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Abstract: We investigate the stability, in terms of V -uniform ergodicity or tran-

sience, of cyclic threshold autoregressive time series models. These models cycle

through one of a number of collections of subregions of the state space when the

process is large. Our results can be applied in cases where the model has multiple

cycles and/or affine thresholds. The bounds on the parameter space are sharper

than those in previous results, and are easily verified. We extend these results to

autoregressive nonlinear time series that can be approximated well by a threshold

model (threshold-like).
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1. Introduction

1.1. Background

The threshold autoregressive model of order p, delay d ≤ p, and s regimes

(TAR(p; d; s)) is the piecewise linear autoregression

Yt =



















φ
(1)
1 Yt−1 + · · · + φ

(1)
p1 Yt−p1 + ξt, Yt−d ≤ r1

φ
(i)
1 Yt−1 + · · · + φ

(i)
pi Yt−pi

+ ξt, i = 2, . . . , s− 1 ri−1 < Yt−d ≤ ri,

φ
(s)
1 Yt−1 + · · · + φ

(s)
ps Yt−ps + ξt, Yt−d > rs−1

(1.1)

where φ
(i)
1 , . . . , φ

(i)
pi are the autoregression coefficients, pi ≤ p, i = 1, . . . , s, the

{ξt} are mean zero i.i.d. random variables, and the constants ri, i = 1, . . . , s− 1,

are called the thresholds of the process. We consider more general thresholds of

the form aizt−d + bi = 0, where zt−d = (yt−1, . . . , yt−d)
′

, and ai, bi are vectors

in R
p, i = 1, . . . , s− 1. These generalized thresholds allow for a richer variety of

behaviors.

Stability refers to the set of parameter values {φ
(i)
j }, j = 1, . . . , pi, i = 1, . . . , s

that allow {Yt} to reach a stationary distribution. There exist stability conditions
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explicitly for, or that can be applied to, TAR(p; d; s) models. However, much of

the existing research applies to specific models and is not generally applicable.

Other results are general, but are either difficult to verify or are so strong that

they unnecessarily restrict the parameter space. We attempt to remedy these

defects by providing easily verified conditions that are applicable to a wide class

of models, and that allow the recovery of more, if not all, of the stable parameter

space.

1.2. Markov chain embedding

The TAR(p; d; s) model from (1.1) can be embedded in the following general

state Markov chain on R
p:

Xt =
l
∑

i=1

AiI(Xt−1 ∈ Ri)Xt−1 + νt, (1.2)

with Xt = (Yt, Yt−1, . . . , Yt−p+1)
′

, νt = ξt(1, 0, . . . , 0)
′

, and the space R
p is parti-

tioned into l regions Ri, i = 1, . . . , l, with the Ri determined by, but not always

corresponding exactly to, the s− 1 thresholds aiZt−d + bi = 0, i = 1, . . . , s − 1.

The Ai are called the companion matrices and are given by

Ai =



















φ
(i)
1 φ

(i)
2 · · · φ

(i)
pi−1 φ

(i)
pi

1 0 · · · 0 0

0 1 0 · · · 0
... 0

. . . 0 0

0
... · · · 1 0



















, i = 1, . . . , l.

Since the regions do not always correspond to the thresholds, a particular com-

panion matrix may apply to more than one region.

Embedding the time series in the Markov chain allows one to take ad-

vantage of existing Markov chain stability results. These results are often ex-

pressed as Foster-Lyapunov drift criteria. Authors such as Cline and Pu (2001),

Meyn and Tweedie (1993), and Tjøstheim (1990), among others, have followed

this strategy.

1.3. Cyclic Models

Cyclic threshold autoregressive time series models exhibit asymptotic cyclic

behavior, i.e., the Markov chain {Xt} tends to cycle through one of a num-

ber of collections of subregions of the state space when the process is large.

Tong and Lim (1980) originally introduced threshold autoregressive models to

account for, among other things, cyclic phenomena in time series data.
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Define the deterministic skeleton {xt} of the Markov chain {Xt} to be the

process with the additive errors removed, i.e.,

xt =
l
∑

i=1

AiI(xt−1 ∈ Ri)xt−1. (1.3)

A k-cycle for the deterministic skeleton is a collection C = {R(1), . . . , R(k)} of k

regions with corresponding companion matrices {A(1), . . . , A(k)}, so that x ∈ R(i)

implies A(i)x ∈ R(i+1) mod (k). The general cyclic case has 1 ≤ m < ∞ cycles

C1, . . . ,Cm, each of length ki, i = 1, . . . ,m. A cyclic TAR(p; d; s) occurs where

the skeleton has one or more cycles, all points are mapped by the skeleton to

a cycle by a uniformly finite time, and the behavior of {Xt} mirrors that of

{xt} when {Xt} is large. This entails certain assumptions on the behavior of

the skeleton and the error distribution. We formalize this in our assumptions in

Section 3. Tjøstheim (1990) dealt briefly with the case of a single-cycle cyclic

TAR(p, d, s) model, and we have borrowed and modified some of his notation.

In dealing with stability of Markov chains, Meyn and Tweedie (1993), Num-

melin (1984), and Tjøstheim (1990) each employed a k-step method which takes

advantage of the fact that stability of the one-step chain {Xt} and the k-step

chain {Xtk} are equivalent for a finite positive integer k, though this equivalence

has not been demonstrated when V -uniform ergodicity is the criteria. Stabil-

ity conditions for {Xt} are then determined through analysis of {Xtk}. Cyclic

TAR(p, d, s) models are particularly amenable to this approach with k =
∏

ki;

these models need not shrink in expectation at every transition, just at each pass

through the cycle.

In summary, we develop stability criteria for cyclic TAR(p, d, s) models by

embedding the time series {Yt} in the Markov chain {Xt}. Due to cyclicity

we consider the k-step chain {Xtk}. Stability of {Xtk} is defined as V -uniform

ergodicity; stability conditions for {Xtk} are based on the stability of its skeleton

{xtk} and stability of the error distribution. The sufficiency of these conditions is

demonstrated through the use of Foster-Lyapunov drift criteria. We then employ

an original result which equates the V -uniform ergodicity of {Xtk} with that of

{Xt}. Stability of {Yt} follows.

The paper is organized as follows: lemmas containing the drift conditions

for V -uniform ergodicity and transience, and establishing the equivalence of the

V -uniform ergodicity of {Xt} and {Xtk}, are in Section 2. Section 3 contains the

stability results, some examples, and an extension of the stability results to more

general nonlinear autoregressive time series. A brief discussion is in Section 4,

and proofs are in Section 5.
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2. General State Markov Chains

We provide some definitions here, referring the reader to Meyn and Tweedie

(1993) for these and additional explanation. In the following we assume {Xt} is

a Markov chain.

2.1. V -uniform ergodicity

Following Meyn and Tweedie (1993), define for a function V ≥ 1 the V -norm

distance between two kernels P1 and P2 as

|‖ P1 − P2 |‖V := sup
x

sup
|g|≤V

|P1(x, g) − P2(x, g)|

V (x)
, (2.1)

where P (x, g) :=
∫

g(y)P (x, dy) for a kernel P and a measurable function g. Let

P and P n denote, respectively, the one-step and n-step transition kernels of {Xt};

if the stationary distribution of {Xt} exists, denote it by π and define the kernel

π(x,A) = π(A) for all x and sets A. V -uniform ergodicity of {Xt} is equivalent

to geometric convergence of P to π in the V -norm (Meyn and Tweedie (1993),

Theorem 16.0.1), i.e., |‖ P n − π |‖V ≤ Rr−n, R <∞, r > 1, for any integer n.

Note that V ≡ 1 implies both uniform ergodicity and geometric ergodicity. In

addition to convergence of the n-step transition probabilities, V -uniform ergodic-

ity implies convergence of moments: if g(x) = xp is bounded by the test function

V (x), then P n(x, g) converges to π(g) in the V -norm. Meyn and Tweedie (1993,

Theorem 17.0.1) established asymptotic results for V -uniformly ergodic Markov

chains with obvious implications for large sample inference about nonlinear time

series. They also made connections between V -uniform ergodicity and mixing

properties (see Liebscher (2005)) for a more recent paper in a similar vein).

2.2. Equivalence of the V -uniform ergodicity of {X t} and {Xtk}

Suppose k is a positive integer. If the Markov chain {Xt} with transition

kernel P is V -uniformly ergodic then so is {Xtk}, since {Xtk} has transition kernel

P k and, restricting ourselves to positive integers n so that n/k is an integer,

|‖ P n − π |‖V ≤ Rr−n =⇒|‖ (P k)n/k − π |‖V ≤ R(rk)−n/k, R <∞, rk > 1.

Thus V -uniform ergodicity of {Xt} and {Xtk} are equivalent if V -uniform er-

godicity of {Xtk} in turn implies V -uniform ergodicity of {Xt}. This is precisely

what the following tells us.

Lemma 1. Suppose {Xt} is a Markov chain having transition kernel P with

|‖ P |‖V < ∞. Assume for a positive integer k < ∞ and function V ≥ 1 that

{Xtk} is V -uniformly ergodic. Then {Xt} is V -uniformly ergodic.
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Lemma 1 allows us to restrict our search for stability conditions for {Xt} to

a search for stability conditions for {Xtk}.

2.3. Drift conditions for V -uniform ergodicity and transience

Let Ex[·] := Ex[·|X0 = x] and Px(·) := Px(·|X0 = x). We state brief def-

initions here, reminding the reader of the text by Meyn and Tweedie (1993) as

a reference. These are generalized definitions of standard concepts in the theory

of countable state Markov chains.

A general state Markov chain {Xt} with state-space X is called ψ-irreducible

if there exists a measure ψ on the Borel sets of X such that whenever ψ(A) > 0,

we have Px(τA < ∞) > 0 for all x ∈ X, where τA is the first return time to the

set A. A ψ-irreducible Markov chain is called aperiodic if there is no collection

of disjoint subsets of the state-space, other than the state-space itself, that the

chain cycles through with probability one.

Assuming aperiodicity and ψ-irreducibility of {Xt}, the various types of

ergodicity of Markov chains can be demonstrated through the use of Foster-

Lyapunov drift criteria. Lemma 2 generalizes drift conditions given by Meyn

and Tweedie for V -uniform ergodicity (1993, Theorem 16.0.1), and for transience

(Tweedie, (1976, Theorem 11.3)).

Lemma 2. Assume {Xt} is a ψ-irreducible, aperiodic general state Markov chain

on R
p.

1. Suppose V (·) ≥ 1 is a measurable function, unbounded and locally bounded. If

for some integer 0 < k <∞ and all M <∞

lim sup
V (x)→∞

Ex[V (Xk)]

V (x)
<1, sup

V (x)≤M
Ex[V (Xk)]<∞, sup

x

Ex[V (X1)]

V (x)
<∞ (2.2)

and the level sets C
(V )
M := {x : V (x) ≤ M} are petite, then {Xt} is V -

uniformly ergodic.

2. Suppose V is a measurable, nonnegative, unbounded function. Suppose that

ψ({x : V (x) > M}) > 0 for all M <∞. If for some integer 0 < k <∞

lim sup
V (x)→∞

Ex

[

V (x)

V (Xk)

]

< 1, (2.3)

then {Xt} is transient.

By (2.1), for any measurable V ≥ 1 and measurable function g

|‖ P |‖V := sup
x

sup
|g|≤V

|Pg|

V (x)
= sup

x
sup
|g|≤V

|Ex[g(X1)]|

V (x)
≤ sup

x

Ex[V (X1)]

V (x)
,
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implying that if {Xtk} is V -uniformly ergodic and supxEx[V (X1)]/V (x) < ∞,

then |‖ P |‖V < ∞, an assumption of Lemma 1. The process {Xt} cannot have

unbounded explosions and be stable.

An alternative formulation of Lemma 2.1 above would assume {Xt} is a

T -chain. Theory concerning petite sets and T -chains may be found in Meyn

and Tweedie (1993). Aperiodicity and ψ-irreducibility are easy consequences of

the time series having an error distribution which is continuous and everywhere

positive; the relationship between level sets being petite and {Xt} being a T -chain

is another consequence of this (Cline and Pu (1998)).

The function V referred to in Lemma 2 is called a test function. Applying

drift-criteria to demonstrate the various forms of ergodicity requires constructing

test functions of the process that satisfy these criteria. This is usually done on a

case by case basis that can be tedious, and produces results limited in scope. We

derive a ‘catch-all’ test function which applies in a variety of situations, saving

the time and effort involved in test function construction.

The stability and transience conditions in Lemma 2 nearly partition the

parameter space as is to be expected by the recurrence/transience dichotomy of

Markov chains. One might expect a drift condition sufficient for transience would

be that lim supV (x)→∞Ex[V (Xk)/V (x)] > 1, but note the intermediate condition

lim infV (x)→∞Ex[V (Xk)/V (x)] ≥ 1 would be sufficient for non-positivity, while

transience is a ‘stronger’ form of instability than non-positivity and thus would

require a more unstable drift condition, leaving us to require the stronger condi-

tion in (2.2): lim supV (x)→∞Ex

[

V (x)/V (Xk)
]

< 1.

3. Stability Results and Examples

3.1 Cyclic TAR(p; d; s) models

Intuitively, when {Xt} is large the errors {ξt} become negligible and the

stochastic process {Xt} behaves like the deterministic system {xt}. Suppose

the dynamics of {xt} keep it away from the thresholds. When large, {Xt} will

therefore tend to avoid the thresholds. Thus {Xt} will have a stability criterion

analogous to that of {xt}, i.e., that {Xt} shrinks in expectation with each pass

through the cycle. Demonstrating transience is a worst-case affair; if just one of

the cycles were such that {xt} grew with each pass through the cycle, then {Xt}

would be transient.

Formally, suppose {Xt} is as defined in (1.2), with state space R
p partitioned

into regions Ri, each region with companion matrix Ai, i = 1, . . . , l, l <∞. Sup-

pose there existm <∞ cycles C1, . . . ,Cm for the skeleton {xt} defined as in (1.3),

each cycle Ci of finite length ki, i = 1, . . . ,m. Suppose each cycle Ci consists

of regions R
(i)
1 , . . . , R

(i)
ki

with corresponding companion matrices A
(i)
1 , . . . , A

(i)
ki

,

i = 1, . . . ,m.
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For an integer n < ∞ and a sequence i1, . . . , in of elements from {1, . . . , l},

define an n-path to be a sequence of n regions Ri1 , . . . , Rin , with companion

matrices Ai1 , . . . , Ain , that the skeleton {xt} of the process moves through, i.e.,

xt−1 = x ∈ Rij implies xt = Aijx ∈ Rij+1 , j = 1, . . . , n− 1. When x begins in a

cycle, the n-path consists of the regions in the cycle; when x does not begin in a

cycle the n-path consists of some other collection of regions.

Let ‖ · ‖ denote the Euclidean norm throughout and let Bδ(x) := {y :‖

y − x ‖< δ}.

Assumption 1. (A1) There exist M1 < ∞ and, associated with each region

Rj, j = 1, . . . , l, a positive, strictly increasing function gj(·) with g(x) → ∞ as

x→ ∞, so that for an arbitrary n-path Ri1 , . . . , Rin , if ‖ x ‖> M1,

x ∈ Rij ⇒ Bgij
(‖Aij

x‖)(Aijx) ⊂ Rij+1 , j = 1, . . . , n− 1. (3.1)

Assume also that each gij satisfies a triangle inequality, gij (x+y) ≤ gij (x)+gij (y).

Assumption 2. (A2) Assume {xt} is such that there exist M2, n
∗ <∞ so that

for each x0 = x /∈ ∪iCi with ‖ x ‖> M2, there is an integer d = d(x) ≤ n∗

implying if ‖ xd ‖> M2 then xd ∈ ∪iCi.

(A1) has it that all x ∈ R
p with ‖ x ‖ large are mapped by the skeleton away

from the thresholds. (A2) is the condition that all large x ∈ R
p not in a cycle

that remain large are mapped by the skeleton to a cycle within a uniformly finite

time. In applications, satisfying these assumptions may require subdividing one

or more regions; suppose the partition of the state space R1, . . . , Rl is defined

both by the thresholds and any necessary further subdivision of these regions.

Since the skeleton is piecewise linear, vectors are mapped to vectors and

so, for example, if the rotation of the map is toward the interior of the next

region, the assumptions are satisfied. Many of the classic examples in the liter-

ature (see Chan, Petruccelli, Tong and Woolford (1985), Chen and Tsay (1991),

Guo and Petruccelli (1991), Kunitomo (2001) and Petruccelli and Woolford

(1984) for instance) satisfy these assumptions, and their results follow immedi-

ately from ours.

Example 1. Petruccelli and Woolford (1984) considered the SETAR(2;1;1)

model

Xt = φ1I(Xt−1 > 0)Xt−1 + φ2I(Xt−1 ≤ 0)Xt−1 + ξt.

Assume φ1 6= 0, φ2 6= 0. Note {Xt} is a Markov chain. The skeleton of {Xt}

is given by xt = φ1I(xt−1 > 0)xt−1 + φ2I(xt−1 ≤ 0)xt−1. Denote the regions

R1 = {x : x > 0}, R2 = {x : x ≤ 0}. Let Ri → Rj denote xt−1 ∈ Ri implies

xt ∈ Rj , i, j = 1, 2.



50 THOMAS R. BOUCHER AND DAREN B. H. CLINE

Depending on the values of sgn(φ1) and sgn(φ2), the cycles could be R1 → R1

and/or R2 → R2, or R1 → R2 → R1. These cycles are reached by any x0 = x ∈ R

within one transition (n∗ = 1 for any M2 ≥ 0), satisfying (A2). Since φ1 6= 0,

φ2 6= 0, (A1) is satisfied for any M1 ≥ 0 with g1(x) = |φ1x|, g2(x) = |φ2x|.

When one or more of the companion matrices are not of full rank, we can

have x large in magnitude ’mapped small’ by the skeleton. This does not prove to

be a problem since stability concerns the behavior of large values of the process.

If all of the Ai are of full rank, then large x are all mapped large by the skeleton.

Moreover, note that we need the cyclicity assumption to hold only for large x.

We apply these points in the next example. The model is reminiscent of

the ASTAR models discussed by Lewis and Stevens (1991), fit using adaptive

regression splines.

Example 2. Consider the TAR(2;2;3) model

Yt =











φ
(1)
1 Yt−1 + φ

(1)
2 Yt−2 + ξt, Yt−1 ≥ c, Yt−2 ≥ 0,

φ
(2)
1 Yt−1 + ξt, Yt−1 < c,

φ
(3)
1 Yt−1 + ξt, Yt−1 ≥ c, Yt−2 < 0.

Suppose ξt ∼ N(0, σ2), φ
(1)
1 > 0, φ

(1)
2 > 0, φ

(2)
1 < 0, φ

(3)
1 < 0, c > 0. Let

Xt = (Yt, Yt−1)
′

, xt = (yt, yt−1)
′

, νt = (ξt, 0)
′

and

A1 =

(

φ
(1)
1 φ

(1)
2

1 0

)

, A2 =

(

φ
(2)
1 0

1 0

)

, A3 =

(

φ
(3)
1 0

1 0

)

.

Define regions R1 = {(y1, y2) : y1 ≥ c, y2 ≥ 0}, R2 = {(y1, y2) : y1 < c},

R3 = {(y1, y2) : y1 ≥ c, y2 < 0}. The general state Markov chain {Xt} on R
2 and

its skeleton {xt} are

Xt = A1Xt−1I(Xt−1 ∈ R1) +A2Xt−1I(Xt−1 ∈ R2) +A3Xt−1I(Xt−1 ∈ R3) + νt,

xt = A1xt−1I(xt−1 ∈ R1) +A2xt−1I(xt−1 ∈ R2) +A3xt−1I(xt−1 ∈ R3).

Let Ri → Rj denote xt−1 ∈ Ri implies xt ∈ Rj . When the magnitude is large

the dynamics for the skeleton are R1 → R1, R2 → R2, R2 → R3, R3 → R2. The

region R2 feeds into two regions: when |yt−1| is small, points in R2 are mapped

back to R2; when |yt−1| is large, points in R2 are mapped to R3. Suppose

x0 = x ∈ R2. For M2 <∞,

‖ x1 ‖=‖ A2x ‖= |yt−1|× ‖ (φ
(2)
1 , 1)

′

‖> M2 ⇔ |yt−1| >
M2

[φ
(2)
1 ]2 + 1

.

Update the definition of regions by defining R
′

2 = {x :‖ A2x ‖≤ M2} and

R2 = {x :‖ A2x ‖> M2}. Picking M2 large enough leaves us with R1 → R1 and
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R2 → R3 → R2 as the cycles of interest, satisfying (A2) with n∗ = 1. The points

in R
′

2 likewise satisfy (A2) since, though they do not reach a cycle, they do not

grow large in magnitude.

Points x ∈ R2 are mapped to the ray (φ
(2)
1 , 1)

′

, while points x ∈ R3 are

mapped to the ray (φ
(3)
1 , 1)

′

. The matrix A1 is full-rank. Clearly then anM1 <∞

and functions g1(·), g2(·), g3(·) exist so that (A1) is satisfied.

We turn to the stability result. For a square matrix A, let ρ(A) denote the

spectral radius of A.

Theorem 1. Suppose {Xt} is as defined in (1.2), with state space R
p partitioned

into regions Ri and each region with companion matrix Ai, i = 1, . . . , l. Suppose

(A1), (A2) are satisfied, E|ξt|
r < ∞ for some r > 0, and ξt has a continuous

density everywhere positive. Then

1. {Xt} is V -uniformly ergodic if

max
i∈{1,...,m}

ρ
(

ki
∏

j=1

A
(i)
j

)

< 1;

2. {Xt} is transient if

max
i∈{1,...,m}

ρ
(

ki
∏

j=1

A
(i)
j

)

> 1.

Assumptions (A1) and (A2) on the skeleton, when combined with the appro-

priate stability condition on the skeleton and a ’stability’ condition on the errors,

give us sufficient conditions for V -uniform ergodicity of {Xt}. When (A1) and

(A2) are combined with an instability condition on the skeleton and a ’stability’

condition on the errors, we have sufficient conditions for transience of {Xt}.

Previous authors have employed the strategy of analyzing the dynamics of

the skeleton to find the cycles and combining the stability condition on these cy-

cles with one on the error distribution to construct a test function which satisfies

the appropriate drift criterion. Chan et al. (1985), Kunitomo (2001), Lim (1992)

and Petruccelli and Woolford (1984), among others, all used this logic in dealing

with specific models. We emphasize again that our results allow one to proceed

directly from analysis of the skeleton to stability without having to devise a test

function specific to a given model.

Example 1. (cont.) With an appropriate condition on the error distribution,

we have Petruccelli and Woolford’s (1984) sufficient condition for ergodicity (ge-

ometric in their case, V -uniform in ours), that φ1 < 1, φ2 < 1, φ1φ2 < 1, and

the sufficient condition for transience that φ1 > 1 or φ2 > 1 or φ1φ2 > 1.



52 THOMAS R. BOUCHER AND DAREN B. H. CLINE

Theorem 1 applies beyond existing results, and is able to handle more elab-

orate models whose stability properties are not detailed in the literature.

Example 2. (cont.) Supposing ξt ∼ N(0, σ2), the assumptions behind Theorem

1 are satisfied and we have {Xt} is V -uniformly ergodic if φ
(1)
1 > 0, φ

(1)
2 > 0,

φ
(2)
1 < 0, φ

(3)
1 < 0 if

ρ(A1) < 1 ⇔ φ
(1)
1 + φ

(1)
2 < 1, ρ(A2A3) < 1 ⇔ φ

(2)
1 φ

(3)
1 < 1;

{Xt} is transient if either

ρ(A1) > 1 ⇔ φ
(1)
1 + φ

(1)
2 > 1, or ρ(A2A3) > 1 ⇔ φ

(2)
1 φ

(3)
1 > 1.

Note the ergodic parameter spaces in the examples are unbounded, contrary
to what we would expect through analogy with linear AR(p) time series. Both

examples reflect the fact that commonly stated global conditions for stability can

unnecessarily restrict the parameter space. Focusing on only the relevant cyclic

behavior gives sharper bounds, leading to a wider variety of better performing

models. The gain can be tremendous; as in the examples, other threshold au-
toregressive models have been shown to have unbounded parameter spaces.

3.2 Nonlinear autoregressive models

The nonlinear autoregressive model of order p (NLAR(p)) with additive noise

ξt is

Yt = f(Yt−1, . . . , Yt−p) + ξt, (3.2)

where {ξt} is a mean zero i.i.d. sequence and f is a nonlinear function. Consider

the general state Markov chain {Xt} with Xt = (Yt, . . . , Yt−p+1)
′

. By Chan (in

Tong (1990), Prop. A1.7), if f is bounded on bounded sets and ξt has a pdf that
is everywhere continuous and positive, then {Xt} is aperiodic and ψ-irreducible,

ψ being Lebesgue measure.

Tong (1990) suggests finding stability conditions for (3.2) through local lin-

earization. Describe the transitions of {Xt} by the mapping Φ(·), where

Φ(xt−1) = Φ(yt−1, . . . , yt−p) = (f(yt−1, . . . , yt−p), yt−1, . . . , yt−p+1)
′

.

Supposing f is continuous and everywhere differentiable, we can use a Taylor
expansion to approximate {Xt} by Xt = J(x)Xt−1 + c(x) + νt around the point

x = (y1, . . . , yp)
′

, where

J(x) =











∂
∂y1

f(x) . . . ∂
∂yp−1

f(x) ∂
∂yp

f(x)

1 . . . 0 0

0
. . . 0

...

0 . . . 1 0










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is the Jacobian of Φ(·) evaluated at x, νt = xit(1, 0, . . . , 0) and c(x) = Φ(x) −

J(x)x plus the remainder of the Taylor expansion. With appropriate condi-

tions on c(x) and the errors, the condition for stability would then be

lim sup‖x‖→∞ ρ(J(x)) < 1.

We loosen the restriction that f(·) be continuous and differentiable (or even

Lipschitz) and instead require {Xt} be asymptotically threshold-like, i.e., Φ(x) =
∑l

i=1AiI(x ∈ Ri)x+h(x), with appropriate conditions on h for large x. We then

apply the work done for cyclic TAR(p; d; s) models, allowing us to weaken the

global condition lim sup‖x‖→∞ ρ(J(x)) < 1 to a condition on the relevant cyclic

behavior, so that the process need not shrink in expectation at every transition

as lim sup‖x‖→∞ ρ(J(x)) < 1 implies, just at every pass through the cycle, giving

sharper bounds on the parameter space.

Theorem 2. Assume there exists M3 <∞ so that for Xt−1 = x with ‖ x ‖> M3

we can embed the NLAR(p) model (3.2) in the Markov chain

Xt =

l
∑

i=1

AiI(Xt−1 ∈ Ri)Xt−1 + h(Xt−1) + νt, (3.3)

where xt =
∑l

i=1AiI(xt−1 ∈ Ri)xt−1 satisfies the conditions of Theorem 1,

h(x) = O(‖ x ‖ε), 0 < ε < 1, E|ξt|
r < ∞ for some r > 0, and ξt has a

continuous density everywhere positive. Then

1. {Xt} is V -uniformly ergodic if

max
i∈{1,...,m}

ρ
(

ki
∏

j=1

A
(i)
j

)

< 1; (3.4)

2. {Xt} is transient if

max
i∈{1,...,m}

ρ
(

ki
∏

j=1

A
(i)
j

)

> 1. (3.5)

Example 3. Consider the threshold-like EXPAR model (Tong (1990)) which

generalizes the TAR(2;2;3) model in Example 2:

Yt =











(α
(1)
1 +β

(1)
1 e−Y 2

t−1)Yt−1+(α
(1)
2 +β

(1)
2 e−Y 2

t−2)Yt−2 + ξt, Yt−1 ≥ c, Yt−2 ≥ 0,

(α
(2)
1 + β

(2)
1 e−Y 2

t−1)Yt−1 + ξt, Yt−1 < c,

(α
(3)
1 + β

(3)
1 e−Y 2

t−1)Yt−1 + ξt, Yt−1 ≥ c, Yt−2 < 0.

Let Xt = (Yt, Yt−1)
′

, R1 = {(y1, y2) : y1 ≥ c, y2 ≥ 0}, R2 = {(y1, y2) : y1 < c},

R3 = {(y1, y2) : y1 ≥ c, y2 < 0}. Then

Xt =
∑

AiI(Xt−1 ∈ Ri)Xt−1 + h(Xt−1) + νt,
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where

A1 =

(

α
(1)
1 α

(1)
2

1 0

)

, A2 =

(

α
(2)
1 0

1 0

)

, A3 =

(

α
(3)
1 0

1 0

)

,

h(Xt−1) =











(β
(1)
1 e−Y 2

t−1Yt−1 + β
(1)
2 e−Y 2

t−1Yt−2, 0)
′

, Xt−1 ∈ R1

(β
(2)
1 e−Y 2

t−1Yt−1, 0)
′

, Xt−1 ∈ R2

(β
(3)
1 e−Y 2

t−1Yt−1, 0)
′

, Xt−1 ∈ R3.

Note that h(x) is bounded. By this and reasoning similar to Example 2, if

E|ξt|
r <∞ then {Xt} is V -uniformly ergodic in the case where α

(1)
1 > 0, α

(1)
2 > 0,

α
(2)
1 < 0 and α

(3)
1 < 0 if ρ(A1) < 1 ⇔ α

(1)
1 + α

(1)
2 < 1 and ρ(A2A3) < 1 ⇔

α
(2)
1 α

(3)
1 < 1, while {Xt} is transient if either ρ(A1) > 1 ⇔ α

(1)
1 + α

(1)
2 > 1 or

ρ(A2A3) > 1 ⇔ α
(2)
1 α

(3)
1 > 1.

4. Discussion

When maxi∈{1,...,m} ρ(
∏ki

j=1A
(i)
j ) = 1, the processes {Xt} and {Yt} are most

likely null recurrent, though this is an open question. If intercept terms are

included, however, the process can be ergodic or transient as well. The error dis-

tribution can also have an effect. See, for example, the TAR(1) models considered

in Cline and Pu (1999).

Note assumptions (A1) and (A2) exclude chaotic dynamics of the skeleton.

There can be no arbitrarily long cycles or dense orbits before reaching a cycle—

unless the process stays small in magnitude. Interestingly, this points out the

need for uniformity in the behavior of the skeleton in order to determine stability.

Chaotic dynamical systems with bounded attractors have ergodic distributions of

their own. Processes with a chaotic skeleton perhaps have a limiting distribution,

where it exists, that is a mixture of the chaotic ergodic and the error distributions.

5. Proofs

Proof of Lemma 1. Since |‖ P |‖V< ∞, there exists Q < ∞ such that

|‖ P |‖V ≤ Q. Denote the common invariant distribution of {Xtk} and {Xt} by

π. Note {Xtk} has transition kernel P k. Since {Xtk} is V -uniformly ergodic,

|‖ P kn − π |‖V =|‖ (P k)n − π |‖V ≤ Rr−n = Rr−
nk
k = R(r

1
k )−nk = Rr−nk

∗ , (5.1)

where r∗ = r1/k > 1. Then for integers n and 1 ≤ j < k, k fixed, using (5.1) and

the invariance of π,

|‖ P kn+j−π |‖V =|‖ P j(P kn−π) |‖V ≤ (|‖ P |‖V )j |‖ P kn−π |‖V ≤ R
′

r
−(kn+j)
∗ ,
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where R
′

= max(Q,Qk)Rrk
∗ . Since each integer n

′

= nk+j for some n, 1 ≤ j < k,

this implies |‖ P n′

−π |‖V ≤ R
′

r−n
′

∗ , r∗ > 1, R′ <∞, which by Meyn and Tweedie

(1993, Theorem 16.0.1) is true if and only if {Xt} is V -uniformly ergodic.

Proof of Lemma 2. (1) By (2.2), and since V is unbounded, there exists

M < ∞ so that V (x) > M implies Ex[V (Xk)]/V (x)] < 1. Since C
(V )
M := {x :

V (x) ≤M} is petite, V (·) ≥ 1 and locally bounded, there exist K <∞, β > 0 so

that Ex[V (Vk)]− V (x) ≤ −βV (x) +KIC(x); thus by Meyn and Tweedie, (1993,

Theorem 16.0.1), {Xtk} is V -uniformly ergodic. Since supxEx[V (X1)/V (x)] <∞

then |‖ P |‖V <∞ and, by Lemma 1, {Xt} is V -uniformly ergodic.

(2) Transience follows immediately from Cline and Pu (2001, Lemma 4.1) and

Meyn and Tweedie (1993, Theorem 8.2.6).

Recall we defined an n-path to be a sequence of n regions Ri1 , . . . , Rin , with

companion matrices Ai1 , . . . , Ain , that the skeleton of the process moves through,

i.e., xt−1 = x ∈ Rij implies xt = Aijx ∈ Rij+1 , j = 1, . . . , n− 1. The next lemma

demonstrates any initial X0 = x large enough in magnitude will remain large

and in the n-path with a high probability. We make use of this lemma several

times in the proofs of Theorems 1 and 2. Let Px(·) := P (·|X0 = x) and recall

that ‖ · ‖ denotes the Euclidean norm.

Lemma 3. Suppose {Xt} as at (1.2), (A1) holds, and E|ξt|
r < ∞ for some

r > 0. For an integer n assume, beginning at x0 = x, the skeleton {xt} follows the

n-path Ri1 , . . . , Rin . Let q(x) := [min(minl{gil(‖
∏n

j=1Aijx ‖)}, ‖
∏n

j=1Aijx ‖

)]−r(n−1). Then

Px

(

∪n−1
k=1 [(Xk 6∈ Rik+1

) ∪ (‖ Xk ‖≤M)]
)

= O(q(x)). (5.2)

Proof. Let C0 be the empty set and Ck = ∩k
j=1[(Xj ∈ Rij+1) ∩ (‖ Xj ‖> M)]

for k = 1, . . . , n. Then

Px(Cn) = Px(C1)

n
∏

k=2

Px

(

(Xk ∈ Rik+1
) ∩ (‖ Xk ‖> M)

∣

∣

∣Ck−1

)

. (5.3)

We can write Xk =
∏k

j=1Aijx+
∑k−1

l=1 (
∏l

m=1Aim)ξl, where the process remains

in the n-path until time k.

Note that ‖
∏k

j=1Aijx ‖≥‖
∏n

j=1Aijx ‖ /
∏n

j=k+1 ‖ Aij ‖, for k = 1, . . . , n,

so defining D1 := [maxk∈{1,...,n}

∏n
j=k+1 ‖ Aij ‖]−1, we have for k = 1, . . . , n that

‖
∏k

j=1Aijx ‖≥ D1 ‖
∏n

j=1Aijx ‖.

Get functions gij (·) and M = M1 from (A1). Pick D2 ≥ [maxj ‖ Aij ‖]n.

Suppose w.l.o.g. D2 > 1. Then since the gij satisfy a triangle inequality, we have
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for k = 1, . . . , n by Markov’s Inequality,

Px(Xk 6∈ Rik+1
|Ck−1) ≤ P

(

|ξl| +D2

k−1
∑

l=1

gil(|ξl|) > gik

(

k
∏

j=1

‖ Aikx ‖
))

≤
(1 +D2)maxj∈{1,...,n} gij (E|ξk|

r)

[gik(‖
∏k

j=1Aijx ‖)]r

≤
(1 +D2)maxj∈{1,...,n} gij (E|ξk|

r)

[gik(D1 ‖
∏n

j=1Aijx ‖)]r
,

Px(‖ Xk ‖≤M |Ck−1) ≤ P
(

|ξk| +D2

k−1
∑

l=1

|ξl| ≥‖

k
∏

j=1

Aikx ‖ −M
)

≤
(1 +D2)E|ξk|

r

(D1 ‖
∏n

j=1Aijx ‖ −M)r
.

Then by complementation for k = 1, . . . , n,

Px

(

(Xk ∈ Rik+1
) ∩ (‖ Xk ‖> M)

∣

∣

∣Ck−1

)

≥ 1 − 2max
([

gik

(

D1 ‖
n
∏

j=1

Aijx ‖
)]−r

,
(

D1 ‖
n
∏

j=1

Aijx ‖ −M
)−r)

. (5.4)

Using (5.3) and (5.4),

Px

(

∩n−1
k=1 [(Xk ∈ Rik+1

)∩(‖ Xk ‖> M)]
)

≥

n−1
∏

k=1

[

1−2max
([

max
l
gil

(

D1 ‖

n
∏

j=1

Aijx ‖
)]−r

,
(

D1 ‖

n
∏

j=1

Aijx ‖−M
)−r)

=
[

1−2max
([

max
l
gil

(

D1 ‖

n
∏

j=1

Aijx ‖
)]−r

,
(

D1 ‖

n
∏

j=1

Aijx ‖−M
)−r)]n−1

.

The conclusion follows.

The following result is partially due to Ciarlet (1982). The proof is ours.

Lemma 4. If a matrix A has ρ(A) < 1, then there exists a matrix norm ‖ · ‖mat

induced by a vector norm ‖ · ‖vec and a constant 0 < λ < 1 such that

‖ Ax ‖vec≤‖ A ‖mat‖ x ‖vec≤ λ ‖ x ‖vec, ∀x. (5.5)

Also, with ‖ · ‖ the Euclidean norm, ‖ x ‖→ ∞ implies ‖ x ‖vec→ ∞.
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Proof. It is a well-known fact (Martelli (1992), Lemma 4.2.1, for example) that

ρ(A) < 1 implies the existence of an integer c <∞ and a vector norm

‖ x ‖vec:=‖ x ‖ + ‖ Ax ‖ + · · ·+ ‖ Ac−1x ‖, (5.6)

with the matrix norm ‖ · ‖mat induced by ‖ · ‖vec having ‖ A ‖mat< 1. Also,

‖ A ‖mat< 1 implies the existence of a constant 0 < λ < 1 with λ ≥‖ A ‖mat.

Then for all x by a norm inequality, ‖ Ax ‖vec≤‖ A ‖mat‖ x ‖vec≤ λ ‖ x ‖vec.

From (5.6) and the non-negativity of ‖ · ‖ we have that ‖ x ‖→ ∞ implies

‖ x ‖vec→ ∞.

Lemma 5. Suppose {Xt} as at (1.2) and the conditions of Theorem 1 (1.) hold.

Let ‖ · ‖i denote the vector norm for cycle Ci, i = 1, . . . ,m, implied by Lemma

4, let ‖ · ‖ denote the Euclidean norm, and define

V
′

(x) :=

m
∑

i=1

‖ x ‖
r
2
i I{x ∈ Ci}+ ‖ x ‖

r
2 I{x 6∈ ∪m

i=1Ci}.

Then the level sets C
E[V

′

]
M1

= {x : Ex[V
′

(Xn)] ≤M1} are petite for any integer n

and each M1 <∞.

Proof. By the definition of ‖ · ‖i in (5.6), clearly Ex[‖ Xn ‖r/2] ≤ Ex[V
′

(Xn)].

Since all matrix norms are finite, using norm inequalities and (5.6) again, there

exists C < ∞ with Ex[V
′

(Xn)] ≤ CEx[‖ Xn ‖r/2]. Thus Ex[V
′

(Xn)] → ∞ iff

Ex[‖ Xn ‖] → ∞. From this and E|ξt|
r < ∞, we can clearly find M1,M2 < ∞

so that

inf
{x: Ex[V ′ (Xn)]≤M1}

Px(‖ Xn ‖≤M2) > 0.

By Meyn and Tweedie (1993, Prop. 5.5.4) this implies {x : Ex[V
′

(Xn)] ≤ M1}

is petite for the sampled chain {Xnt}, and thus is petite for {Xt}.

In the following proofs of Theorems 1 and 2 the strategy is simple: find

a test function V so that the appropriate drift condition, whether (2.2) for V -

uniform ergodicity or (2.3) for transience, is satisfied. The bulk of the proofs

involves creating the test function V by piecing it together from consideration of

the dynamics of the skeleton and the assumptions on the Markov chain in which

the time series is embedded.

Proof of Theorem 1. (1) We need a test function V (·) for {Xt} so that (2.2)

is satisfied. By the assumptions and Lemma 4, there exists λ = max(λ1, . . . , λm)

and for each cycle Ci there exist vector norms ‖ · ‖i with x ∈ Ci satisfying

0 < ρ(

ki
∏

j=1

A
(i)
j ) < λ < 1, ‖

ki
∏

j=1

A
(i)
j x ‖i< λ ‖ x ‖i, i = 1, . . . ,m. (5.7)
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Get r from E|ξt|
r <∞. Suppose r < 1 and define

V
′

(x) :=

m
∑

i=1

‖ x ‖
r
2
i I{x ∈ Ci}+ ‖ x ‖

r
2 I{x 6∈ ∪m

i=1Ci}.

Get n∗ and let k :=
∏

ki, M = max(M1,M2) from the assumptions. Suppose

w.l.o.g. that xn∗ ∈ R
(1)
1 , and x0 = x follows the n∗-path Ri1 , . . . , Ri∗n before

entering the cycle.

Let Ik = I{[∩k
j=1(Xn∗+j ∈ R

(1)
j+1)] ∩ [∩k

j=1(‖ Xn∗+j ‖> M)]} and denote

EXn∗
(·) := E(·|Xn∗). Then if ‖ Xn∗ ‖> M , Xn∗ ∈ R

(1)
1 , from (5.7) and by

E|ξt|
r <∞ there exists K1 <∞ so that

EXn∗
[V

′

(Xn∗+k)Ik] < λ
k

k1 V
′

(Xn∗) +K1. (5.8)

Let Ic
k denote the indicator of the complement of the argument of Ik. Suppose

w.l.o.g. that minj[gj(y)] ≤ y for large y. Then by (3.1), applying Lemma 3

with n = k, conditioning on Xn∗ , and applying Cauchy-Schwarz there exist

K2,K3 <∞ so that ‖ Xn∗ ‖> M and Xn∗ ∈ R
(1)
1 implies

EXn∗
[V

′

(Xn∗+k)I
c
k] < (K2V

′

(Xn∗) +K3)O
(

‖

k
∏

j=1

A
(1)
j Xn∗ ‖−

(k−1)r
2

)

. (5.9)

From (5.8) and (5.9), Xn∗ ∈ R
(1)
1 with ‖ Xn∗ ‖> M implies

EXn∗
[V

′

(Xn∗+k)]

<λ
k
k1 V

′

(Xn∗)+K1+(K2V
′

(Xn∗)+K3)O
(

‖

k
∏

j=1

A
(1)
j Xn∗ ‖−

(k−1)r
2

)

. (5.10)

By (3.1), applying Lemma 3 with n = n∗ − 1, conditioning on X0 = x, and

applying Cauchy-Schwarz, we have similar to (5.10) that if ‖ Xn∗ ‖< M or

Xn∗ 6∈ R
(1)
1 ,

EXn∗
[V

′

(Xn∗+k)] < (K2V
′

(Xn∗) +K3)O
(

‖
n∗

∏

j=1

Aijx ‖−
(n∗

−1)r
2

)

. (5.11)

Note O(‖
∏k

j=1A
(1)
j Xn∗ ‖−(k−1)r/2) = Op(‖

∏n∗

j=1Aijx ‖−(k−1)r/2). Note also

from the definition of V
′

and the triangle inequalities that there exists C <

∞ such that Ex[‖ Xn∗ ‖r/2] ≤ Ex[V
′

(Xn∗)] ≤ CEx[‖ Xn∗ ‖r/2]. Combining

this with Jensen’s Inequality applied to Ex[‖ Xn∗ ‖r/2] and CEx[‖ Xn∗ ‖r/2],

implies we have Ex[V
′

(Xn∗)] → ∞ iff ‖
∏n∗

j=1Aijx ‖ does. Iterating expectations
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implies Ex(EXn∗
[V

′

(Xn∗+k)]) = Ex[V
′

(Xn∗+k)] = Ex(EXk
[V

′

(Xn∗+k)]). From

this, (5.10) and (5.11),

lim sup
Ex[V

′
(Xn∗ )]→∞

Ex(EXk
[V

′

(Xn∗+k)])

Ex[V
′

(Xn∗)]
= λ

k
k1 < 1. (5.12)

Let V (x) := 1 + Ex[V
′

(Xn∗)]. Note V ≥ 1 is locally bounded, unbounded and

measurable and, by (5.12), V satisfies (2.2). Applying Lemma 5 with n = n∗, it
follows the level sets CV

M1
= {x : V (x) ≤ M1} are petite; thus by Lemma 2 the

process {Xt} is V -uniformly ergodic.
(2) We need a test function V (·) for {Xt} so that (2.3) is satisfied. Suppose

w.l.o.g. C1 has ρ := ρ(
∏k1

j=1A
(1)
j ) > 1 and X0 = x ∈ R

(1)
1 ∈ C1. Let e1 denote

a normalized eigenvector corresponding to the eigenvalue λ1 with ρ = |λ1| > 1,
and let a1(x) denote the projection of x onto e1.

Let Ik1 = I{[∩k1
j=1(Xj ∈ R

(i)
j+1)] ∩ [∩k1

j=1(‖ Xj ‖> M)]} and IC
k1

denote the

indicator of the complement of the argument of Ik1 . Get r from the assumptions
and pick q < r/2. Define φ(x) = min[gj(x)]. The assumptions on the gj imply

that φ(·) is strictly increasing. By Cauchy-Schwarz,

Ex

[ 1 + [φ(|a1(x)|)]
q

1 + [φ(|a1(Xk1)|)]
q

]

≤ Ex

[ 1 + [φ(|a1(x)|)]
q

1 + [φ(|a1(Xk1)|)]
q
Ik1

]

+ (1 + [φ(|a1(x)|)]
q)[Ex(IC

k1
)]

1
2 . (5.13)

Note that Ex(IC
k1

) = O([φ(‖
∏k1

j=1A
(1)
j x ‖)]−(k1−1)r) = O([φ(|a1(x)|)]

−(k1−1)r)

follows from E|ξt|
r <∞, the definition of φ(·), and Lemma 3 with n = k1. Then

since q < r/2, we have |a1(x)| → ∞ implies (1 + [φ(|a1(x)|)]
q)[Ex(IC

k1
)]1/2 → 0.

Let Ig := I{φ(|a1(Xk1)|) ≤ φ(|a1(x)|)}. Then

Ex

[ 1 + [φ(|a1(x)|)]
q

1 + [φ(|a1(Xk1)|)]
q
Ik1

]

< 1 + (1 + [φ(|a1(x)|)]
q)[Ex(Ik1Ig)]

1
2 . (5.14)

Now Ex(Ik1Ig) < Px(Ig = 1|Ik1 = 1) and, as |a1(x)| → ∞,

Px(Ig = 1|Ik1 = 1) = O([φ(|a1(x)|)]
−r). (5.15)

Define the test function V (x) = (1+[φ(|a1(x)|)]
q). Then by (5.13) through (5.15)

lim sup
V (x)→∞

Ex

[ V (x)

V (Xk1)

]

= lim sup
|a1(x)|→∞

Ex

[ (1 + [φ(|a1(x)|)]
q)

(1 + [φ(|a1(Xk1)|)]
q)

]

< 1. (5.16)

By assumption {Xt} is aperiodic and ψ-irreducible, with ψ being Lebesgue mea-

sure. Clearly ψ({x : V (x) > M}) > 0 for all M < ∞. By Lemma 2, {Xt} is

transient.
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In the proof of transience in Theorem 1 we concentrated on what happens

to the process projected along the eigenvector corresponding to the eigenvalue of

maximum modulus. When this is larger than one, the process grows in this di-

rection and is therefore transient. This is the logic used by such previous authors

as Kunitomo (2001), Petruccelli and Woolford (1984) and Tjøstheim (1990) in

their proofs of transience for simpler models.

Proof of Theorem 2. (1) Define k =
∏

ki and V
′

(x) :=
∑m

i=1 ‖ x ‖
r/2
i I{x ∈

Ci}+ ‖ x ‖r/2 I{x 6∈ ∪m
i=1Ci}. Then there exist K1, . . . ,K5 < ∞, 0 < λ < 1 so

that

Ex[V
′

(Xn∗+k)|Xn∗ ]

< λ
k
k1 V

′

(Xn∗) +K1 + (K2V
′

(Xn∗) +K3)O
(

‖

k
∏

j=1

A
(i)
j Xn∗ ‖−(k−1)r

)

+(K2V
′

(Xn∗) +K3)O
(

‖

n∗

∏

j=1

Aijx ‖−(n∗−1)r
)

+K4V
′

[h(Xn∗)] +K5. (5.17)

Since h(x)=O(‖ x ‖ε), Jensen’s Inequality has Ex[(V
′

[h(Xn∗)])ε]≤K6(Ex[V
′

(Xn∗)])ε

for some K6 <∞. Using this and (5.17),

lim sup
Ex[V ′ (Xn∗ )]→∞

Ex[E(V
′

(Xn∗+k)|Xn∗)]

Ex[V ′(Xn∗)]
< 1. (5.18)

Let V (x) := 1 + Ex[V
′

(Xn∗)]. Then V ≥ 1 satisfies (2.2), is locally bounded,

unbounded and measurable. The level sets are petite by Lemma 5; by Lemma 2,

the process {Xt} is V -uniformly ergodic.

(2) Suppose w.l.o.g. C1 has length k1 and has ρ := ρ(
∏k1

j=1A
(1)
j ) > 1, and that

X0 = x ∈ R
(1)
1 ∈ C1 with ‖ x ‖> M := max(M1,M2,M3). Define a1(x), Ik1 , I

C
k1

,

Ig, I
C
g as in the proof of Theorem 1. Pick q < 1/2min(r, [k1 − 1]ε).

By (3.3) we can write, when Xj ∈ R
(1)
j+1, j = 1, . . . , k1,

Xk1 = X
′

k1
+

[

k1
∑

j=1

k1
∏

s=j+1

A(1)
s h(x) +

k1
∑

j=1

k1
∏

s=j+2

A(1)
s h(Xj)

]

, (5.19)

where {X
′

t} is defined by (1.2). By the assumptions on h,

φ(|a1(

k1
∑

j=1

k1
∏

s=j+1

A(1)
s h(x))|) = O([φ(|a1(x)|)]

(k1−1)ε),
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φ(|a1(

k1
∑

j=1

k1
∏

s=j+1

A(1)
s h(Xj))|) = Op([φ(|a1(x)|)]

(k1−1)ε).

We have similar to (5.15) by (5.19) that when |a1(x)| is large,

Ex(Ik1Ig) < Px(Ig = 1|Ik1 = 1) = O([φ(|a1(x)|)]
−r), (5.20)

Define the test function V (x) = (1+[φ(|a1(x)|)]
q). Then by (5.20) and arguments

similar to those leading to (5.16),

lim sup
V (x)→∞

Ex

[ V (x)

V (Xk1)

]

= lim sup
|a1(x)|→∞

Ex

[ (1 + [φ(|a1(x)|)]
q)

(1 + [φ(|a1(Xk1)|)]
q)

]

< 1. (5.21)

By assumption {Xt} is aperiodic and ψ-irreducible, with ψ being Lebesgue mea-

sure. Clearly ψ({x : V (x) > M}) > 0 for all M < ∞. By Lemma 2, {Xt} is

transient.
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