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Abstract: Many time series data sets have heavy tails and/or long memory, both

of which are well-known to greatly influence the rate of convergence of the sample

mean. Typically time series analysts consider models with either heavy tails or

long memory; we consider both. The paper is essentially a theoretical case study

that explores the growth rate of the sample mean for a particular heavy-tailed,

long memory time series model. An exact rate of convergence, which displays the

competition between memory and tail thickness in fostering sample mean growth, is

obtained in our main theorem. An appropriate self-normalization is used to produce

a studentized sample mean statistic, computable without prior knowledge of the tail

and memory parameters. This paper presents a novel heavy-tailed time series model

that also has long memory in the sense of sums of well-defined autocovariances; we

explicitly show the role that memory and tail thickness play in determining the

sample mean’s rate of growth, and we construct an appropriate studentization.

Our model is a natural extension of long memory Gaussian models to data with

infinite variance, and therefore pertains to a wide range of applications, including

finance, insurance, and hydrology.

Key words and phrases: Heavy-tailed data, infinite variance, long-range depen-

dence, studentization.

1. Introduction

The phenomena of heavy tails and long memory have been observed in many

branches of science, as well as in insurance and economics; see Samorodnitsky and

Taqqu (1994, pp.586-590) for a historical review and many references. Heavy-

tailed data frequently exhibit large extremes, and may even have infinite variance,

while long memory data exhibit great serial persistence, behaving similar to a

random walk in many cases. The literature on time series models that capture

these phenomena has often times followed two separate paths − heavy-tailed,

intermediate (or short) memory models and finite variance, long memory models.

Davis and Resnick (1985, 1986) introduced infinite order moving average time

series models with heavy-tailed inputs, and these seminal papers have sparked a

wealth of interest in such models and their applications. However, these models

do not have well-defined autocovariances, and the common modern conception
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of long memory cannot be formulated within that umbrella. On the other hand,

long memory models have received much attention (see Beran (1994, Chap.1) and

Granger and Joyeux (1980) for example), but the literature generally assumes

that the data has finite variance.

There is a need to explore time series models with both thick tails and

long memory. Indeed, much of the early work (Mandelbrot and Wallis (1968))

in this field noted that long memory time series often were heavy-tailed and

self-similar as well. So the joint presence of heavy tails and long memory in

many data sets has been noted for several decades; for more recent work in this

area, see Heyde and Yang (1997), Hall (1997), Rachev and Samorodnitsky (2001)

and Mansfield, Rachev and Samorodnitsky (2001). Also Heath, Resnick, and

Samorodnitsky (1998, 1999) show some interesting theoretical work on fluid mod-

els that incorporate both heavy tails and long memory. Again in finance, where

long memory models have seen some popularity (Greene and Fielitz (1977)),

the data are known to be heavy-tailed (Embrechts, Klüppelberg and Mikosch

(1997)). Thus, there is a large body of literature documenting the joint presence

of long memory and heavy tails in time series data.

A common modern approach to modeling long memory is through describ-

ing the rate of decay of the autocovariance function. But this definition requires

that the autocovariance sequence is well-defined in the first place; for infinite

variance heavy-tailed data, it is not clear how to proceed. Indeed, the finite and

infinite variance approaches to time series analysis tend to differ drastically, with

correspondingly different mathematical tools and methods. For example, in non-

parametric time series analysis one can explore long-range dependence through

covariance functions and mixing coefficients, but there is a trade-off: the more de-

pendence that is present in the data, the more moments one is required to assume

exist. Perhaps for this reason, infinite variance models tend to be parametric −
for example, consider the popular moving average models of Davis and Resnick

(1985, 1986). However, the drawback for these models is that the summability

conditions on the moving average coefficients preclude parametrizing long mem-

ory through the decay rate of pseudo-autocorrelations. In contrast, the model

that we present has infinite variance and finite autocovariances, thus permitting

a simple adaption of the modern definition of long memory. In addition, our

model is conditionally Gaussian, so that many of the finite variance methods

may still be applied.

Consider a stationary time series Yt centered at zero; let Y denote a random

variable with the same distribution as that of Yt. If the cumulative distribution

function (cdf) of Y is in the normal domain of attraction of an α-stable distri-

bution (written D(α), see Embrechts, Klüppelberg and Mikosch (1997, Chap.2)

and the data are independent or an infinite order moving average (with absolutely
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summable coefficients) of i.i.d. errors, then
∑n

t=1 Yt = OP (n1/α) so that 1/α gives

the appropriate rate of growth (see Davis and Resnick (1985)). On the other

hand, if Y is square integrable, with autocovariances γY satisfying
∑n

h=1 γY (h) =

O(nβ) for some β ∈ [0, 1) as n → ∞, then
∑n

t=1 Yt = OP (n(β+1)/2), which fol-

lows from computing the sum’s variance. If Y could somehow share both of these

properties, then its rate of growth would be the greater of n1/α and n(β+1)/2. Re-

stricting to α ∈ (1, 2) (so that the mean exists but the variance is infinite) yields

the picture given in Figure 1.
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Figure 1. Tail Thickness vs. Memory

We refer to the lower left-hand region as Tail, because here 2/α > β + 1 so

that tail thickness determines the growth rate of the partial sums. The upper

right-hand region is Mem, where 2/α < β + 1 so that memory dominates. The

curve represents the boundary line 2/α = β + 1, where both tails and memory

give an equal contribution. The convexity of this curve shows that Mem is more

prevalent; its area is 2− log 4 = 0.6137 versus the log 4− 1 = 0.3863 area of Tail.

We present our model in Section 2, along with a few basic properties. In

Section 3 we compute the asymptotic distribution of the sample mean, the sample

variance, and their joint asymptotic distribution. Finally, we present a self-

normalization for the memory parameter, and show how a studentized mean can

be computed without prior knowledge of α or β. Section 4 is the conclusion,

which discusses some possible extensions of the model and the methods of proof;

proofs are contained in the appendix.

2. The Model

Let our observed series be {Xt, t = 1, . . . , n} which has location parameter
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η. Then define

Yt = Xt − η = σtGt, (1)

so that Yt is the product of a “volatility” time series σt and a long memory time

series Gt. We make the following additional assumptions.

(A) The series {σt} and {Gt} are independent.

(B) Let σt =
√
εt, where εt are i.i.d. and have the marginal distribution of an

α/2 stable random variable with skewness parameter 1, scale parameter

τ = (cos(πα/4))2/α, and location parameter zero.

(C) The tail index α is a constant in (1, 2).

(D) {Gt} is stationary (mean zero) Gaussian.

(E) The Gaussian series is purely non-deterministic, i.e., the one-step ahead

prediction errors have nonzero variance − see Brockwell and Davis (1991,

p.187).

This construction is based on the sub-Gaussian processes discussed in

Samorodnitsky and Taqqu (1994, Chap.2), but here the subordinator εt is a pro-

cess instead of a single fixed variable. Since α ∈ (1, 2), the model has finite

mean but infinite variance. Let us denote the autocovariance function of {Gt}
by γG; we also know by assumptions (D) and (E) that we can represent {Gt} by

a linear process. The following proposition summarizes some of the most salient

properties of this model.

Proposition 1. Given (A) through (E), the following statements are true of the

model at (1):

1. The series {Xt} is strictly stationary, and the marginal distribution is sym-

metric α stable (sαs) with scale parameter
√
γG(0)/2 and mean η.

2. The mean of σt exists and is µ := Γ(1 − 1/α)/2Γ(3/2).

3. The second moment of Xt is infinite, but Cov [Xt, Xt+h] = µ2γG(h) is finite

for h 6= 0 and depends only on the lag |h|.
Several of the assumptions in the model can be generalized to encompass

a wider class of data sets. Assumption (A) is crucial to the perspective here,

and cannot be relaxed without altering the analytical methods used. As for (B),

there is clearly no loss of generality in specifying scale τ for the volatility, due to

the multiplicative structure of the model. Indeed, if we originally assumed that

ε had some generic unspecified scale C, then we could redefine ε by ε · τ/C and

scale the Gaussian process by C/τ .

Remark 1. Note that we can extend the model to encompass α = 2, which

corresponds to the Gaussian case. Then the volatility σt is deterministic (and

constant to ensure stationarity), but we say little about this case in our paper,

since it has been well-studied.
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Remark 2. Suppose that the volatility series is only assumed m-dependent.

Then, for any |h| ≤ m, we have Cov [Xt, Xt+h] = E[σtσt+h]E[GtGt+h] and there

are no guarantees that E[σtσt+h] is finite. However, if |h| > m, the same calcu-

lation yields µ2γG(h), which is well-defined. For example, suppose that εt is a

causal moving average of an i.i.d. stochastic volatility series

εt = ψ0δt + ψ1δt−1 + ψ2δt−2 + · · · + ψmδt−m.

Then the series is clearly m-dependent and, if |h| ≤ m, we have

E[σtσt+h] = E[
√
εtεt+h] ≥ E



√∑

j

ψjψj+hδ
2
t−j




≥ E

[√
ψ0ψhδ

2
t

]
= E

[√
ψ0ψ−hδt

]
= +∞

assuming that all the coefficients ψj are positive. But if |h| > m, we obtain

µ2γG(h). Clearly, if the stochastic volatility series is autoregressive, then the

autocovariance of the Y series is never finite at any lag, which is not convenient

for defining long memory.

Definition 1. A stationary process is said to have long memory if its autoco-

variance function γ satisfies
∑

0<|h|<n

γ(h) ∼ Cnβ and
∑

0<|h|<n

|γ(h)| = O(nβ)

as n → ∞, and β ∈ [0, 1), where C > 0 is a constant. Note that an ∼ bn iff

an/bn → 1 as n→ ∞. The condition on γ is referred to as LM(β) for β ∈ [0, 1),

but LM(0) is sometimes referred to as denoting intermediate memory − namely

that the autocovariance function is absolutely summable.

One easy consequence of LM(β) for β > 0 is that γ(n) ∼ (βC/2)nβ−1, since∑
|h|<n γ(h) = 2

∑n−1
h=1 γ(h) and L’Hopital’s Rule gives

C

2
= lim

n→∞

∑n
h=1 γ(h)

nβ
= lim

n→∞
γ(n)

βnβ−1
.

This property is used whenever LM(β) holds with β > 0.

3. Results

Consider the sample mean X as an estimator of η, η̂ = X = (1/n)
∑n

t=1Xt,

so n(X − η) =
∑n

t=1 Yt. The following theorem gives the asymptotics of the

partial sums; the rate of convergence depends delicately on whether the pair
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(α, β) is located in Tail or Mem. Take ζ = max{1/α, (β + 1)/2} to measure the

dominant contributor to growth.

Theorem 1. Suppose (A) through (E) hold, and assume LM(β) with β ∈ [0, 1).

Then the partial sums of the {Yt} series, normalized by nζ, converge to an abso-

lutely continuous random variable. In particular,

n−ζ
n∑

t=1

Yt
L

=⇒





S if 1
α > β+1

2

V if 1
α < β+1

2

S + V if 1
α = β+1

2 ,

(2)

where
L

=⇒ denotes convergence in distribution. S is a sαs variable with zero

location parameter, and scale
√
γG(0)/2, whereas V is a mean zero Gaussian

variable with variance C̃µ2/(β + 1), where C̃ = C − γG(0)1{β=0}. In the third

case, S and V are independent.

Remark 3. The distribution of S is exactly the same as the marginal distribution

of the original {Yt} series, by Proposition 1. Hence if it were known that (α, β) ∈
Tail, then we would have a method for constructing confidence intervals for η.

Remark 4. We can easily extend this theorem to the α = 2 case, which has

already been studied in Taqqu (1975). If α = 2 then µ = 1, and the variance of V

will be either C − γG(0) or C/(β + 1) depending on whether β = 0 or not. Also,

when α = 2, the random variable S will be a mean zero Gaussian with variance

γG(0). Thus in the α = 2, β = 0 case, the limit is S + V which is Gaussian with

mean zero and variance C =
∑

h∈Z
γG(h). Hence in the intermediate memory

Gaussian model, we obtain the classical limit.

The comment in Remark 3 does not give a practical method for constructing

confidence intervals, since it is difficult in practice to verify whether Tail is true.

Instead we adopt a different approach that considers the joint asymptotics of

the sample mean with some measure of scale. In McElroy and Politis (2002),

joint asymptotics for sample mean and sample variance were used to eliminate

α from the resulting confidence interval via the trick of self-normalization, or

studentization. In that paper, a linear process with heavy-tailed inputs was

considered, and similar results for a stable moving average model can be found

in McElroy and Politis (2004). Below we establish joint asymptotics for sample

mean and sample variance normalized by rates involving ζ. Interestingly, the

sample variance is always OP (n2/α), even in the Mem case.

Theorem 2. Suppose (A) through (E) hold, and assume LM(β) with β ∈ [0, 1).

Then the sample first and second moments of the {Yt} series, normalized by nζ,
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converge jointly to absolutely continuous random variables. In particular,

(
n−ζ

n∑

t=1

Yt, n
−2ζ

n∑

t=1

Y 2
t

)
L

=⇒





(S,U) if 1
α > β+1

2

(V, 0) if 1
α < β+1

2

(S + V,U) if 1
α = β+1

2 ,

(3)

S and V as in Theorem 1, and U is α/2 stable with zero location parameter,

skewness one, and scale proportional to τγG(0). V is independent of S and U ,

but S and U are dependent. The joint Fourier/Laplace Transform of S +V,U is

(θ real, φ > 0)

E[exp{iθ(S + V ) − φU}]

= exp

{
−(
γG(0)

2
)

α

2

E|θ +
√

2φZ|α1{ 2

α
≥β+1} −

θ2

2
C̃

µ2

β + 1
1{ 2

α
≤β+1}

}
,

where Z has a standard normal distribution. Finally, (3) remains true if n−2ζ

∑n
t=1 Y

2
t is replaced by n−2ζ

∑n
t=1 (Xt −X)

2
.

By Theorem 2, the sample variance can be used to studentize X in the Tail

case. We now need to find an appropriate normalization when 2/α < β + 1. In

the literature on long memory, the log periodogram has been used to estimate

β − see Robinson (1995) for example. We are not interested in estimation of β,

but in computing a positive statistic that grows at rate nβ+1. To this end, fix

ρ ∈ (0, 1) and take

L̂M(ρ) =

∣∣∣∣∣∣

bnρc∑

|h|=1

1

n− |h|

n−|h|∑

t=1

(
XtXt+h −X

2
)
∣∣∣∣∣∣

1

ρ

,

which is essentially the sum of the first nρ sample autocovariances, all raised to

the absolute power 1/ρ. Note that if we replaced the sample autocovariances

by the real autocovariances, this quantity would be of order nβ. Therefore we

propose to use L̂M(ρ) for some ρ ∈ (0, 1) as a second normalization to our sample

mean. The following theorem gives the asymptotic behavior of L̂M(ρ).

Theorem 3. Suppose (A) through (E) hold, as well as LM(β) with β ∈ [0, 1).

Let ρ ∈ (0, 1) be a user-defined rate. Then L̂M(ρ) converges in probability to a

constant at rate nβ. In particular, n−βL̂M(ρ)
P−→ µ2/ρC1/ρ.

So we may use the centered sample second moments, together with the long

memory estimator, to form a rate of growth normalization for the sample sum.

This is because the sample second moments grow at rate n2/α, regardless of the

relationship between α and β, whereas L̂M(ρ) grows at rate nβ − also regardless
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of Tail or Mem. The following theorem basically summarizes the work of Theorem
2 and Theorem 3:

Theorem 4. Suppose (A) through (E) hold, as well as LM(β) with β ∈ [0, 1).
Let ρ ∈ (0, 1) be a user-defined rate. Then the following joint weak convergence
holds: (

n−ζ
n∑

t=1

(Xt − η), n−2ζ
n∑

t=1

(Xt −X)
2
, n−2ζ+1L̂M(ρ)

)

L
=⇒





(S,U, 0) if 1
α > β+1

2

(V, 0, µ
2

ρC
1

ρ ) if 1
α < β+1

2

(S + V,U, µ
2

ρC
1

ρ ) if 1
α = β+1

2 .

(4)

The normalized statistic also converges weakly. For

η̂SN =

√
n(X − η)√

1
n

∑n
t=1 (Xt −X)

2
+ L̂M(ρ)

and an absolutely continuous random variable

Q =





S√
U

if 1
α > β+1

2

V

µ
1
ρ C

1

2ρ

if 1
α < β+1

2

S+V√
U+µ

2
ρ C

1
ρ

if 1
α = β+1

2 ,

one has

η̂SN
L

=⇒ Q. (5)

In (4), it is interesting that the borderline case 2/α = β+1 gives a weak limit
that is essentially the sum of the other cases. In (5), the distribution of S/

√
U is

numerically explored in Logan, Mallows, Rice and Shepp (1973). Appealing to
the joint characteristic function of S and U in the proof of Theorem 2, we can
write S =

√
γG(0)/2S′ and U = γG(0)U ′ where S′ and U ′ no longer depend on

the scale parameters γG(0) of the model; they depend only on α. However, there
will not be cancellation of µ1/ρC1/2ρ with the standard deviation of V − this
could only happen in the case that ρ = 1, which is prohibited by construction.
Therefore the limiting distribution in the case that β + 1 ≥ 2/α will depend on
ρ through its scale parameter. Thus we have the following corollary:

Corollary 1. With Q as in Theorem 4 it follows that an approximate 1 − p
confidence interval for η is

[
X − σ̂√

n
q1− p

2

, X − σ̂√
n
q p

2

]
,



SELF-NORMALIZATION FOR HEAVY-TAILED TIME SERIES 207

where qp is the quantile of Q such that p = P[Q ≤ qp] and σ̂ is the measure of

scale

σ̂ =

√√√√ 1

n

n∑

t=1

(Xt −X)
2
+ L̂M(ρ).

Note that since σ̂ = OP (nζ−1/2) and ζ < 1, σ̂/
√
n contracts to zero. Note

that the construction of η̂SN does not require explicit knowledge of α and β and

their relationship; however, the distribution of Q does depend on these parame-

ters as well as ρ, and its quantiles will be difficult to determine. Following the

approach of McElroy and Politis (2002), one might be tempted to use subsam-

pling in order to estimates Q’s quantiles. Work by Hall, Lahiri and Jing (1998)

indicates that subsampling is valid for stationary time series that can be ex-

pressed as certain instantaneous functions of a long memory Gaussian process.

The strong mixing approach (see Politis, Romano and Wolf (1999, Appendix A),

which provides a sufficient (but not necessary) condition for the validity of sub-

sampling, is satisfied in the Gaussian case precisely when the spectral density

exists at zero, i.e., β = 0. But it is unclear whether subsampling is valid for our

heavy-tailed, long memory model (1).

4. Conclusion

This paper has introduced a stationary time series with both infinite variance

heavy tails and finite autocovariances that exhibit long memory behavior. This

model facilitated specific results on the rate of growth of the sample mean − the

rate depended on whether tails (1/α) or memory ((1 + β)/2) dominate. In the

latter case, a central limit theorem was derived, whereas in the former case a

non-central limit theorem holds.

We have also produced a new self-normalization, which essentially combines

the heavy-tail self-normalization of Logan, Mallows, Rice and Shepp (1973) and

the long memory normalization suggested by the log periodogram estimator of

Robinson (1995). In order for Corollary 1 to be practical, it is necessary to deter-

mine the quantiles of the limit Q. There are many obstacles to this: Q depends

on Tail versus Mem, it depends on µ and C in the Mem case, and the distribu-

tion of S/
√
U is unknown in analytical form. We suggest the use of subsampling

to empirically determine Q’s quantiles, although the validity of this procedure

has not been verified. The verification of subsampling methods for infinite vari-

ance, long-range dependent data is challenging (since the usual methods require

knowledge of the mixing coefficients as well as higher moments), but worthy of

further investigation. By Hall, Lahiri and Jing (1998), subsampling would be

valid (they provide a slightly different studentization) for the {Gt} series alone.
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Since {σt} is i.i.d. and independent of the Gaussian sequence, it stands to reason

that multiplication by the volatility series will not contribute any dependence;

hence subsampling should be valid for {Yt = σtGt}. The authors intend to

explore this question further.

Finally, we should say something about extending these results to more

general processes. By assuming that {εt} is i.i.d. with cdf in the α/2 do-

main of attraction − instead of assuming them to be exactly α/2 stable them-

selves − we can generalize the tail thickness property in a natural way. Then∑n
t=1 εt = OP (n2/αL(n)) for some slowly varying function L. Likewise, we may

consider any light-tailed long memory stationary time series {Gt}, generalizing

from the Gaussian case. One interesting approach, in the spirit of Taqqu (1975)

and Hall, Lahiri and Jing (1998), is to consider {h(Gt)} for a function h that is

integrable with respect to the Gaussian distribution, and hence equipped with a

Hermite polynomial expansion. Then
∑n

t=1 h(Gt) = OP (nξ) where ξ depends on

β and the Hermite rank of h. One can also generalize the LM(β) condition to

allow a slowly varying function in the sum of autocovariances. Then the overall

rate of
√
εt · h(Gt) would depend on α, ξ and h. The resulting model would en-

compass a wider-class of stationary, heavy-tailed, long memory time series, while

still being amenable to the analytical techniques introduced in this paper.
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Appendix. Proofs

Proof of Proposition 1. Strict stationarity is a simple exercise in probability,

using Assumptions (A) and (D) and the fact that the {Gt} series is strictly

stationary. The marginal distribution is computed from Proposition 1.3.1 of

Samorodnitsky and Taqqu (1994, p.20), noting that the scale parameter of the

Gaussian variable Gt is
√
γG(0)/2. The second assertion follows from Property

1.2.16 and 1.2.17 of Samorodnitsky and Taqqu (1994, Chap.1), observing that

σt =
√
εt. Finally, the third point is a simple calculation:

E[(Xt − η)(Xt+h − η)] = E[σtGtσt+hGt+h] = E[σt]E[σt+h]E[GtGt+h] = µ2γG(h)
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for |h| > 0.

Proof of Theorem 1. Here a technique of proof is introduced that reappears
throughout. Let E denote the σ-field generated by the entire volatility series ε,
from past to future. That is, E = σ(ε) = σ(εt, t ∈ Z). In the same manner, let the
total information of G be G = σ(G) = σ(Gt, t ∈ Z). Of course, that the σ-fields
E and G are independent with respect to the underlying probability measure P

follows from assumption (A). First assume LM(0) so that ζ = 1/α; then the
characteristic function for the normalized sum is

E exp{iνn− 1

α

n∑

t=1

Yt} = E

[
E

[
exp{iνn− 1

α

n∑

t=1

σtGt}|E
]]
,

where ν is any real number and i =
√
−1. If we consider the inner conditional

characteristic function, we have

E

[
exp{iνn− 1

α

n∑

t=1

σtGt}|E
]

= exp
{
− ν2

2
n−

2

α

n∑

s,t=1

σsσtγG(s− t)
}

using the stability property of Gaussians. The double sum naturally splits into
the diagonal and off-diagonal terms:

n−
2

α

( n∑

t=1

σ2
t γG(0) +

∑

s6=t

σsσtγG(s− t)
)
. (6)

Now viewing the volatility series as random, it follows from LM(0) that the
second term tends to zero in probability. Indeed, the first absolute moment is

E

∣∣∣n− 2

α

n−1∑

h6=0

n−|h|∑

t=1

σtσt+hγG(h)
∣∣∣ ≤ n−

2

α

n−1∑

h6=0

n−|h|∑

t=1

µ2|γG(h)|

≤ µ2n1− 2

α

∑

|h|≤n

(1 − |h|
n

)|γG(h)|

and, by LM(0) and the Dominated Convergence Theorem, the summation tends
to
∑

h∈Z
|γG(h)|, which is finite. Finally, since α < 2, the whole bound tends to

zero as n→ ∞. By an L1-Markov inequality, we conclude that the so-called off-
diagonal terms in (6) must tend to zero in probability, hence also in distribution.

The first term of (6) actually has the same distribution as the ε series, with
scale γG(0); this follows from stability, assumption (D), and the fact that σ2

t = εt.
Using the boundedness of exp{−ν2/2·} and weak convergence − see Theorem
25.8 of Billingsley (1995, Section 25) − we see that

E exp{iνn− 1

α

n∑

t=1

Yt} → E exp{−ν
2

2
γG(0)ε∞},
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where ε∞ denotes a random variable with the same stable distribution as the
volatility series ε. Using Proposition 1.2.12 of Samorodnitsky and Taqqu (1994,
Chap.1), this limit becomes

exp

{
− τ

α

2

cos(πα
4 )

(
ν2

2
γG(0)

)α

2

}
= exp

{
− |ν|α

(γG(0)

2

)α

2
}
,

which is recognized as the characteristic function of a sαs variable with scale√
γG(0)/2, as desired.

Case 1/α > (β + 1)/2. Now assume that 1/α > (β+1)/2, so that ζ = 1/α. Then
the L

1 bound of the second term of (6) is O(n1−2/αnβ) by LM(β), and tends to
zero as n→ ∞; the rest of the proof is identical.

Case 1/α < (β + 1)/2. If we assume 1/α < (β + 1)/2, then ζ = (β + 1)/2, so
that (6) becomes

n−(β+1)




n∑

t=1

σ2
t γG(0) +

∑

s6=t

σsσtγG(s− t)


 . (7)

The first term is OP (n2/α−(β+1)), which tends to zero as n increases. Now (7)
can be rewritten as

n−(β+1)




n−1∑

|h|>0

n−|h|∑

t=1

σtσt+hγG(h)


 .

Let Ah,n =
∑n−|h|

t=1 σtσt+h −µ2, which is a mean zero triangular array defined for
0 ≤ |h| ≤ n− 1. We require the following lemma.

Lemma 1. Suppose that X1, . . . , Xn have mean zero and are i.i.d. with cdf in
D(α) and 1 < α < 2. Then there exists a rate an such that the normalized
sums Un = a−1

n

∑n
t=1Xt converge weakly, and such that the absolute expectation

is uniformly bounded, i.e., Un
L

=⇒ U and supn E|Un| < C for a constant C > 0.
The rate an = n1/αL(n), where L is a slowly-varying function. The same results
also hold if Xt = YtYt+h −E[Yt]

2 for fixed h, where Yt are i.i.d. with cdf in D(α).

Proof of Lemma 1. The weak convergence result is well-known, since this is
the defining property of D(α), and the formula for an is also well-known. Now
the absolute expectation can be written as

E|Un| =
∫ ∞

0
P[|Un| > z] dz =

∫ ∞

0
P

[
|

n∑

t=1

Xt| > anz
]
dz

≤ 1 +

∫ ∞

1
P

[
|

n∑

t=1

Xt| > anz
]
dz.
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By adapting the proof of Lemma 3 in Meerschaert and Scheffler (1998), for any

δ > 0 we can bound the above probability by Cz−α+δ for some constant C >

0. Simply choose δ so small such that α − δ > 1, so that the bound on the

probabilities is an integrable function; this provides a bound on E|Un|.
For the case thatXt = YtYt+h−E[Yt]

2, we obtain weak convergence from The-

orem 3.3 of Davis and Resnick (1986). To prove the bound on the corresponding

Un, divide the sum into h+1 sums of the form {YjYj+h−E[Y 2], Yj+h+1Yj+2h+1−
E[Y 2], · · · } for j = 1, 2, . . . , h + 1. Now each of the h + 1 sub-sums consists of

independent terms, so the above argument can be applied. Using the triangle

inequality, a bound for E|Un| can be obtained by producing a bound for each of

the h+ 1 sub-sums. This concludes the proof.

Returning to Ah,n, let Bt(h) = σtσt+h − µ2, so that Ah,n =
∑n−|h|

t=1 Bt(h).

Now for each fixed h, the variables Bt(h) are mean zero with a cdf in D(α),

which follows from Theorem 3.3 of Cline (1983) together with the fact that

E|σt|α = Eε
α/2
t = ∞, and the regular variation of the tails of σt, i.e.,

P[|σt| > x] = P[εt > x2] ∼ (x2)
−α

2 L(x2) = x−αL(x2)

as x→ ∞, where L(x) (and hence L(x2)) is slowly-varying. Therefore by Lemma

1, for each fixed h 6= 0, E|Ah,na
−1
n−|h|| → E|Uh| as n→ ∞, where an is the rate of

growth of the sum of Bt(h) and depends on h. In particular, an = n1/αLh(n) for a

slowly-varying function Lh depending on h. It follows that, for some arbitrarily

small δ > 0, E|Ah,n| ≤ C(n− |h|)δ+1/α ≤ Cnδ+1/α for all |h| ≤ n − 1 and n

sufficiently large and a sufficiently large constant C > 0 (notice that the slowly-

varying functions are eventually dominated by the polynomial growth). Therefore

E

∣∣∣∣∣∣

n−1∑

|h|>0

Ah,nγG(h)

∣∣∣∣∣∣
≤

n−1∑

|h|>0

E|Ah,n||γG(h)| ≤ C nδ+ 1

α

n∑

|h|=1

|γG(h)|,

which is of order n1/α+β+δ by LM(β). Returning to (7), we have

n−(β+1)
n−1∑

|h|>0

n−|h|∑

t=1

σtσt+hγG(h)

= n−(β+1)
n−1∑

|h|>0

n−|h|∑

t=1

Ah,nγG(h) + n−(β+1)µ2
n−1∑

|h|>0

n−|h|∑

t=1

γG(h).

Now the first term is OP (nδ+1/α−1) by the L1 Markov inequality, and this tends

to zero since α > 1 and δ can be chosen less than 1 − 1/α. The second term is
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just

n−(β+1)µ2
n−1∑

|h|>0

(n− |h|)γG(h) = n−(β+1)µ2
∑

s6=t

γG(s− t).

Now it follows from Lemma 3.1 of Taqqu (1975) (using m = 1) that for γ(h) ∼
C ′hβ−1,

∑n
s,t γ(s− t) ∼ nβ+12C ′/β(β + 1). Letting C ′ = βC/2 and noting that

β > 0, since 2/α < β + 1, yields

n−(β+1)µ2
n∑

s6=t

γG(s− t) →
{

Cµ2

β+1 if β > 0

(C − γG(0))µ2 if β = 0
=

C̃µ2

β + 1
.

Hence the limiting characteristic function is (again by boundedness of integrand

together with weak convergence)

E exp{−ν
2

2

C̃µ2

β + 1
} = exp{−ν

2

2

C̃µ2

β + 1
},

which corresponds to a mean zero Gaussian with variance C̃µ2/(β + 1). This

completes the proof of this case.

Case 1/α = (β+1)/2. Here we combine the two other cases, with both diagonal

and off-diagonal terms converging. Since the diagonal converges weakly to an

α/2 stable but the off-diagonal converges in probability to a constant, we obtain

weak convergence of their sum by Slutsky’s Theorem. The resulting characteristic

function is

E exp
{
− ν2

2

(
γG(0)ε∞ +

C̃µ2

β + 1

)}
= exp

{
− |ν|α

(γG(0)

2

)α

2
}
· exp{−ν

2

2

C̃µ2

β + 1
},

which corresponds to the sum of two independent random variables, a stable S

and a normal V . This completes the proof.

Proof of Theorem 2. First we establish that the last assertion holds, given

the first weak convergence. Sine

n∑

t=1

(Xt −X)
2

=

n∑

t=1

(Yt − Y )
2

=

n∑

t=1

Y 2
t − nY

2
.

The second term is, by Theorem 1, bounded in probability of order n2ζ−1; when

multiplied by the rate n2/α, this yields

n2ζ−1− 2

α =

{
−1 if 2

α > β + 1

β − 2
α if 2

α ≤ β + 1,
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and note that the second quantity is always negative since β < 1 and α < 2.

Therefore,

n−
2

α

n∑

t=1

(Xt −X)
2

= oP (1) + n−
2

α

n∑

t=1

Y 2
t .

Here we consider the joint Fourier/ Laplace Transform of the first and sec-

ond sample moments. It is sufficient to take a Laplace transform in the second

component, since the sample second moment is a positive random variable (see

Fitzsimmons and McElroy (2006)). So, for any real θ and φ > 0, we have

E exp{iθn−ζ
n∑

t=1

Yt − φn−2ζ
n∑

t=1

Y 2
t }

= E exp{iθn−ζ
n∑

t=1

Yt + i
√

2φn−ζ
n∑

t=1

YtNt}

= E exp{in−ζ
n∑

t=1

σtGt(θ +
√

2φNt)}

= E[E[exp{in−ζ
n∑

t=1

σtGt(θ +
√

2φNt)}|E ,N ]]

= E[exp{−1

2
n−ζ

n∑

t,s

σtσsγG(t− s)(θ +
√

2φNt)(θ +
√

2φNs)}].

The sequence of random variables Nt are i.i.d. standard normal, and are all

independent of the Yt series. Their common information is denoted by N . In the

first equality, we have conditioned on E ,G, noting that

E[exp{i
√

2φn−ζ
n∑

t=1

YtNt}|E ,G] = exp{−φn−2ζ
n∑

t=1

Y 2
t }

by the definition of the multivariate normal characteristic function. Now we break

the double sum in our Fourier/Laplace Transform into diagonal and off-diagonal

terms, as in the proof of Theorem 1. The off-diagonal term is

n−2ζ
n−1∑

|h|>0

n−|h|∑

t=1

σtσt+h(θ +
√

2φNt)(θ +
√

2φNt+h)γG(h). (8)
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First take the case that 2/α > β + 1. Then the absolute expectation of (8) is

E[E[n−
2

α

∣∣∣∣∣∣

n−1∑

|h|>0

n−|h|∑

t=1

σtσt+h(θ +
√

2φNt)(θ +
√

2φNt+h)γG(h)

∣∣∣∣∣∣
|N ]]

≤ E[n−
2

α

n−1∑

|h|>0

n−|h|∑

t=1

µ2|θ +
√

2φNt||θ +
√

2φNt+h||γG(h)|]

= µ2n−
2

α

n−1∑

|h|>0

(n− |h|)(E|θ +
√

2φN |)2|γG(h)|

= µ2(E|θ +
√

2φN |)2n1− 2

α

n−1∑

|h|>0

(1 − |h|/n)|γG(h)|.

The summation over h is O(nβ) by LM(β), so the overall order is nβ+1−2/α

which tends to zero as n → ∞. By the L1 Markov inequality, this shows that

the off-diagonal term tends to zero in probability.

In the case 2/α ≤ β + 1, we write (8) as

n−(β+1)
n−1∑

|h|>0

n−|h|∑

t=1

(σtσt+h − µ2)(θ +
√

2φNt)(θ +
√

2φNt+h)γG(h)

+ µ2n−(β+1)
n−1∑

|h|>0

n−|h|∑

t=1

γG(h)(θ +
√

2φNt)(θ +
√

2φNt+h).

Let Vt = θ+
√

2φNt, so that these form an i.i.d. sequence of normals with mean

θ and variance 2φ. For each h 6= 0,

n−|h|∑

t=1

(σtσt+h − µ2)VtVt+h

=

n−|h|∑

t=1

(σtσt+hVtVt+h − µ2θ2) −
n−|h|∑

t=1

µ2(VtVt+h − θ2). (9)

Letting Wt = σtVt, these form an i.i.d. sequence so that WtWt+h has cdf in D(α).

By Lemma 1, there exists a δ > 0 such that for all h,

E

∣∣∣∣∣∣

n−|h|∑

t=1

WtWt+h − µ2θ2

∣∣∣∣∣∣
= O(nδ+ 1

α ).



SELF-NORMALIZATION FOR HEAVY-TAILED TIME SERIES 215

Since {VtVt+h} are h+ 1-dependent, the Strong Law of Large Numbers applies,

so that

E

∣∣∣∣∣∣
n−

1

2

n−|h|∑

t=1

VtVt+h − θ2

∣∣∣∣∣∣
≤ E


n− 1

2

n−|h|∑

t=1

VtVt+h − θ2




2

= O(1).

Hence the absolute expectation of (9) is O(nδ+1/α), since 1/2 < δ + 1/α. Thus

the first term of (8) is bounded in probability of order n−(β+1)+β+δ+1/α, which

tends to zero for small δ. For the second term of (8), we break it down further

as

µ2n−(β+1)
n−1∑

|h|>0

n−|h|∑

t=1

γG(h)VtVt+h

= µ2θ2n−(β+1)
n−1∑

|h|>0

γG(h)(n− |h|) + µ2n−(β+1)
n−1∑

|h|>0

γG(h)

n−|h|∑

t=1

(VtVt+h − θ2).

For the second term, the absolute expectation is O(n−(β+1)+β+1/2), which tends

to zero. The first term becomes

n−(β+1)µ2θ2
n−1∑

|h|>0

(n− |h|)γG(h) → C̃θ2 µ2

β + 1

as n → ∞, as in the proof of Theorem 1. Putting both cases together, we see

that the off-diagonal terms converge in probability to C̃[µ2θ2/(β + 1)]1{2/α≤β+1}.
Since the off-diagonal terms tend to a constant, by the Dominated Conver-

gence Theorem we can examine the characteristic function of the diagonal terms

separately. First,

E[exp{−1

2
γG(0)n−2ζ

n∑

t=1

σ2
t V

2
t }] = E[E[exp{−1

2
γG(0)n−2ζ

n∑

t=1

εtV
2
t }|N ]]

= E[E[exp{−1

2
γG(0)n−2ζ

(
n∑

t=1

|Vt|α
) 2

α

ε∞}|N ]]

= E[exp{−(
γG(0)

2
)

α

2

n−αζ
n∑

t=1

|Vt|α}].

In the case that 2/α ≥ β + 1, ζ = 1/α, so that by the Law of Large Numbers,

n−αζ
n∑

t=1

|Vt|α P−→ E|V |α.
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But if 2/α < β + 1, this same sum tends to zero in probability, since ζα > 1 in

that case. By the Dominated Convergence Theorem, the limit as n→ ∞ can be

taken through the expectation, so that

E[exp{−(
γG(0)

2
)

α

2

n−αζ
n∑

t=1

|Vt|α}]

→ exp{−(
γG(0)

2
)

α

2

E|θ +
√

2φN |α1{ 2

α
≥β+1}}.

Combining this with the off-diagonal terms produces the joint Fourier/Laplace

functional stated in Theorem 2. When 2/α>β+1, it becomes exp{−(γG(0)/2)α/2

E|θ +
√

2φN |α}. The θ = 0 case provides the Laplace Transform of U , which

is exp{−φα/2
E|Z|α(γG(0)/2)α/2}. Letting φ = 0 yields exp{−|θ|α(γG(0)/2)α/2},

which is the characteristic function of the S of Theorem 1. On the other hand,

letting 2/α < β+1 yields exp{−[(C̃µ2θ2)/(2(β + 1))]}, which is the characteristic

function of V from Theorem 1. Since there is no φ-argument in the limit in this

case, the sample second moment converges in probability to zero when normalized

by rate n−2ζ . This completes the proof.

Proof of Theorem 3. We suppress the greatest integer notation on nρ for ease

of presentation. First considering the Y series, we have

nρ∑

|h|>0

1

n− |h|

n−|h|∑

t=1

YtYt+h =

nρ∑

|h|>0

1

n− |h|

n−|h|∑

t=1

σtσt+hGtGt+h

=

nρ∑

|h|>0

µ2γG(h) +

nρ∑

|h|>0

1

n− |h|γG(h)

n−|h|∑

t=1

(σtσt+h − µ2)

+

nρ∑

|h|>0

1

n− |h|

n−|h|∑

t=1

σtσt+h(GtGt+h − γG(h)).

The first term is, by LM(β), asymptotic to µ2Cnβρ. We need to show that

the other two terms are o(nβρ). The absolute expectation of the second term is

bounded by

nρ∑

|h|>0

1

n− nρ
|γG(h)|E

∣∣∣∣∣∣

n−|h|∑

t=1

(σtσt+h − µ2)

∣∣∣∣∣∣
.

Since ρ < 1, n − nρ = n(1 + o(1)). Making use of Lemma 1 once again, the

expectation is O(nδ+1/α) for arbitrarily small δ > 0 and all |h| ≤ nρ. Hence the
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overall bound on the above expectation is O(nβρ−1+δ+1/α), whose quotient by

nβρ tends to zero.

For the third term, we also take an absolute expectation, yielding the bound

nρ∑

|h|>0

1

n− |h|E|
n−|h|∑

t=1

σtσt+h(GtGt+h − γG(h))|

≤
nρ∑

|h|>0

1

n− |h|E
n−|h|∑

t=1

σtσt+h|GtGt+h − γG(h)|

=

nρ∑

|h|>0

1

n− |h|E[E[

n−|h|∑

t=1

σtσt+h|GtGt+h − γG(h)||E ]]

≤
nρ∑

|h|>0

1

n− |h|E[

n−|h|∑

t=1

σtσt+hVar [GtGt+h]]

≤
nρ∑

|h|>0

Var [G0Gh]µ2.

Now by Assumption (E), {Gt} has an MA(∞) representation, and one can easily

compute

Var [G0Gh] = E[G2
0G

2
h] − γ2

G(h) = 2γG(h)2 ∼ β2C2

2
h2(β−1)

as |h| → ∞. This is summable for β < 1/2. Therefore

nρ∑

h=1

γ2
G(h) =





O(1) if β < 1
2

O(log n) if β = 1
2

O(nρ(2β−1)) if β > 1
2 .

In the last case the sum grows fastest, but nρ(2β−1)n−βρ = n(β−1)ρ → 0. Therefore

the third term is oP (nβρ), and

n−βρ
nρ∑

|h|>0

1

n− |h|

n−|h|∑

t=1

YtYt+h
P−→ µ2C

as n→ ∞. Note that there are no restrictions on the choice of ρ, i.e., it does not

depend on α or β.
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Now we turn to L̂M(ρ). For each fixed h,

1

n− |h|

n−|h|∑

t=1

XtXt+h −X
2

=
1

n− |h|

n−|h|∑

t=1

YtYt+h − Y
2
+

η

n− |h|

n−|h|∑

t=1

(Yt + Yt+h − 2Y ).

The second term, by Theorem 1, is OP (n2(ζ−1)). If we sum over h and multiply

by n−βρ, the second term is bounded in probability of order n(1−β)ρ+2(ζ−1), which

tends to zero. Consider the first part of the third term:

1

n− |h|

n−|h|∑

t=1

Yt − Y =
−1

n− |h|
n∑

t=n−|h|+1

Yt +
|h|

n(n− |h|)
n∑

t=1

Yt.

Consider the worst case scenario, for all |h| ≤ nρ. The sum
∑n

t=n−|h|+1 Yt has at

most nρ terms, and so is OP (nζρ) by Theorem 1. Also, |h|/(n(n−|h|)) = O(nρ−2).

So we have the sum of an OP (nζρ−1) term and an OP (nζ+ρ−2) term; using

(1−ρ)(1− ζ) > 0, the first sum has a greater rate of growth. Now summing over

h and multiplying by n−βρ, we have OP (n(1−β)ρ+ζρ−1) → 0. This demonstrates

that

n−βρ(L̂M (ρ))
ρ

= oP (1) +

∣∣∣∣∣∣
n−βρ

nρ∑

|h|>0

1

n− |h|

n−|h|∑

t=1

YtYt+h

∣∣∣∣∣∣
P−→ µ2C,

which proves the theorem by taking ρth powers.

Proof of Theorem 4. The first convergence (4) follows from Theorems 2 and 3,

together with Slutsky’s Theorem. We also used the equivalence of the centered

sample second moment of the {Xt} series with the sample second moment of

the {Yt} series, as established in Theorem 2. The second convergence uses the

Continuous Mapping Theorem, noting that the denominators are nonzero (C > 0

by assumption).

Proof of Corollary 1. It follows from Theorem 4 that

1 − p = P[qp/2 ≤ Q ≤ q1−p/2] ≈ P

[
qp/2 ≤ √

n
(X − η)

σ̂
≤ q1− p

2

]

= P

[
X − σ̂√

n
q1− p

2

≤ η ≤ X − σ̂√
n
q p

2

]
.
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