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Abstract: We prove, under mild conditions, the existence of a minimizer of the

exact mean integrated square error of a kernel density estimator as a function of

the bandwidth. When it exists, we also show some expected limit properties of this

optimal bandwidth; in fact, for two common situations, Theorem 3 gives the exact

value for the limit. Surprisingly, in some special cases (when using superkernels or

the sinc kernel for estimating some classes of densities), this limit is strictly positive

and a global zero-bias bandwidth can be chosen.
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1. Introduction

Density estimation is one of the most studied topics in nonparametric statis-

tics during the last decades. The problem is to estimate a density function f ,

given X1, . . . , Xn, a set of independent R-valued random variables, each having

density f . The kernel estimator of f is given by

fn,h(x) =
1

n

n
∑

i=1

Kh(x−Xi),

where the bandwidth h is a positive real number, the kernel K is an integrable

function with
∫

K(x)dx = 1, and Kh(x) = K(x/h)/h (see, e.g., Silverman (1986)

for an extensive description of the kernel method). The use of the kernel density

estimator rests upon the choice of the kernel K and the bandwidth h.

It is usual, for density estimation, to use positive kernels (that is, densities),

so that the final estimate we get is itself a density function. In this sense, the

differences between several positive kernels are not severe (see Table 6.2 in Scott

(1992)), with the Gaussian kernel being the most commonly used. Nevertheless,

there is a possible gain in terms of asymptotic rates of convergence if we allow

the kernel to take negative values (see Wand and Jones (1995, Section 2.8)).
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Unlike the situation with the kernel, bandwidth choice is a very important

feature to take into account. We can measure the error of the kernel estimator

fn,h through the mean integrated squared error (MISE), which is defined by the

expression

Mf,n(h) = MISEf (fn,h) = Ef

∫

[fn,h(x) − f(x)]2 dx, (1)

where, here and thereafter, the symbol
∫

will denote integration over the whole

real line, unless otherwise stated. It is sufficient, for the expression (1) to be

finite, to suppose that both f and K are square integrable; that is, f , K ∈ L2.

According to (1), a quite natural choice for h is the minimizer of the function

Mf,n : (0,∞) → R. Such a minimizer will clearly depend on the sample size n

and the density f ; we denote it as h0,n(f). The question is: does the MISE

always have such a minimizer? In the affirmative case, does h0,n(f) satisfy some

typical bandwidth conditions, such as

h0,n(f) → 0 and nh0,n(f) → ∞ (2)

as n→ ∞? In general, the answer to these questions is well-known for the asymp-

totic MISE and the asymptotically optimal bandwidth under enough smoothness

assumptions. However, conditions (2) are necessary hypotheses to show that the

asymptotic and the exact optimal bandwidth are asymptotically equivalent (see

details in Section 3), so our aim is to work with the exact minimizer h0,n(f) and

assume conditions as mild and natural as possible.

For this purpose, some preliminary non-asymptotic results are used in Sec-

tion 2 to provide sufficient conditions for the existence of the optimal bandwidth.

Then, under these conditions, the limit behavior of the exact optimal bandwidth

sequence is investigated in Section 3, considering also the possibility of superk-

ernels and the sinc kernel, for which the first part of (2) is not verified and a

zero-bias bandwidth can be chosen in some special cases. Finally, all the proofs

are postponed to Section 4.

2. Existence of the Optimal Bandwidth

Firstly, let us recall an equivalent expression for the MISE. We can write

Mf,n(h) = Bf (h) + Vf,n(h), (3)

where

Bf (h) =

∫

{Ef [fn,h(x)] − f(x)}2 dx and

Vf,n(h) =

∫

Var f [fn,h(x)] dx
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are called the Integrated Square Bias (ISB) and Integrated Variance (IV), re-

spectively. It is well known (see, e.g., Wand and Jones (1995)) that

Bf (h) = R(f) +R(Kh ∗ f) − 2RK,h(f) and (4)

Vf,n(h) =
R(K)

nh
− 1

n
R(Kh ∗ f), (5)

where we are using the notation ∗ for convolution, R(ψ) =
∫

ψ(x)2dx for any

square integrable function ψ and

RK,h(f) :=

∫

(Kh ∗ f)(x)f(x)dx.

The following theorem ensures the existence of an optimal bandwidth mini-

mizing the MISE.

Theorem 1. Let f be a density function in L2 and K a bounded kernel, contin-

uous at zero and such that

R(K) < 2K(0). (6)

Then Mf,n has a minimizer on (0,∞), that is, there exists h0,n(f) > 0 such that

Mf,n(h0,n(f)) ≤Mf,n(h), ∀h > 0.

Condition (6) on the kernel K in the theorem above is quite natural. It is

logical, when estimating a density, to use a kernel which attains its maximum

at zero because the kernel estimate will assign more weight to the points of the

sample. If it does, R(K) ≤ ‖K‖∞ < 2‖K‖∞ = 2K(0). Condition (6) has already

appeared in the literature; it was a necessary condition to show the optimality

of the cross-validation bandwidth selector in Stone (1984).

3. Limit Behavior of the Optimal Bandwidth

Once we have obtained sufficient (and mild) conditions for the exact MISE

function to have a minimizer h0,n(f), it is natural to ask if the sequence {h0,n(f)}n

of optimal bandwidths satisfies the classical limit conditions h0,n(f) → 0 and

nh0,n(f) → ∞ as n → ∞. We will see below that the second one holds quite

generally; however, it is a bit surprising that the first one does not necessarily

hold.

Theorem 2. Let f and K be as in Theorem 1. Then, the optimal bandwidth

sequence satisfies nh0,n(f) → ∞ as n→ ∞.
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For the study of the limit behavior of {h0,n(f)}n we need to introduce some

extra concepts. If mj(K) :=
∫

xjK(x)dx, a kernel K is said to be of finite order

k ≥ 1 if

mj(K) =

{

0 for j = 1, . . . , k − 1,

C for j = k,

with C ∈ R \ {0}. For instance, every symmetric density with finite variance

is a kernel of order 2. In fact, there is a method for constructing a kernel of

arbitrary even order based on a kernel of order 2 (see Schucany and Sommers

(1977)), which has been applied to get higher order kernels based on the Gaussian

one (Wand and Schucany (1990)). Also, a kernel K is said to be a superkernel

if its characteristic function is equal to 1 in a neighborhood of the origin (see

Devroye (1992), or Glad, Hjort and Ushakov (2003)). It is possible to find several

examples of superkernels, for instance, in Devroye and Lugosi (2001, Chap.17)

(see also Example 1 below).

In the following, we use the notation ϕL(t) =
∫

eitxL(x)dx, t ∈ R, for the

characteristic function of any function L ∈ L1 and, for every density f and every

symmetric kernel K (both in L2), we set

Jf,K = sup{h ≥ 0: Bf (h) = 0},
Cf = sup{r ≥ 0: ϕf (t) 6= 0 a.e. for t ∈ [0, r]},
Df = sup{t ≥ 0: ϕf (t) 6= 0},
SK = inf{t ≥ 0: |ϕK(t) − 1| 6= 0},
TK = inf{r ≥ 0: |ϕK(t) − 1| 6= 0 a.e. for t ≥ r}.

All these exist, with Cf , Df possibly being infinite, Jf,K ∈ [0,∞), by part b)

of the lemma in Section 4, and SK , TK ∈ [0,∞), due to the Riemman-Lebesgue

Lemma for Fourier transforms (see Kawata (1972, Theorem 2.1.1)). Besides,

Cf ≤ Df and SK ≤ TK .

Notice that, by definition, SK > 0 for superkernels. Moreover, it is not

difficult to show that SK = 0 for any kernel K of finite order, since in this

case we have that ϕK(t) has a strict local extreme at t = 0. Nevertheless,

Devroye and Lugosi (2001, p.194), give an example of a kernel K of infinite order

(i.e., such that mj(K) = 0 for all j = 1, 2, . . .) with SK = 0.

The following theorem says that, if we use a kernel K with SK = 0 (e.g., a

kernel of finite order), then we can assure that the optimal bandwidth sequence

converges to 0 with no conditions on the density. However, if we want this

property to hold also for superkernels, we have to demand the characteristic

function of the density f be strictly positive at arbitrarily large values. This is

not a very restrictive condition.
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Moreover, if we use a superkernel for estimating a density such that its

characteristic function has a compact support, we have two common cases (SK =

TK or Cf = Df ) where we can easily tell what the limit is.

Theorem 3. Let f and K be as in Theorem 1. The following assertions

hold:

(a) If either SK = 0 or Df = ∞, then h0,n(f) → 0 as n→ ∞. Besides, in either

case we have Jf,K = 0; that is, Bf (h) > 0 for all h > 0.

(b) If either SK = TK or Cf = Df , then h0,n(f) → SK/Df as n→ ∞. Besides,

in either case we have Jf,K = SK/Df .

Notice that the case Cf < Df is possible. It happens, for instance, if the

set {t ≥ 0: ϕf (t) = 0} can be expressed as the union of two or more intervals,

separated from each other by sets of positive measure. The analogous case SK <

TK occurs if the set {t ≥ 0: |ϕK(t) − 1| = 0} can be expressed in the same way

as before.

Usually, the MISE of a kernel density estimator is asymptotically described

under regularity conditions. Namely, if the kernel K is of order k, the density

f satisfies some smoothness conditions (involving up to the kth-derivative) and

the bandwidth sequence {hn}n is such that

hn → 0 and nhn → ∞ (7)

as n → ∞, then the MISE of the kernel estimator fn,hn
can be expressed as

Mf,n(hn) = Af,n(hn) + o(h2k
n ) + o(n−1h−1

n ), where

Af,n(h) :=
h2k

(k!)2
mk(K)2R(f (k)) +

R(K)

nh

is called the asymptotic MISE (see Marron and Wand (1992, p.719)). Thus,

if we denote by h∗,n(f) the minimizer of the function Af,n(h), it is clear that

h∗,n(f) exists and can be written as h∗,n(f) = c0(f,K)n−1/(2k+1) for a constant

c0(f,K) depending on f and K only. Therefore, it is obvious that it satisfies

h∗,n(f) → 0 and nh∗,n(f) → ∞ as n → ∞. However, the asymptotic minimizer

h∗,n(f) should not be mistaken for the exact minimizer h0,n(f); whereas the

exact one makes sense with mild assumptions on the kernel and the density

(see Theorem 1) and for all n ∈ N, the use of the asymptotic minimizer rests

upon some smoothness conditions and is only valid for large sample sizes. Sharp

differences from the exact one can be found for small sample sizes, in some

cases (see Marron and Wand (1992)). Nevertheless it is well-known that, under

smoothness conditions, if h0,n(f) satisfies (7) we can write

h0,n(f) = h∗,n(f) + o(n−
1

2k+1 ), (8)
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which shows that the sequences {h0,n(f)}n and {h∗,n(f)}n are of the same order

(see, for instance, Hall and Marron (1991, p.160)). But we want to emphasize

that, for arriving at (8), we need the optimal bandwidth sequence to exist and

satisfy (7), as in Theorems 2 and 3 with no smoothness assumptions on the

density. Moreover, if the smoothness conditions on f should fail, then h∗,n(f) is

not of the same order as above, as shown in van Eeden (1985) (see also van Es

(1991)).

Theorem 3 also gives us some insight into what could be achieved with the

use of superkernels. Let K be a superkernel such that SK = TK , and suppose

that Df < ∞. Then, Theorem 3 states that h0,n(f) → SK/Df > 0 as n → ∞.

Moreover, as Jf,K = SK/Df > 0, for any fixed h? ∈ (0, Jf,K ] (not depending on

n), we have Ef [fn,h?
(x)] = f(x) for almost every x ∈ R and for all n ∈ N. Thus,

in that case we can write

Mf,n(h?) = Vf,n(h?) =
1

n

[

R(K)

h?
−R(Kh?

∗ f)

]

= O(n−1).

This is the best rate that can be achieved in nonparametric density estimation,

whether of kernel type or not, as shown in Boyd and Steele (1978). In fact, the

case Df <∞ is the only one in which the kernel estimate can achieve this rate,

as shown in Davis (1977).

The previous bandwidth h? is called a global “zero-bias bandwidth” for al-

most every x ∈ R. In a similar way, Sain and Scott (2002) show, for non-negative

kernels, the existence of a local zero-bias bandwidth h0(x), not varying with n,

for every x in the region where f is convex.

Notice that the existence of this zero-bias bandwidth in the previous situation

shows a remarkable difference from the case when a nonnegative kernel is used.

Yamato (1972) shows that, when using a positive kernel, no global zero-bias

bandwidth can be found for any density.

The next example illustrates that it is possible to exhibit cases where the

optimal bandwidth sequence converges to any previously chosen positive value.

Example 1. Consider the Fejér-de la Vallée-Poussin density f(x) = (πx2)−1(1−
cosx), x ∈ R, and let fa(x) = f(x/a)/a for any a > 0. The characteristic function

of fa is ϕfa
(t) = (1−a|t|) ·I[−1/a,1/a](t), t ∈ R, and Cfa

= Dfa
= 1/a. Besides, let

us choose the trapezoidal superkernel given by K(x) = (πx2)−1[cos x− cos(2x)],

x ∈ R, which has characteristic function ϕK(t) = I[0,1)(|t|) + (2 − |t|) · I[1,2)(|t|),
t ∈ R, so that SK = TK = 1. The previous theorem states that h0,n(fa) → a, as

n→ ∞.

In fact, for a class of densities g with constant Dg, say Dg = 1, we get a

zero-bias bandwidth for the trapezoidal superkernel K if we set h = SK = 1

(independently of the sample size n). For instance, such a class is the location
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family of densities {g(µ) : µ ∈ R}, with g(µ)(x) = f(x − µ), x, µ ∈ R; Theorem

10.5.2 in Kawata (1972) yields a way to construct even a nonparametric family of

densities g with Dg = 1. Figure 1 illustrates this situation: the top graph is the

density f (thick line) and an estimate (thin line) for n = 100 using the trapezoidal

superkernel; the middle and bottom left graphs show 50 estimates (grey lines) for

the same sample size using the trapezoidal superkernel and the Sheather-Jones

method (Sheather and Jones (1991)), respectively, while the middle and bottom

right graphs exhibit the mean graphs (dashed lines) of these 50 estimates.
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Figure 1. Estimations of the Fejér-de la Vallée-Poussin density.
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The so-called “sinc kernel” is K(x) = sinx/(πx), x ∈ R. In fact, it is not

a kernel, since it is not integrable. However, the sinc kernel belongs to L2 and

satisfies VP
∫

K(x) = 1, where VP
∫

stands for limC→∞

∫ C
−C and, therefore, it

can be considered a “quasi-kernel”. The sinc kernel does satisfy some optimality

conditions in the L2 sense (see Davis (1977))) and is sometimes used in kernel

density estimation. Based on a kernel density estimator with the sinc kernel,

it is possible to construct another estimator, positive and integrating to 1, with

smaller MISE, as shown in Glad, Hjort and Ushakov (2003). The principal value

of the characteristic function of the sinc kernel is equal to 1 in a neighborhood

of the origin, as in the superkernel case, so it is natural to wonder if the optimal

bandwidth sequence converges to 0. The answer is, again, no. In fact, we can

find examples where the optimal bandwidth sequence converges to any previously

chosen positive value, as we did in the superkernel case.

Example 2. For the sinc kernel, it is possible to obtain an exact formula for the

MISE. Formula (2.2) in Davis (1977) states that

Mf,n(h) = R(f) +
1

nπh
− n+ 1

nπ

∫ 1

h

0
|ϕf (t)|2dt. (9)

Let fa, a > 0, be as in Example 1. Then, using (9), we obtain that

Mfa,n(h) =

{

n(h−a)3+3a2h−a3

3anπh3 for h ≥ a
1

nπh − 1
3anπ for h ≤ a.

Moreover, Mfa,n(h) has a unique minimizer h0,n(fa) = a(n+1+
√
n+ 1)/n that

satisfies h0,n(fa) → a, as n→ ∞.

4. Proofs

It is easy to show that, if we write Ψ̄(u) = Ψ(−u) for every real function Ψ,

then R(Kh ∗ f) = RK∗K̄,h(f). Thus, combining (3) with (4) and (5), we come to

Mf,n(h) = R(f) +
R(K)

nh
+
n− 1

n
RK∗K̄,h(f) − 2RK,h(f). (10)

Notice that, although RK,h(f) is defined for h > 0, it is possible to write

RK,h(f) =

∫

K(u)(f ∗ f̄)(hu)du, (11)

and this expression also makes sense for h = 0 (in fact, for any h ∈ R), with

RK,0(f) = R(f).

Lemma. Let f be a density function and K a kernel, both belonging to L2.
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(a) The function h 7→ RK,h(f) is continuous and satisfies limh→0RK,h(f) = R(f)

and limh→∞RK,h(f) = 0.

(b) The functions Bf , Vf,n and Mf,n are continuous on (0,∞) and satisfy limh→0

Bf (h) = 0, limh→∞Bf (h) = R(f), limh→0 Vf,n(h) = ∞, limh→∞ Vf,n(h) =

0, limh→0Mf,n(h) = ∞ and limh→∞Mf,n(h) = R(f).

(c) If, in addition, K is bounded and continuous at zero, then limh→∞ hRK,h(f) =

K(0) and limh→∞ h[Mf,n(h) −R(f)] = R(K) − 2K(0).

Proof. Part (b) is a straightforward consequence of part (a). To show part (a),

recall that, as f ∈ L2, we have that f ∗ f̄ is a continuous function such that

(f ∗ f̄)(x) → 0 as |x| → ∞ (see Rudin (1990, p.4)) and, therefore, f ∗ f̄ is

bounded. Hence, in view of (11), the continuity of the function h 7→ RK,h(f) and

its limits follow directly from the Dominated Convergence Theorem.

For the first limit of part (c), using again the Dominated Convergence The-

orem, we can exchange the limit and the integral to get

lim
h→∞

hRK,h(f) = lim
h→∞

∫∫

K

(

x− y

h

)

f(x)f(y)dxdy = K(0),

as desired. The second limit in part c) follows from the first one and the fact

that K ∗ K̄ is a continuous function such that (K ∗ K̄)(0) = R(K).

Proof of Theorem 1. By hypothesis, we have

lim
h→∞

h [Mf,n(h) −R(f)] = R(K) − 2K(0) < 0.

Hence, we can choose h > 0 big enough so that Mf,n(h) < R(f). This fact,

together with the properties of the MISE function shown in the lemma, gives the

proof.

Next, we give the proofs of the results about the limit behavior of the optimal

bandwidth sequence.

Proof of Theorem 2. First, we can prove that the sequence of minimum MISE

values goes to 0; that is,

lim
n→∞

min
h>0

Mf,n(h) = lim
n→∞

Mf,n(h0,n(f)) = 0. (12)

To show this, let us suppose that Mf,n(h0,n(f)) 6→ 0 as n → ∞. Then, there

is some ε > 0 and some subsequence of functions (which we denote the same)

such that Mf,n(h) ≥Mf,n(h0,n(f)) > ε for all n ∈ N and h > 0. Since it is clear

from (4) and (5) that Mf,n(h) → Bf (h) pointwise as n → ∞, it should be that

Bf (h) ≥ ε for all h > 0, which contradicts the lemma above. Thus, it has to be

Mf,n(h0,n(f)) → 0 as n→ ∞.
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Now, suppose that nh0,n(f) 6→ ∞ as n → ∞. Then there exists a constant

C > 0 and a subsequence {nkh0,nk
(f)}k∈N, such that

nkh0,nk
(f) ≤ C, ∀k ∈ N; (13)

hence, h0,nk
(f) → 0 as k → ∞. Using (10), together with (12) and the limits of

the lemma above, we get that

lim
k→∞

R(K)

nkh0,nk
(f)

= 0.

Thus nkh0,nk
(f) → ∞ as k → ∞, which contradicts (13).

Proof of Theorem 3. The theorem follows easily from the chain of inequalities:

SK

Df
≤ inf

n∈N

h0,n(f) ≤ lim sup
n→∞

h0,n(f) ≤ Jf,K ≤ min
{SK

Cf
,
TK

Df

}

.

To prove the first one, notice that we have Bf (h) = 0 for all h ∈ (0, SK/Df ]

because, if Df ≤ SK/h, then using the Parseval Identity,

0 ≤ Bf (h) =
1

π

∫

∞

0
|ϕf (t)|2|ϕK(th) − 1|2dt

≤ 1

π

∫

SK
h

0
|ϕf (t)|2|ϕK(th) − 1|2dt+

1

π

∫

∞

Df

|ϕf (t)|2|ϕK(th) − 1|2dt = 0,

with the last equality due to the fact that |ϕK(th) − 1| = 0 for all t ∈ [0, SK/h]

and ϕf (t) = 0 for all t ≥ Df , by definition of SK and Df , respectively. Besides,

for h ∈ (0, SK/Df ], using again the Parseval Identity, the integrated variance
satisfies

Vf,n(h) =
R(K)

nh
− 1

nπ

∫

∞

0
|ϕf (t)|2|ϕK(th)|2dt

=
R(K)

nh
− 1

nπ

∫ Df

0
|ϕf (t)|2dt.

Thus, for h ∈ (0, SK/Df ], the MISE can be written as

Mf,n(h) =
R(K)

nh
− R(f)

n
,

which is a decreasing function in h. It then has to be that h0,n(f) ≥ SK/Df for

all n ∈ N.

For the last inequality, if h > SK/Cf from the definition of SK there is some
nonempty interval I ⊂ [SK/h,Cf ] such that |ϕK(th) − 1| 6= 0 for all t ∈ I. Then

Bf (h) ≥ 1

π

∫

I
|ϕf (t)|2|ϕK(th) − 1|2dt > 0



OPTIMAL BANDWIDTH FOR KERNEL DENSITY ESTIMATION 299

and, therefore, it must be that Jf,K ≤ SK/Cf . A completely analogous reasoning

can be used to show that Bf (h) > 0 for all h > TK/Df , so we also have Jf,K ≤
TK/Df .

Finally, to show the third inequality, set lf = lim supn→∞
h0,n(f) and sup-

pose that lf > Jf,K . Then there exists a subsequence {h0,nk
}k such that limk→∞

h0,nk
(f) = lf . If lf = ∞, the lemma allows us to conclude that Bf (h0,nk

(f)) →
R(f) > 0 as k → ∞. If lf < ∞ then, as k → ∞, Bf (h0,nk

(f)) → Bf (lf ), which

is also strictly positive since we are supposing that lf > Jf,K . In any case, we

have that limk→∞Bf (h0,nk
(f)) > 0, which contradicts (12).
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Dpto. de Matemáticas, Universidad de Extremadura, Avda. de Elvas, s/n, 06071-Badajoz,

Spain.

E-mail: jechacon@unex.es
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