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Abstract: Although the literature in covariate measurement error is rather rich,

the focus is primarily on regression coefficient estimation; far less is known in the

context of capture-recapture experiments. In this article, we provide justification

for effects of measurement error on estimation in a capture-recapture model. When

errors are present, the conventional approach is shown to have bias in parameter

estimation and it may underestimate the population size. In fact, no consistent es-

timation has been proposed before, especially for the functional case. We propose

a new conditional score estimation to adjust for measurement error in capture-

recapture models. This approach estimates regression parameters and population

size consistently without imposing any distributional assumption on the covariates.

An example involving the bird species Prinia flaviventris is used to illustrate the

effects, and intensive simulation studies are conducted to evaluate the performance

of the proposed estimator along with other existing methods. Under most simula-

tion scenarios, this new method is preferable since it has smaller biases and better

coverage probabilities.
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1. Introduction

Estimation of population size is one of the most important issues in ecol-

ogy studies. A variety of capture-recapture models have been proposed and

some inference procedures have been developed to address this issue. These

models were developed to incorporate variation due to capture time, behavior

response, individual heterogeneity, or a combination of these factors. They

have been extensively studied; for a review, see Seber (1982), Chao (2001),

Borchers, Buckland and Zucchini (2002), and references therein.

Pollock, Hine and Nichols (1984) proposed a heterogeneity model that ac-

commodates information of individual characteristics, such as sex, weight, and

wing length, to model the capture probabilities of the animals. They only con-

sidered categorical covariates. Huggins (1989) and Alho (1990) extended the
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case to continuous covariates. They developed a conditional likelihood model for
inference of the regression coefficients associated with the capture probabilities,

and then proposed a Horvitz-Thompson (HT) weighted estimator to estimate
the population size. Pollock (2002) indicated that this conditional likelihood ap-
proach has become a standard technique today. Pollock (2002) also pointed out
that the covariates in the approach of Huggins-Alho are assumed to be measured

without error, which may not be always realistic.
Measurement error is an important and common problem in epidemiolog-

ical, medical, and other disciplines. It is well known that measurement error

may cause bias in regression analysis and subsequently lead to invalid statistical
inference. There is a growing body of literature investigating measurement er-
ror problems. Modern statistical methods have been reviewed in Fuller (1987),
Carroll, Ruppert and Stefanski (1995), and Cheng and Van Ness (1998). How-

ever, most studies in this area to date have their focus primarily on the analysis
of regression coefficients in generalized linear models, or in failure time regression
models (Huang and Wang (2000)). There has been very limited work done on

adjusting for measurement error in capture-recapture models.
For the capture-recapture problem, Hwang and Huang (2003) discussed bias

in estimating the population size when measurement errors are ignored. They

applied a refined regression calibration (RRC) estimator to correct estimation
of the regression coefficients in the capture probabilities and then used them in
an adjusted HT population size estimator. Their analysis and simulation results
suggest an explanation for the severe bias from the naive regression coefficient

and population size estimators. However, there is no theoretical justification
provided for the bias of naive population size estimators. Furthermore, their
method is based on the assumption that the true covariate variables are normally

distributed. These shortcomings and restrictions motivate the present work.
This paper is organized as follows. In Section 2, we briefly review the con-

ventional heterogeneity capture-recapture model of Huggins (1989) and the RRC

approach of Hwang and Huang (2003). In Section 3, we show that measurement
error has a dependence effect on the capture of an animal given its surrogate
variables. We show that the RRC may encounter bias even though the covariate
variables are normally distributed. Moreover, we explain how a naive estimator

may underestimate the population size of interest. In Section 4, following the
idea of conditional score estimation (Stefanski and Carroll (1987)), we construct
an unbiased conditional score estimating function when measurement errors are

present. When there is no measurement error, the conditional score approach re-
duces to the traditional approach. Some results from intensive simulation studies
are provided in Section 5. Section 6 presents an illustrative example using data

on the bird species Prinia flaviventris in Hong Kong. Final conclusions and
suggestions are given in Section 7.
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2. Statistical Modeling and the RRC Approach

2.1. Model and conditional maximum likelihood

Assume the population of interest consists of N animals in a capture-recapture
experiment. Let j = 1, . . . , t index the trapping samples, Yij be the indicator
function for whether or not the ith animal is caught in the jth sample, and

Yi =
∑t

j=1 Yij be the number of times the ith animal is caught during the exper-
iment. Given covariates, animals are assumed to behave independently among
individuals and across trapping samples. The probability that the ith animal is

captured in any trapping sample is assumed to be

pi = P (Yij = 1|X i) = H(α + β
′

Xi), i = 1, . . . , N, j = 1, . . . , t, (1)

where H(u) = {1+exp(−u)}−1 is the logistic function, X i denotes the covariate

vector of the ith animal, and α and β
′

are unknown parameters. This model was
discussed in Pollock, Hine and Nichols (1984) and is a version of the heterogene-
ity model in Otis, Burnham, White and Anderson (1978).

Let Ci be the event that the ith animal is caught at least once during the
experiment and D =

∑N
i=1 I(Ci) be the number of distinct animals captured,

where I(·) is the usual indicator function. Without loss of generality, we assume

I(Ci) = 1 for i = 1, . . . , D and I(Cj) = 0 for j = D + 1, . . . , N . The conditional
maximum likelihood estimate (Huggins (1989)) of θ = (α,β′)′ solves

D∑

i=1

(
1

X i

){
Yi −

tpi

1 − (1 − pi)t

}
= 0. (2)

Note that 1−(1−pi)
t equals P (Ci), the probability of being captured at least once.

Huggins (1989) proposed two types of HT estimators to estimate the population
size. We refer to them as the first and second HT estimators, and there are given
by

N̂1 =

N∑

i=1

I(Ci)

1 − {1 − pi(θ̂M )}t
=

D∑

i=1

1

1 − {1 − pi(θ̂M )}t
, (3)

N̂2 =

N∑

i=1

Yi

tpi(θ̂M )
, (4)

where θ̂M is the root of (2). These estimators are consistent because the left-

hand side of (2) has mean 0, and both (3) and (4) have mean N when evaluated
at the true parameter. Two cautions are noted here. First, the consistency of a
population size estimator N̂ is defined as (N̂ − N)/N

p−→ 0; see Huggins (1989)

for details. Second, although the difference between N̂1 and N̂2 is not much
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from our simulation experience, it is easy to show that the asymptotic variance
of the first-type HT estimator is smaller than the second-type HT estimator for

a known parameter θ when there is no measurement error. Thus, the first-type

HT estimator is preferable whenever it is available.

2.2. RRC estimator for normal covariate variables

In this subsection, we briefly review the RRC estimator proposed by Hwang
and Huang (2003). When the vector X i is measured with random errors, we

denote the observed surrogate measurement for X i by W i and write W i =

Xi + U i. For any component of X i, the corresponding component of U i is 0 if
it is not measured with error. The RRC method generally works satisfactorily

under the following assumptions.
(R1) U i is N(0,Σu) distributed, where Σu is a known matrix that can be singular

when not all components of X are measured with errors.
(R2) U i and (X i, Yi) are stochastically independent.

(R3) P (Yij = 1|X i,W i) = P (Yij = 1|X i) for j = 1, . . . , t, i = 1, . . . , N .
(R4) X i is N(µx,Σx) distributed, where Σx is a full-rank matrix.

The assumptions here are essentially equivalent to those in Hwang and Huang

(2003). Because some individual covariates such as gender and age (adult vs. ju-
venile) do not have a measurement error problem, the variance matrix Σu may

contain some 0 entries. We assume Σu is known for simplicity; in practice, it

usually can be estimated by repeated surrogate measurements. Repeat measure-
ments are possible in a capture-recapture experiment since individual covariates

could be measured on every capture occasion. Assumption (R4) is not needed
for the new estimation method in Section 4.

The RRC method uses H(α∗+β∗
′

W i) to approximate P (Yij = 1|W i), where

(α∗,β∗
′

)′ = {1 +
β

′

Var (X |W )β

2.89
}− 1

2

×
(
α + β

′

µx − β
′

Σx(Σx + Σu)−1µx, β′Σx(Σx + Σu)−1
)
′

,

and Var (X |W ) is the conditional variance of X given W .
If pRi = H(α∗ + β∗

′

W i), an estimating equation for (α,β
′

) is

D∑

i=1

(
1

W i

){
Yi −

tpRi

1 − (1 − pRi)t

}
= 0. (5)

The solution to (5) is denoted by θ̂R = (α̂R, β̂
′

R)′, which can be derived (approxi-

mately) by replacing α+β
′

Xi with {1+β
′

Var (X|W )β/2.89}−1/2E((α+β
′

X i) |
W i) in (2). Hence we can refer to it as an RRC estimator. Hwang and Huang
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(2003) noted that the first HT population size estimator based on the RRC es-

timator of θR is essentially the same as the first HT naive estimator, and they

proposed the following adjusted population size estimator based on the second

HT estimator:

N̂R =
1

t

N∑

i=1

Yi

H{α̂R + β̂
′

RW i + 1
2 β̂

′

RΣuβ̂R}
. (6)

The RRC estimator given above provides a convenient way to improve the

naive estimators when measurement error is present. However, it is still not

consistent because there is indeed some bias in (5). This bias will be confirmed

in the following section.

3. Dependence Effect and Bias

In this section, we show that measurement error will affect the independence

structure of Yij , j = 1, . . . , t, and the naive estimator N̂1 will generally under-

estimate the population size. To illustrate the bias of the estimating equation

of the naive estimator, we consider the case when the Xi is a univariate normal

random variable. Recall that pi = P (Yij = 1 | Xi) = H(α + βXi) as defined in

(1). The random variables Yi1, . . . , Yit are i.i.d. Bernoulli random variables with

mean pi when conditioned on Xi. Given Wi, Yi1, . . . , Yit are Bernoulli variables

with parameter pRi (approximately), but they no longer carry the independence

property. This can be seen by noting that

E(YijYik | Wi) = E{H2(α + βXi) | Wi} 6= E(Yij | Wi)E(Yik | Wi),

for 1 ≤ j 6= k ≤ t. Consequently, the quantity 1 − {1 − P (Yi1 = 1 | Wi)}t may

not be a good approximation to P (Yi ≥ 1 | Wi). Furthermore, since 1− (1−H)t

is a concave function of H on (0, 1), we have

P (Yi ≥ 1 | Wi) = E[E{I(Yi ≥ 1) | Xi,Wi} | Wi]

= E[1 − {1 − H(α + βXi)}t | Wi] ≤ 1 − [1 − E{H(α + βXi) | Wi}]t

≈ 1 − {1 − H(α∗ + β∗Wi)}t = 1 − (1 − pRi)
t.

For example, if W is a positive variable, then it is approximately true that

D∑

i=1

(
1

Wi

){
Yi −

tpRi

1 − (1 − pRi)t

}
≥

D∑

1

(
1

Wi

)
{Yi −

tpRi

P (Yi ≥ 1 | Wi)
}. (7)

Because the right-hand side of (7) has mean 0, the left-hand side of (7) has a

positive expectation when evaluated at (α∗, β∗). As a consequence, the estimator
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solving (5) does not converge to (α∗, β∗). Instead, it converges to (α∗∗, β∗∗),
where (α∗∗, β∗∗) satisfies

E

(
1

Wi

)[
Yi −

tH(α∗∗ + β∗∗Wi)

1 − {1 − H(α∗∗ + β∗∗Wi)}t

]
= 0. (8)

Furthermore, since H(s)/[1−{1−H(s)}t] is an increasing function of s, it follows
that either α∗∗ > α∗, β∗∗ > β∗, or both inequalities hold provided that W
is positive. This implies that solving (5) generally will not yield a consistent
estimator of (α∗,β∗

′

)
′

, and hence the estimator of (α,β
′

)
′

is not consistent. This
explains the bias of the RRC and hence the naive estimators for estimating
regression parameters in the capture model.

For the estimation of the population size, if the two inequalities α∗∗ > α∗

and β∗∗ > β∗ both hold, then pRi is less than H(α∗∗ + β∗∗Wi), and hence

N∑

i=1

I(Ci)

P (Yi ≥ 1 | Wi)
≥

N∑

i=1

I(Ci)

1 − (1 − pRi)t
≥

N∑

i=1

I(Ci)

1 − {1 − H(α∗∗ + β∗∗Wi)}t
.

The first term has mean N . The last term is exactly the naive population size
estimator in (3) evaluated at parameter (α∗∗, β∗∗), which is the limit of the naive
estimator (α̂M , β̂M ) as N goes to infinity. This explains why the population size
will generally be underestimated by the naive estimator.

Briefly, the above heuristic arguments exhibit two major difficulties for mea-
surement errors for capture-recapture models. One is the change of regression
coefficients between response and observed covariates, while the other is the
correlation of the binary responses Yi1, . . . , Yit. The RRC approach provided a
solution to the first problem, but not the second. Hence there is still bias in
estimating the regression parameters and the population size.

It is worthwhile noting that as the magnitude of the measurement errors
becomes large, the surrogates provide less information on captures, and the con-
ditional probability of being captured would likely shrink to a constant – the
average capture percentage. In such a situation, the model looks more like a
homogeneous model rather than a heterogeneous model. Analysis is then very
similar to treating a heterogeneous model as if it were a homogeneous model.
Thus the estimator derived in the way of analyzing a homogeneous model would
underestimate the population size in general when the true model is indeed het-
erogeneous; see Burnham and Overton (1978) and Chao, Lee and Jeng (1992).
Recently, Hwang and Huggins (2005) have provided a theoretical justification
for this phenomenon.

4. Conditional Score Estimation

We now present the conditional score (CS) method, which is a semipara-
metric estimation and does not require Assumption (R4). It is applicable in
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certain functional measurement error models (Carroll, Ruppert and Stefanski

(1995, Chap.6)), especially for the generalized linear model with natural param-

eter being a linear function of covariates.

We pursue the conditional distribution of Yi when appropriate statistics are

given. This conditional distribution is made to be independent of the unknown

Xi given some sufficient statistics. Here, X i is treated as a parameter and hence

no distribution assumption on X i is needed.

4.1. Conditional scores

Consider the conditional distribution of Yi given X i and Ci:

P (Yi = yi|Xi, Ci) = t!{yi!(t − yi)!}−1 exp{yi(α + β′Xi) + D(ηi)}, yi = 1, . . . , t,

which belongs to the generalized linear model (McCullagh and Nelder (1989))

with linear predictor ηi = α + β′Xi and D(ηi) = log{(1 − pi)
t/(1 − (1 − pi)

t)}.
From (R2) and (R3), the joint distribution of Yi and W i, conditional on X i and

Ci, is given by

f(yi,wi|X i, Ci) = t!{yi!(t − yi)!}−1 exp{yi(α + β′Xi) + D(ηi)

−1

2
(wi − X i)

′Σ−1
u (wi − Xi)}.

Denoting W i + YiΣuβ by ∆i, it is clear that ∆i is a sufficient and complete

statistic of X i if β is known (Stefanski and Carroll (1987)). By sufficiency, the

conditional distribution of Yi given ∆i and Ci is independent of X i, and can be

shown to be

P (Yi = yi|∆i, Ci) = t!{yi!(t− yi)!}−1 exp{yiη
∗

i −
1

2
y2

i β
′Σuβ − logSi(η

∗,β)}, (9)

for yi = 1, . . . , t, where η∗

i = α + β′∆i and Si(η
∗,β) =

∑t
yi=1 t!{yi!(t − yi)!}−1

exp{yiη
∗

i − y2
i β

′Σuβ/2}. The conditional score (CS) estimator of θ, denoted by

θ̂C , solves

G(θ) =

D∑

i=1

gi(θ) =

D∑

i=1

(
1

∆∗

i

)
{Yi − E(Yi | ∆i, Ci)} = 0, (10)

where ∆∗

i = E(W i|∆i, Ci) = ∆i − E(Yi|∆i, Ci)Σuβ and E(Yi|∆i, Ci) =
∑t

k=1

kP (Yi = k|∆i, Ci). It is easy to see that the conditional expectation of gi(θ) given

∆i and Ci is 0. Therefore the expectation of G(θ) is 0, and hence θ̂C can be

shown to be consistent, and the estimate of the variance-covariance of θ̂C can be

derived by the sandwich method.
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4.2. Estimation of N

Since we have a conditional distribution (9) that does not involve any un-

known X i, it is natural to develop a first-type HT estimator based on it. The

population size can be consistently estimated by
∑N

i=1{I(Ci)/P (Ci|∆i)}. There-

fore, the proposed CS estimate for the population size is

N̂C =

N∑

i=1

I(Ci)

P̂ (Ci|∆i)
, (11)

where P̂ (Ci|∆i) is P (Ci|∆i) evaluated at θ = θ̂C and ∆i = W i + YiΣuβ̂C . This

CS estimator can be shown to be consistent in the sense that (N̂C −N)/N
p−→ 0

as N → ∞. By a Taylor series expansion, the asymptotic variance of N̂C can be

shown to be

V̂ar (N̂C) =
{ D∑

i=1

1 − P (Ci|∆i)

P (Ci|∆i)2
+ (

∂N̂C

∂θ
)′V̂ar (θ̂C)(

∂N̂C

∂θ
)
}
|
θ=θ̂C

.

The proof is straightforward and hence is omitted here.

4.3. Some notes on the CS method

A crucial condition for the conditional score method being applicable is that a

sufficient statistic of X i can be found. This would be easy if the joint distribution

of (Yi,W i) given X i is in the exponential family with X i being the canonical

parameter. In such a situation, a complete and sufficient statistic for X i can

be identified immediately. Thus if the regression models of Yi given X i and W i

given X i are both generalized linear models, then we should require the link

functions to be natural links. The frequently used logit link function and the

Binomial distribution assumption of Yi given X i, as well as normality assumption

of Ui, clearly meet the above requirements. To check the adequacy of the logistic

regression assumption, one can compute estimates of the first two moments for

the distribution in (9), and compute a test statistic

T ≡
D∑

i=1

{Yi − Ê(Yi | ∆i, Ci)}2

V̂ar (Yi | ∆i, Ci)

that has an approximate chi-square distribution with degree of freedom D−p−1

under the assumptions of CS method.

The CS method is also applicable to the random effect model Consider a

random effect model

P (Yij = 1 | X i, Ri) = H(α + β′Xi + Ri), i = 1, . . . , N, j = 1, . . . , t, (12)
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where the Ri are N(0, σ2) distributed for all i and are independent. The model is

similar to a model in Coull and Agresti (1999), except that their model contains

no individual covariate. A simple calculation shows that

P (Yi = yi|∆i, Ri, Ci) ∝ t!{yi!(t − yi)!}−1

× exp{yi(α + β′∆i + Ri) −
1

2
y2

i β
′Σuβ}, (13)

which is similar to (9) but with a different normalizing constant. Following the

arguments of Coull and Agresti (1999), and based on the conditional distribu-

tion (13), we can estimate β consistently. However, the performance of the CS

estimator in this setup requires further investigation.

5. Simulation Study

A simulation study was conducted to evaluate the performance of the pro-

posed conditional score estimator. We considered population sizes N = 400

and N = 1, 000, and there were five capture samples in every experiment. The

probability of being captured was set to be pi = H(α + βXi), where the unob-

served covariates Xi were generated from two distributions, the N(0, 1) and a

mixture normal distribution. The mixture normal was from two normal variables

with means (−2/
√

5, 2/
√

5), variances (1/5, 1/5), and the mixture percentage was

fixed at 0.5 so that the mixture normal distribution also has mean 0 and variance

1. The observed surrogates Wi, i = 1, . . . , N , were generated by Wi = Xi + Ui,

where the Ui were from N(0,Σu). The variance Σu had three levels, 0, 0.5, and

1. Finally, we generated Yij from a Bernoulli distribution with mean H(α+βX)

and (α, β) = (−1, 1). For all parameter combinations, 1,000 simulation samples

were generated. For each sample, we computed the following estimates and their

standard errors: (i) θ̂N = (α̂N , β̂N )′, the naive conditional maximum likelihood

estimate which replaces Xi by Wi in solving (2); (ii) θ̂R = (α̂R, β̂R)′, the RRC

estimate that solves (5); (iii) θ̂C = (α̂C , β̂C)′, the conditional score estimate that

solves (10); (iv)N̂1, the first-type HT estimates that use θ̂N in (3); (v) N̂R, the

adjusted HT estimates based on θ̂R in (6); (vi) N̂C , the proposed HT estimates

based on θ̂C in (11).

The averages of the resulting 1,000 parameter estimates and standard error

estimates are given in Tables 1−2. We present the relative bias (RB), the em-

pirical SE (standard error), the average of estimated SE, the sample root mean

squared error (RMSE), and the sample coverage percentage (CP) of 95% confi-

dence intervals. We also report the average number of distinct individuals that

were captured (D̄) and the total number of captures (
∑

Yi) in the experiments.
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Table 1. Comparison of estimator performance, where X is normally dis-

tributed, N = 400 (upper panel) and N = 1, 000 (lower panel).

Σu Method Average RB Empirical Average RMSE CP
Estimate (%) SE SE (%)

N = 400, D̄ = 294, ΣYi = 606

Σu = 0 N̂1 403 0.9 27.6 26.4 27.9 94.9

Σu = 0.5 N̂1 362 -9.4 17.6 15.7 41.6 34.6

N̂R 388 -2.8 30.3 32.1 32.4 87.1

N̂C 406 1.6 38.1 35.2 38.6 92.9

Σu = 1 N̂1 349 -12.5 14.7 12.8 52.2 8.6

N̂R 383 -4.0 37.0 38.9 40.3 82.2

N̂C 410 2.6 54.0 46.2 55.0 91.5

N = 1, 000, D̄ = 734, ΣYi = 1517

Σu = 0 N̂1 1002 0.3 40.3 40.8 40.4 95.2

Σu = 0.5 N̂1 902 -9.7 28.3 24.5 101.5 7.4

N̂R 964 -3.5 46.3 48.7 58.4 81.4

N̂C 1003 0.3 54.8 51.2 54.9 93.8

Σu = 1 N̂1 872 -12.7 23.6 19.8 130.0 0.2

N̂R 950 -4.9 53.1 57.5 72.7 74.6

N̂C 1009 1.0 68.0 63.5 68.7 93.2

Table 2. Comparison of estimator performance, where X is mixture normally
distributed, N = 400 (upper panel) and N = 1, 000 (lower panel).

Σu Method Average RB Empirical Average RMSE CP
Estimate (%) SE SE (%)

N = 400, D̄ = 290, ΣYi = 613

Σu = 0 N̂1 404 1.0 29.5 28.7 29.8 94.7

Σu = 0.5 N̂1 352 -11.8 16.6 14.7 50.3 18.2

N̂R 370 -7.3 26.0 26.7 39.2 69.1

N̂C 407 1.9 40.3 38.4 41.0 93.4

Σu = 1 N̂1 339 -15.1 14.0 11.5 62.3 2.2

N̂R 361 -9.5 28.1 30.0 47.6 57.2

N̂C 407 1.9 49.1 47.7 49.8 91.7

N = 1, 000, D̄ = 726, ΣYi = 1534

Σu = 0 N̂1 1002 0.2 45.0 44.1 45.1 94.4

Σu = 0.5 N̂1 876 -12.3 26.1 22.7 125.9 0.9

N̂R 918 -8.1 39.1 40.8 89.9 43.6

N̂C 1008 0.8 59.9 57.4 60.5 95.3

Σu = 1 N̂1 848 -15.1 22.6 18.0 153.3 0.0

N̂R 900 -9.9 40.2 45.3 107.5 36.4

N̂C 1013 1.3 71.9 69.6 73.2 93.4
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Note that we say an estimator of the population size or regression coefficient

has failed if its value is 5 times larger than D, or if it does not reach a stable value

after 1,000 iterations. If an estimator failed in a sample, then we discarded that

sample and generated another one. The simulation study was carried out until

1,000 non-failure estimates were derived. From the various simulation replicates,

there was one failure from the RRC estimator and two failures from the CS

estimator under the setup that X is from a mixture normal and N equals 400.

When the sample size decreases or the measurement error increases, the CS

estimator will likely have more divergences.

We omit regression coefficients estimation in Tables 1 and 2 since the findings

are similar in many regression models, and our interest here is primarily in pop-

ulation size estimation. Briefly, for the estimation of the regression coefficients,

the naive estimates α̂N and β̂N deteriorate as the measurement errors become

large; it is also clear that there is an attenuation effect in β̂N . The RRC estimates

α̂R and β̂R perform well in the normal case, especially when Σu is small, but for

the mixture normal cases, the RRC is less satisfactory when compared to the

conditional score estimator. The proposed conditional score approach generally

performs best in terms of RB, RMSE, and CP among all three methods. The

asymptotic variance estimator based on the sandwich method also works well.

Concerning population size inference, Table 1 (the normal case) show that

the naive estimator N̂1 exhibits a downward tendency when the measurement

error variance Σu increases. This agrees with our remarks in Section 3. This

downward tendency still holds for nonnormal X in Table 2, although it is not

verified in general.

The RRC estimator N̂R has a small negative bias in all cases, but it is less

than N̂1. The CS estimator, N̂C shows a slight positive bias, this is probably

due to a finite sample property of the Horvitz-Thompson type estimator, see

Hwang and Huang (2003). The RB here reduces as N increases from 400 to

1,000, which agrees with the fact that it is a consistent estimator of N . Even if it

has slightly larger standard errors than the others, its coverage probabilities are

very close to the nominal level. Reducing bias at the cost of increasing variance

is a common phenomenon in measurement error.

Although we applied robust sandwich estimates, some biases were observed

in the variance estimates for all population size estimators. Note that variance

estimation for regression coefficient estimation has less bias, and the bias reduces

generally when the sample size increases. The explanation for variance estimation

bias for population size estimators is more complicated than that for regression

coefficients given that increasing the sample size actually means increasing the

parameter of interest. A more accurate variance estimation for the CS population

size estimator is an interesting topic to be pursued.
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In summary, the conditional score estimator is preferable to the existing

estimators, N̂1 and N̂R, due to its smaller biases, better coverage probabilities

and robustness.

6. Numerical Example: A Sensitivity Analysis

We consider measurement error analyses of the bird species Prinia flaviven-

tris data, collected by the Hong Kong Bird Society in 1993 at Mai Po Bird

Sanctuary of Hong Kong. After excluding one bird which did not have its covari-

ate, wing length, the data set to be analyzed consists of capture histories of 164

distinct birds that were caught in 206 total captures on 17 trapping occasions.

The average observed wing length is 45.24 mm, with sample variance 1.61.

Suppose the capture probability is modeled through a logistic function H(α+

βXi), where Xi is the exact wing length of the ith individual. We conducted

some sensitivity analyses of the effect of measurement error on estimation by

analyzing the data under various reliability ratio R values, where R is defined as

V ar(X)/V ar(W ). We considered R = 100%, 75%, and 50%, which corresponded

to high, medium, and poor qualities of measurement instruments or techniques.

Table 3 shows the results of the various estimators discussed in the simula-

tion study under different levels of reliability. The standard error estimates of

the RRC and the conditional score estimates are large because the data is sparse:

there are only 42 recaptures out of 164 birds during the experiment. Since this

example is sparse, we also conducted some bootstrap samples to obtain SE es-

timates and bootstrap percentile confidence intervals (BPCI). There are 1,000

bootstrap replications, and we discarded those bootstrap samples for which the

regression coefficients estimates diverged or yielded size estimates larger than

1,640 (10 times D). The bootstrap SE’s are only a little smaller than asymptotic

SE, but the BPCI’s are much shorter than the conventional one.

It is seen that the naive estimator may underestimate the population size

by 60 and 260 animals when R = 75% and 50%, respectively, compared to the

conditional score approach. The differences are so large that we believe it is

plausible in real data that the degree of quality in measuring variables affects

the resulting estimates substantially. We conclude that the measurement error

approach should be considered when an investigator has a reason to question the

precision of the measurement instruments.

7. Conclusion

We have demonstrated the effect of measurement error in the capture-recap-

ture model. When errors are present, the naive approach estimates regression

coefficients with considerable bias and usually underestimates the true population

size. The RRC approach mitigates the bias and the underestimation problem.
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Table 3. Comparison of estimator performance for Prinia flaviventris data

under different assumptions of reliability. When the reliability R = 1, θ =

(α, β)s and N are estimated by the naive approach. When the reliability

R < 1, θs and N are estimated by the RC and conditional score approach.

Reliability Method Estimate Estimate SE* BPCI

Regression Coefficients

R = 100% α̂ -21.13 5.279 ( 4.400) -29.64∼ -12.05

β̂ 0.38 0.115 ( 0.096) 0.18∼ 0.56
R = 75% α̂R -27.33 7.341 ( 6.155) -41.34∼ -15.90

α̂C -28.95 6.802 ( 8.248) -51.48∼ -16.77

β̂R 0.52 0.160 ( 0.134) 0.26∼ 0.82

β̂C 0.55 0.148 ( 0.180) 0.28∼ 1.03

R = 50% α̂R -40.31 12.021 (11.594) -66.81∼ -22.49

α̂C -48.52 17.027 (27.243) -79.12∼ -26.21

β̂R 0.80 0.262 ( 0.253) 0.41∼ 1.36

β̂C 0.98 0.372 ( 0.597) 0.49∼ 1.64

Population size

R = 100% N̂1 511 95.3 (108.3) 388∼ 798

N̂2 508 91.7 (107.8) 383∼ 786

R = 75% N̂R 545 120.3 (147.2) 387∼ 966

N̂C 572 125.7 (174.6) 411∼ 1094

R = 50% N̂R 626 195.0 (217.5) 420∼ 1282

N̂C 769 305.0 (264.0) 462∼ 1455

*Values in parentheses represent the bootstrap standard error estimates.

However, the RRC estimator may not be suitable when the measurement errors

are large, in the case of high heterogeneity, or when missing covariates are not

normally distributed. That is, the RRC estimation only provides a simple but

approximate solution. In contrast, the CS approach has the following advan-

tages. First, it does not require a distributional assumption on the covariates.

Second, rather than approximation, it provides an exact inference procedure. In

addition to the aforementioned advantages, the CS estimator offers a more direct

approach to population size estimation. Apparently, existing methods for co-

variate measurement error can be applied to correct the estimation of regression

coefficients in the capture-recapture probability model, but it often takes signif-

icant efforts to carry this adjustment forward to the inference of population size

estimation. For example, the previous work of Hwang and Huang (2003) requires

further calculation using the distribution of Yi|W i, which involves some tedious

approximations. Also, the population size estimator of Hwang and Huang was

based on the second-type HT estimator N̂2. That approach could not reduce
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bias if applied to the well-known first-type HT weighted estimator N̂1. In con-

trast, the idea of the proposed CS estimator is to use the distribution of Yi|∆i,

which does not require approximation and can be used to construct a first-type

HT estimator. These are significant and exclusive features of the CS estimation

procedure.

Although the CS method provides consistent estimation for both of the re-

gression coefficients and the population size, some small sample performance

cautions are noted. When information on the capture probability is insufficient,

the CS method may be not work well and there may not exist a root for the re-

gression coefficient estimation. For example, if the population size N equals 100

and the other parameters are the same as those in our simulation, then the RRC

estimator is better than the CS method. However, in this case, if we increase the

trapping samples from 5 to 10, the results are similar to those reported in Section

5. Furthermore, the superiority of the CS estimator over other estimators is more

significant if the total population size is increased. Similar findings were noted

in Wang and Huang (2001) in the context of joint modeling of logistic regression

and longitudinal covariate data.

The phenomenon of underestimation of a population size was verified by

Chen (1998) in a line transect model when sighting distances were measured

with errors. It was also observed by Gould, Stefanski and Pollock (1997) in a

catch-effort model via a simulation study. For the capture-recapture model, we

have explained this downward bias under the conditions of normal covariates

and normal measurement errors. Effects of measurement error on population

size estimation under other distributions remain unknown.

Finally, estimation bias of regression coefficients and underestimation of the

population size can result not only from the presence of measurement error, but

also from omitting important covariates, even when all covariates are measured

precisely. The reason is that if one overlooks a covariate related to the capture

probability, then there might be correlation between two capture samples, and

this would cause underestimation of the HT estimates. This follows by the same

reasoning as that for the underestimation of the RC and naive methods discussed

in Section 3.
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