

(5.18)

= O(
√

n log log n) a.s., k = 1, 2.

Together with the fact that N ∗
n,0 + N∗

n,1 + N∗
n,2 = n, we have

N∗
n,k = n

ak

qk

a1
q1

+ a2
q2

+ 1
+ O(

√
n log log n)

= n
s

s + 1
vk + O(

√
n log log n) a.s., k = 1, 2, (5.19)

a1q2N
∗
n,2 − a2q1N

∗
n,1 = a2(a1N

∗
n,0 − q1N

∗
n,1) − a1(a2N

∗
n,0 − q2N

∗
n,2)

= a1Mn,2 − a2Mn,1 + o
(
n

γ+1
3γ

+δ
)

a.s.. (5.20)

We consider the martingale {Mn =: a1Mn,2 − a2Mn,1}. From (5.16) and (5.19),
it follows that

n∑

m=1

E

[
(∆Mm)2|Am−1

]

=

n∑

m=1

a2
1E

[
(∆Mm,2)

2|Am−1

]
+ a2

2

n∑

m=1

E

[
(∆Mm,1)

2|Am−1

]

= n
s

s + 1
(a2

1v2σ
2
2 + a2

2v1σ
2
1) + O(

√
n log log n) a.s..

By the Skorokhod Embedding Theorem (cf., Hall and Heyde (1980)), there exists
an An-adapted non-decreasing sequence of random variables {Tn} and a standard
Brownian motion B, such that

E

[
∆Tn|An−1] = E

[
(∆Mn)2|An−1

]
, E|∆Tn|

p
2 ≤ CpE|∆Mn|p ≤ cp, ∀p > 2,

Mn = B(Tn), n = 1, 2, . . . .
(5.21)

Note that {∑n
m=1(∆Tm−E[∆Tm|Am−1])} is also a martingale. According to the

Law of the Iterated Logarithm, we have

Tn =
n∑

m=1

E[∆Tm|Am−1] + O(
√

n log log n)

= n
s

s + 1
(a2

1v2σ
2
2 + a2

2v1σ
2
1) + O(

√
n log log n) a.s..
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On the other hand, by (5.19), we have N ∗
n,1+N∗

n,2 = [s/(s+1)]n+O(
√

n log log n)

a.s.. So, un = max{m : N ∗
m,1 + N∗

m,2 ≤ n} = [(s + 1)/s]n + O(
√

n log log n) a.s..

It follows that

Tun = n(a2
1v2σ

2
2 + a2

2v1σ
2
1) + O(

√
n log log n) a.s..

(5.22)

Substituting (5.22), (5.21) into (5.20) and applying the properties of Brownian

motion (cf., Theorem 1.2.1 of Csörgő and Révész (1981)), we have

a1q2Nn,2 − a2q1Nn,1 = a1q2N
∗
un,2 − a2q1N

∗
un,1 = B(Tun) + o

(
u

γ+1
3γ

+δ
n

)

= B
(
n(a2

1v2σ
2
2 + a2

2v1σ
2
1)
)

+ O
(
(n log log n)

1
4 (log n)

1
2

)
+ o
(
n

γ+1
3γ

+δ
)

= B
(
n(a2

1v2σ
2
2 + a2

2v1σ
2
1)
)

+ o
(
n

γ+1
3γ

+δ
)

a.s..

Together with the fact that Nn,1 + Nn,2 = n, we have

Nn,1 =
a1q2

a1q2 + a2q1
n −

B
(
n(a2

1v2σ
2
2 + a2

2v1σ
2
1)
)

a1q2 + a2q1
+ o
(
n

γ+1
3γ

+δ
)

a.s..

Notice that σ2 = (a2
2v1σ

2
1 + a2

1v2σ
2
2)/(a1q2 + a2q1)

2, where σ2 is defined in (3.1).

Let

W (t) = − 1

σ

B
(
t(a2

1v2σ
2
2 + a2

2v1σ
2
1)
)

a1q2 + a2q1
.

Then {W (t); t ≥ 0} is a standard Brownian motion. The proof of Theorem 3.1

is complete.
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