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Abstract: This article presents a novel long-memory wavelet model for approximat-

ing a stationary long-memory process. The proposed model is constructed in the

wavelet domain in which the dependence structure is characterized by the variances

of wavelet coefficients at different scales. This model can be easily incorporated into

more complex model structures such as a generalized linear model. For inference,

maximum likelihood estimation is derived. In a simulation study, we show that the

modeling via wavelets has a good performance both in estimating the long-memory

parameter and in predicting future observations under various long-memory pro-

cesses. For illustration, the methodology is applied to modeling the Nile River

data.

Key words and phrases: Discrete wavelet transform, long-range dependence, spec-

tral density.

1. Introduction

Long-memory phenomena have been observed frequently in finance, eco-

nomics, hydrology, geophysics and many other fields. Generally speaking, a

process is called long memory if its spectral density is unbounded at the origin.

Consequently, the autocorrelation function decays at a hyperbolic rate such that

the absolute values of the autocorrelations are not summable. Conventionally,

the class of fractionally integrated autoregressive moving average (ARFIMA)

processes (Hosking (1981) and Granger and Joyeux (1980)) is used most widely

in modeling time series with both long-memory and short-memory behaviors.

The corresponding maximum likelihood (ML) estimation (Sowell (1992) is

computationally intensive due to high-dimensional matrix inversion when dealing

with large data sets. In contrast to the ARFIMA models constructed in the time

domain, one alternative is to specify the spectral density semi-parametrically for

small frequencies in the frequency domain. Accordingly, the corresponding in-

ference for the long-memory parameter is derived in the frequency domain, for

example the GPH estimator (Geweke and Porter-Hudak (1983)), the Whittle es-

timator of Fox and Taqqu (1986) and the semi-parametric estimator of Robinson

(1995). Since the semiparametric model only characterizes the long-memory

property of the underlying process, not the complete dependence structure of
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the underlying process, the implications on forecasting and predictions are lim-

ited.

It is well known that wavelet methods provide excellent tools for scale anal-

ysis of time series. Wavelets are particularly powerful for analyzing long-memory

properties due to self-similarity (Allan (1966)), Flandrin (1992), Masry (1993)

and Wornell (1993)). In the literature about long memory, wavelet analysis has

been used in simulating long-memory realizations and in estimating the long-

memory parameter under a fractionally integrated (FI) process (McCoy and

Walden (1996) and Jensen (1999a)) and an ARFIMA process (Jensen (1999b,

2000)). These studies proposed alternative likelihood-based estimation proce-

dures for the conventional ARFIMA processes which essentially approximate the

likelihood function in terms of the discrete wavelet transform (DWT) of data in

which the dependence between wavelet coefficients is ignored. The advantage of

using the wavelet approach is to reduce the computational order of calculating

the likelihood, which is particularly useful for large data sets. Moreover, the

wavelet MLE of the long-memory parameter has been found to be fairly robust

to model specification in previous empirical studies. Therefore, when the main

interest is only in estimating the long-memory parameter, the wavelet MLE can

be viewed as a semiparametric estimator for the long-memory parameter.

Motivated by the variance structure of DWT under a FI process and the

success of wavelet MLE for estimating the long-memory parameter, we consider

a new class of time series models in the wavelet domain in which the depen-

dence structure is fully determined by the variances and covariances of wavelet

coefficients at different scales. By imposing certain constraints on the variances

(which are considered as parameters in the new model) of wavelet coefficients

at large scales, the new model can exhibit long memory. The constraints only

rely on the behavior of the spectral density of a long-memory process near zero

frequency. In other words, the new model is fairly semiparametric in specifying

the short-memory behavior which corresponds to the behavior of the spectral

density away from zero frequency.

In contrast to previous studies focusing on an alternative likelihood-based

estimation for ARFIMA processes using wavelet analysis, the primary interest

here is to provide an alternative class of models which exhibit long memory. From

the modeling point of view, the long-memory structure of the proposed model is

similar but not identical to that of a FI model, because the way of constructing

long memory in the proposed model is to match the variance structure of wavelet

coefficients to that obtained from a FI process only in large scales. Moreover, the

short-memory structure of the proposed model, which is fully determined by the
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variances of wavelet coefficients in small scales and the covariance of scaling func-

tion coefficients (parameters in the model), is different from those of ARFIMA

models. From the estimation point of view, since the short-memory structure

in the proposed model is fairly semiparametric, the estimator of long-memory

parameter is expected to be robust. The wavelet MLE suggested by previous

studies also has this advantage so that it can be viewed as a semiparametric esti-

mator when data are contaminated. In this case, our model still provides sensible

predictions that are not available under the conventional approach. For infer-

ence, maximum likelihood estimation is derived for the proposed long-memory

wavelet model.

The rest of the paper is organized as follows. Section 2 introduces the pro-

posed long-memory wavelet model. In Section 3, the ML estimation is described

for parameter estimation. In Section 4, a simulation study is conducted for inves-

tigating the performance of our modeling procedure under various long-memory

processes, and for comparison with those using conventional methods. In Sec-

tion 5, for illustration, the proposed method is applied to the Nile River data. A

brief discussion is finally drawn in Section 6.

2. Long-Memory Models in Wavelet Domain

In Section 2.1, we introduce the wavelet transform, and look at its properties

in connection with long-memory processes. The proposed long-memory wavelet

model is described in Section 2.2.

2.1. Wavelet transform of a long memory process

Suppose {xt} is a long-memory process with long-memory parameter d, so

its spectral density satisfies

f(ω) ∼ cf ω−2d, for ω near zero, (1)

where 0 < d < 0.5 and cf > 0. In the literature, the most popular class of

long-memory models consists of ARFIMA processes that satisfy the following

difference equation:

φ(B)(1 − B)dxt = θ(B)εt,

where 0 < d < 0.5, the polynomials φ(z) and θ(z) have no common roots, and

all roots are outside the unit circle, {εt} are independent, identically distributed

(iid) N(0, σ2).

For notational simplicity, let T = 2p for some p ∈ IN in the following context.

The discrete wavelet transform (DWT) of x = (x1, . . . , xT )′ satisfies

w = Wx, (2)
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where W is the matrix of the discrete wavelet transform associated with the

selected wavelet filter (e.g., Haar wavelet) and the selected resolution (indicated

by J in the later text). More details about the DWT for time series can be found

in Percival and Walden (2000), Vidakovic (1999), and the references therein. The

transformed vector w can be decomposed as

w ≡
(

d′

−1, . . . ,d
′

−J , c−J

)

′

, (3)

in which J ≤ p, dj ≡ {dj,k : k = 1, . . . , T2j} comprises the wavelet coefficients at

the jth scale for j = −1, . . . ,−J , and c−J ≡ {c−J,k : k = 1, . . . , T2−J} comprises

the scaling-function coefficients. According to Daubechies (1992), the jth scale

(j = −1, . . . ,−J) wavelet filter acts as an approximate band-pass filter with

octave pass-band [−2j+1π,−2jπ) ∪ (2jπ, 2j+1π], and the corresponding wavelet

coefficients are approximately a bandpass representation of the original data.

Moreover, the wavelet filter corresponding to the scaling-function coefficients c−J

acts as an approximate band-pass filter with octave pass-band [−2−Jπ, 2−Jπ]. In

particular, when J = p, c−J only contains the single scaling-function coefficient

that corresponds to the sample mean of the observed series.

Given a zero-mean long-memory process with the power spectrum in (1),

the wavelet coefficients and the scaling-function coefficients also have zero mean,

i.e., Edj = 0 for j = −1, . . . ,−J and Ec−J = 0. Moreover, the variances of the

wavelet coefficients satisfy

σ2
c ≡ Var (c−J,k)≈

1

2−Jπ

∫ 2−Jπ

0
f(ω)dω≈

2J

π

∫ 2−Jπ

0
cfω−2ddω=

cf

1 − 2d
π−2d22dJ ,

σ2
j ≡ Var (dj,k) ≈

1

2j+1π − 2jπ

∫ 2j+1π

2jπ

f(ω) dω ≈
cf

1 − 2d
π−2d2−2dj

(

21−2d − 1
)

,

for relatively large scale (i.e., j = −p,−p + 1, ..). Similar results are derived

by McCoy and Walden (1996) and Jensen (1999a) for a FI(d) process, and by

Jensen (1999b) for an ARFIMA process.

It is well known that the DWT is an excellent decorrelator and therefore,

the wavelet coefficients are nearly uncorrelated both within and between scales.

In fact, this is the key property for having computational efficiency using wavelet

MLE in which the wavelet coefficients are considered independent. For justifying

this independent assumption, Dijkerman and Mazumdar (1994) showed that the

correlations of wavelet coefficients decay exponentially fast between scales and

hyperbolically fast within scales for a fractionally Brownian motion. Similarly,

for a fractionally integrated process, Fan (2003) showed that the within-scale

correlations decay hyperbolically and the decay rate increases as the length of
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wavelet filter increases. Moreover, the between-scale correlations decrease to zero

uniformly across time lags as the length of wavelet filter increases.

Based on these theoretical properties about the DWT of a long-memory pro-

cess, we propose a new model in the wavelet domain in which the dependence

structure is characterized by the variances of wavelet coefficients at different

scales, denoted by {σ2
j : j = −1, . . . ,−J}, and the covariance matrix of scaling

function coefficients, denoted by σ2
cΓc where Γc is a correlation matrix. By im-

posing constraints on σ2
j at large scales satisfying σ2

j ∝ 2−2dj , which is equivalent

to (1), the proposed model exhibits long memory behavior with parameter d.

On the other hand, no structure is assumed for σ2
j at the small scales which

characterize the spectral density away from frequency zero and correspond to

short-range dependence. Similar to previous related studies, the correlations in

wavelet coefficients within and between scales are assumed to be zero for ease

of inference. The scaling function coefficients in c−j preserve information of

the spectral density on [−2−Jπ, 2−Jπ] which represents low-frequency variations.

Compared to wavelet coefficients, the scaling function coefficients are relatively

smooth and the correlations between them cannot be ignored. The correlations

in scaling function coefficients is taken into account in our model by assuming an

AR(1) dependence structure. This choice is somehow arbitrary and more com-

plex correlation structure can be assumed such as a higher-order AR or even a

FI(d). But, in practice, we found that AR(1) works very well to approximate the

dependence in scaling function coefficients for the various situations considered

in our simulations. The precise model specification is given in the next section.

2.2. A long-memory wavelet model

In this section, a linear model constructed in the wavelet domain is in-

troduced. First, select a T × T wavelet transform matrix W corresponding

to some wavelet filter and a resolution J with 1 ≤ J ≤ [log2 T ]. Let w =

(d′

−1, . . . ,d
′

−J , c′
−J) be a T × 1 random vector with dj = (dj,1, . . . , dj,nj

)′ for

j = −1, . . . ,−J , where nj = T2j . The elements {dj,k} are assumed to be iid ran-

dom variables from N(0, σ2
j ) for each scale j, and independent between scales;

c−J is assumed to be N(0, σ2
cΓc) and independent of {dj}, where {σ2

j } and σ2
c

satisfy

σ2
j =















τ2
j , j = −1, . . . ,−K,

τ2
0 (21−2d − 1)2−2dj , j = −(K + 1), . . . ,−J,

τ2
0 22dJ , j = c,

(4)



1260 NAN-JUNG HSU

for a given K (0 ≤ K ≤ J − 1), and Γc is an (nc × nc) correlation matrix

(nc = T2−J ) satisfying

Γc =



















1 φ φ2 · · ·

φ 1 φ
. . .

φ2 . . .
. . .

. . . φ2

...
. . .

. . .
. . . φ

φ2 φ 1



















, (5)

thus an AR(1) dependence structure.

Suppose y = (y1, . . . , yT )′ are the observed data. A long-memory wavelet

model for y is defined as

y = Zβ + W ′w + ε, (6)

where Z = (z1, . . . , zT )′ is the design matrix in which the ith row corresponds to

the covariate variables for the ith observation, β is the corresponding regression

coefficient vector, W ′ is the inverse of wavelet transform matrix, w satisfies the

variance structures in (4) and (5), and ε = (ε1, . . . , εT )′ are measurement errors

with εt ∼ N(0, σ2
ε ), independent of w. For y, the mean structure is characterized

by Zβ and the dependence structure is characterized by the variance of w.

In particular, the parameters τ 2
0 > 0 and d ∈ [0, 0.5) model the long-memory

behavior and {τ 2
j > 0 : j = −1, . . . ,−K} and |φ| < 1 model the short-memory

behavior. The measurement error εt is considered in our model to account for the

nugget effect which is often observed in financial and environmental time series

with long memory.

In the proposed model, Var (y) = W ′ΛwW + σ2
ε I , where

Λw ≡ Var (w) =















σ2
−1I

σ2
−1I

. . .

σ2
−JI

σ2
cΓc















. (7)

Note that Var (y) is not a Toeplitz matrix which means the covariance func-

tion is not stationary across time. The non-stationarity is caused by assuming

independence of wavelet coefficients between and within scales in the construc-

tion. Although the covariance functions are varying from row to row in Var (y),

their patterns are quite similar and their differences are small. From the mod-

eling point of view, the proposed model provides a good approximation to a
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stationary long memory process in the sense that the covariance structure of the

proposed model in the wavelet domain provides a good approximation to that of

a stationary long-memory process.

In determining the wavelet transform matrix W , the resolution J should be

selected in advance. Generally speaking, for modeling long-memory, J should

be selected as large as possible to capture information about the spectrum near

zero frequency. One also needs to select K in the proposed model, it plays

the same role as choosing Fourier frequencies in the regression for calculating the

GPH estimator (Geweke and Porter-Hudak (1983)). Consider two extreme cases:

when K = 0, d is involved in the specification of all frequencies; when K = J−1, d

is only involved in the specification of the largest scale variations that correspond

to information about the spectrum near zero frequency. In practice, J and K

determine the number of parameters in our model and both can be selected via

a model selection criterion such as AIC.

3. Estimation Method

One advantage of our model is that likelihood-based inference is much simpler

and computationally efficient than under conventional ARFIMA models. In this

section, maximum likelihood estimation is derived for the long-memory wavelet

model defined in Section 2.2.

Let θ ≡ (σ2
ε , d, τ2

0 , φ, {τ2
j : j = −1, . . . ,−K})′ be the parameter vector deter-

mining Var (y). Under the long-memory wavelet model in (6), y ∼ N(Zβ,Σ(θ)),

where Σ(θ) = W ′ΛwW +σ2
εI. Let β̂ and θ̂ be the maximum likelihood estima-

tors of β and θ, respectively. Then

β̂(θ̂) =
(

Z ′Σ−1(θ̂)Z
)

−1
Z ′Σ−1(θ̂)y, (8)

where θ̂ maximizes the log-likelihood

`(θ) = −
1

2
log |Σ(θ)| −

1

2

(

y − Zβ̂(θ)
)

′

Σ−1(θ)
(

y − Zβ̂(θ)
)

. (9)

Since Σ(θ) = W ′(Λw + σ2
ε I)W ≡ W ′Σ∗(θ)W , (8) and (9) can be written as

β̂(θ̂) =
(

Z ′

∗
Σ−1

∗
(θ̂)Z∗

)

−1
Z ′

∗
Σ−1

∗
(θ̂)y

∗
, (10)

`(θ) = −
1

2
log |Σ∗(θ)| −

1

2

(

y
∗
− Z∗β̂(θ)

)

′

Σ−1
∗

(θ)
(

y
∗
− Z∗β̂(θ)

)

, (11)

where y
∗

= Wy is the DWT of y and Z∗ = WZ consists of the DWT for each

column of Z. Since Σ∗ is a block-diagonal matrix consisting of a (T−nc)×(T−nc)

diagonal matrix and an nc × nc non-diagonal matrix, this estimation procedure
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only involves nc-dimensional matrix operations and therefore is computationally

feasible for very large data sets.

Moreover, by Searle (1970), the asymptotic variance of the MLE for (θ,β)

under (6) is the inverse of the information matrix satisfying

I =

(

Iθθ 0

0 Iββ

)

=

(

1
2B∗ 0

0 Z ′

∗
Σ−1

∗
Z∗

)

,

where B∗ is the matrix with ijth element tr
[

Σ−1
∗

(∂Σ∗/∂θi)Σ
−1
∗

(∂Σ∗/∂θj)
]

.

4. Numerical Simulation

The performance of the proposed model for approximating long-memory

phenomenon is investigated for several long-memory processes in this section.

First, we examine the performance for estimating the long-memory parameter

in Section 4.1. Then, the performance for forecasting future observations is

examined in Section 4.2.

4.1. Estimating the long-memory parameter

The performance for estimating the long-memory parameter d under vari-

ous long-memory processes is studied. Our intention is to assess the stability

of our modeling scheme across a range of data generating mechanisms. Sev-

eral long-memory processes are considered for data generation, including FI(d),

ARFIMA(1,d,1) with d = 0.4 and both processes with additive noise. For each

process, 100 realizations with sample size T = 1, 024 (i.e., p = 10) are gener-

ated. The data are generated in Splus using the function “arima.fracdiff.sim”

in which each series with length 6,024 is generated first, and only the last 1,024

observations are used to form a realization. For each realization, four paramet-

ric models, FI(d), ARFIMA(1,d,1) and our long-memory wavelet models with

K = 2 and K = 4 and Z = 1, are fitted and the corresponding maximum like-

lihood estimates of d is calculated. In our simulation, the symmlet wavelet (s8)

is used in the DWT and the resolution J is set to be seven. For comparison,

the GPH estimates that consider the first [T α]/2 periodogram ordinates in the

regression with α = 0.8 (GPH1) and α = 0.6 (GPH2) are also computed. Note

that, for T = 1, 024, the GPH estimator with α = 0.8 only uses one fourth of all

periodogram ordinates in the regression. Similarly, the ML estimator of d un-

der our long-memory wavelet model with K = 2 (LW1) is solved only using the

information about the spectrum over [0, π/4]. Essentially, these two estimators

use the same amount of information in estimating d except the former is a semi-

parametric estimator and the latter is a parametric estimator. It is similar for

the GPH estimator with α = 0.6 and the ML estimator in a long-memory wavelet
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model with K = 4 (LW2), in which only the information about the spectrum

over [0, π/16] is used for estimating d.

The first process considered is FI(0.4). The estimation results are presented

in the first part of Table 1 and Figure 1. As expected, the MLE under the

true model (i.e., FI(d)) has the best performance in terms of smallest bias and

root mean squared error. The second best estimator is the MLE based on our

long-memory wavelet model with K = 2, which is superior to GPH1. Even

though the model is misspecified, the long-memory wavelet model does a good

job in recovering d. The performance of GPH2 and the MLE under long-memory

wavelet model with K = 4 is obviously worse than the other estimators since less

information is used in estimating d.

Table 1. Biases, standard errors (s.d) and root mean squared errors (rmse)

of GPH estimates with α = 0.8 (GPH1) and α = 0.6 (GPH2), ML estimates

under FI(d), ARFIMA(1,d,1) and the long-memory wavelet models with

K = 2 (LW1) and K = 4 (LW2) under various true processes. (T = 1, 024,

100 replications).

True Model Estimation GPH1 GPH2 FI ARFIMA LW1 LW2

Error α = 0.8 α = 0.6 K = 2 K = 4

FI(0.4) bias -0.011 -0.027 -0.005 -0.076 -0.018 -0.083

s.d. 0.064 0.159 0.028 0.081 0.042 0.083

rmse 0.065 0.161 0.028 0.111 0.045 0.117

FI(0.4)+WN bias -0.086 -0.054 -0.139 -0.114 -0.070 -0.102

s.d. 0.077 0.151 0.028 0.097 0.053 0.088
rmse 0.115 0.160 0.142 0.149 0.088 0.135

ARFIMA(1,0.4,1) bias -0.254 -0.002 -0.294 -0.098 -0.096 -0.122
φ1 = 0.5, θ1 = 0.8 s.d. 0.103 0.199 0.031 0.094 0.113 0.109

rmse 0.274 0.198 0.296 0.135 0.148 0.164

ARFIMA(1,0.4,1)+WN bias -0.263 -0.051 -0.338 -0.214 -0.179 -0.176

φ1 = 0.5, θ1 = 0.8 s.d. 0.113 0.269 0.028 0.101 0.151 0.120

rmse 0.285 0.273 0.339 0.236 0.234 0.213

The second process considered is FI(0.4) plus additive white noise where

the variance of the white noise is equal to the innovation variance of the FI

process. The estimation results are presented in Table 1 and Figure 2. In this

experiment, the MLE based on the long-memory wavelet model with K = 2 beats

the GPH estimators and the MLEs among all misspecified candidate models. It

provides some evidence that the long-memory wavelet model is very feasible for

approximating a long-memory process, and the corresponding MLE of d is fairly

robust. Compared to LW1 and LW2, the GPH estimator is also robust but less

efficient.
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Figure 1. Boxplots of GPH estimates with α = 0.8, 0.6 and ML estimates

under FI(d), ARFIMA(1,d,1) and long-memory wavelet models with K =

2, 4 for FI(0.4) process. (T = 1, 024, 100 replications).
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Figure 2. Boxplots of GPH estimates with α = 0.8, 0.6 and ML estimates

under FI(d), ARFIMA(1,d,1) and long-memory wavelet models with K =

2, 4 for FI(0.4) plus white noise process. (T = 1, 024, 100 replications).

The third process considered is ARFIMA(1,0.4,1) with the difference equa-

tion: (1−0.5B)(1−B)0.4xt = (1+0.8B)εt. The estimation results are presented

in Table 1 and Figure 3. Similar to the first case, the MLE under the true

ARFIMA(1,d,1) model has the best performance as expected. However, the ML

estimator based on our wavelet model with K = 2 is fairly competitive to the

best even though the model is misspecified. Moreover, the ML estimator based

on our model with K = 4 performs better than the GPH estimators and the ML

estimator based on a FI(d) model.
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Figure 3. Boxplots of GPH estimates with α = 0.8, 0.6 and ML estimates
under FI(d), ARFIMA(1,d,1) and long-memory wavelet models with K =

2, 4 for ARFIMA(1,0.4,1) process. (T = 1, 024, 100 replications).
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Figure 4. Boxplots of GPH estimates with α = 0.8, 0.6 and ML estimates un-
der FI(d), ARFIMA(1,d,1) and long-memory wavelet models with K = 2, 4

for ARFIMA(1,0.4,1) plus white noise process. (T = 1, 024, 100 replica-
tions).

The fourth process considered is ARFIMA(1,0.4,1) plus additive white noise

where the variance of the white noise is equal to the innovation variance of the

ARFIMA process. The estimation results are presented in Table 1 and Figure

4. Again, the MLE based on our model with K = 4 has the best performance in

terms of smallest root mean squared error.

As expected, the MLE for d based on our model performs well under vari-

ous long-memory processes; it is robust subject to model misspecification and is

more efficient than the commonly used semiparametric GPH estimator. These

findings are consistent with those obtained by Jensen (2000) in which the like-
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lihood function under ARFIMA process is approximated in the wavelet domain

and the corresponding wavelet MLE of d is found to be robust even the data are

contaminated.

4.2. Forecasting future observations

In this section, the forecasting of future observations based on our long-

memory wavelet model is studied and compared to those under a FI model and

under the true model. The four long-memory processes considered in the previous

section are studied. Similar to Section 4.1, 100 realizations of length 1, 024 are

generated for each process but only the first T = 1, 000 observations are used

for model fitting and the rest of data are reserved for examining the forecasting

performance. In this study, the averaged prediction mean squared error

PMSE(h) =
1

h

h
∑

k=1

(ŷ1,000+k − y1,000+k)
2

is used to evaluate the forecasting performance for each candidate model. In the

following simulations, PMSE(6), PMSE(12) and PMSE(24) are calculated for

comparison.

For each data generating mechanism, the best linear predictions of {y1,000+h :

h = 1, . . . , 24} are calculated based on the fitted long-memory wavelet model

with K = 2, the fitted FI model with estimated parameters, and the true model

with known parameters. In particular, under the fitted long-memory wavelet

model, two types of predictors are calculated: one is based on the non-stationary

covariance of the fitted model (denoted by LW1) and the other is based on a

stationary covariance obtained by averaging all autocovariance functions across

time (denoted by LW1-AVG). Under the fitted Gaussian FI model, the best

prediction of y0 = (y1,001, . . . , y1,024)
′ given y = (y1, . . . , y1,000)

′ is

ŷ0 = µ̂1 + Σ̂2Σ̂
−1
1 (y − µ̂1), (12)

where µ̂ is the MLE of the mean parameter, Σ̂1 is a 1, 000×1, 000 variance matrix

with ijth element γ̂(i − j) and Σ̂2 is a 24 × 1, 000 covariance matrix with ijth

element γ̂(1, 000 + i − j) in which

γ̂(h) =















σ̂2 Γ(1−2d̂)

Γ2(1−d̂)
; if h = 0,

γ̂(0)Γ(h+d̂)Γ(1−d̂)

Γ(h−d̂+1)Γ(d̂)
; if h > 0,

γ̂(−h); if h < 0,

where σ̂2 is the MLE of the innovation variance in the fitted FI process. The best

prediction of y0 under the true FI model has the same form as (12) with µ̂ = 0,
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d̂ = 0.4 and σ̂2 = 1. To avoid the circular effect on prediction under our model,

the variance matrix with larger dimension m (m > n) is constructed as Σ∗ =

(W ∗)′Λ̂∗

wW ∗+σ̂2
ε I , where W ∗ is the wavelet transform matrix for m-dimensional

data with the same wavelet filter (symmlet wavelet s8) and the same resolution
(J = 7), Λ̂∗

w has the same form as (7) but with estimated parameters, in which

the dimension of each block-diagonal matrix is determined by the number of

filters associated with the corresponding scale defined in W ∗. In this simulation,

we use m = 2, 000. Under the long-memory wavelet model, the prediction of y0

based on the non-stationary covariance is given by

ŷ0 = β̂1 + Σ∗

2(Σ
∗

1)
−1(y − β̂1), (13)

where β̂ is the MLE of β in (6) which represents the mean, Σ∗

1 is a 1, 000× 1, 000

variance matrix with ijth element γ∗

ij and Σ∗

2 is a 24 × 1, 000 covariance matrix

with ijth element γ∗

1,000+i,j in which γ∗

ij is the ijth element in Σ∗. Similarly, the

prediction of y0 based on a stationary version of Σ∗ has the same form as (13),

but replacing Σ∗ by Σ∗∗ where the ijth element in Σ∗∗ satisfies γ∗∗

ij = γ∗∗(|i− j|)

and γ∗∗(h) is the average over all possible γ∗

i,i+h in Σ∗.

The averaged prediction mean squared errors under different models are pre-
sented in Table 2. Under the true FI process, the fitted FI model has the best

forecasting performance. The fitted long-memory wavelet model is competitive

to the true model. Moreover, the prediction based on the averaged autocovari-

ances has better performance than that based on the autocovariances without

averaging, but the difference is small. For other data generating mechanisms,

the predictions based on all models considered are fairly competitive.

Table 2. Averaged prediction mean squared errors for predicting future
observations (t = 1, 001, . . . , 1, 024) under true model, the fitted FI(d) model
and the long-memory wavelet model with K = 2 under various long-memory
processes. (T = 1, 000, 100 replications).

True Model Averaged PMSE LW1 LW1-AVG FI TRUE

FI(0.4) PMSE(6) 1.5121 1.5056 1.3064 1.4968

PMSE(12) 1.5770 1.5732 1.4094 1.5632

PMSE(24) 1.6242 1.6092 1.4627 1.5938

FI(0.4)+WN PMSE(6) 2.2847 2.2787 2.2897 2.2812
PMSE(12) 2.4164 2.4151 2.4112 2.4190

PMSE(24) 2.4580 2.4448 2.4311 2.4433

ARFIMA(1,0.4,1) PMSE(6) 1.0411 1.0388 1.0399 1.0276

φ1 = 0.5, θ1 = 0.8 PMSE(12) 0.9591 0.9588 0.9644 0.9557

PMSE(24) 1.0172 1.0179 1.0263 1.0128

ARFIMA(1,0.4,1)+WN PMSE(6) 2.2345 2.2296 2.2314 2.2177

φ1 = 0.5, θ1 = 0.8 PMSE(12) 2.0927 2.0887 2.0974 2.0818

PMSE(24) 2.0422 2.0407 2.0494 2.0298
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5. Application

We apply the long-memory wavelet model to the Nile River data which are

yearly minimum water levels as measured at the Roda Gauge near Cairo (Beran

(1994)). The data set contains 663 observations for the years 622AD to 1284AD,

where the data are centered about the sample mean and divided by the sample

standard deviation for further analysis. The first 650 observations are used in

model fitting and the rest of the data are reserved for prediction. In Figure

5, the sample autocorrelations based on the first 650 standardized observations

(light vertical lines) show the slow decay suggestive of long memory. We fit the

zero-mean, long-memory wavelet models with several different J and K to the

first 650 standardized data and the estimation results are summarized in Table

3. From Table 3, the estimates of the long-memory parameter are fairly robust

and range from 0.34 to 0.40 under different choices of (J,K). Also, the estimates

for τ2
j with j 6= −1 are robust among different settings indicating the choice

of (J,K) is not crucial in our modeling procedures. The estimates τ̂ 2
−1 and σ̂2

ε

are highly correlated, which is reasonable because both of them characterize the

high-frequency variations in the data and it is more difficult to identify them

individually. When more parameters {τ 2
j } are added to the model to enrich the

short-range dependence, σ2
ε is essentially zero for this particular data set.
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Figure 5. Sample autocorrelations and the fitted autocorrelations under the

long-memory wavelet model with (J, K) = (5, 0) and ARFIMA models for

standardized Nile River data.
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Table 3. Maximum likelihood estimates of parameters in the long-memory

wavelet models for the standardized Nile River data.

J K d̂ τ̂2
0 φ̂ σ̂2

ε
τ̂2
−1 τ̂2

−2 τ̂2
−3 τ̂2

−4 AIC

6 4 0.322 1.096 0.311 0.000 0.390 0.695 0.837 1.543 369.9

6 3 0.340 0.994 0.325 0.000 0.390 0.695 0.837 368.1

6 2 0.361 0.938 0.361 0.000 0.390 0.695 366.6

6 1 0.364 0.852 0.341 0.182 0.209 365.7
6 0 0.337 0.970 0.313 0.003 364.2

5 3 0.344 0.969 0.498 0.000 0.390 0.695 0.837 365.8

5 2 0.361 0.921 0.517 0.000 0.390 0.695 364.1

5 1 0.374 0.798 0.519 0.243 0.147 363.0
5 0 0.340 0.950 0.486 0.019 361.9

4 2 0.362 0.912 0.552 0.000 0.390 0.695 364.3

4 1 0.393 0.724 0.585 0.338 0.052 362.7

4 0 0.347 0.938 0.541 0.040 362.2

3 1 0.407 0.678 0.643 0.383 0.010 363.9
3 0 0.355 0.920 0.581 0.068 364.9

Based on the AIC, the best long-memory wavelet model for the standardized

data is the one with (J,K) = (5, 0). The averaged autocorrelation function

(averaged across time) for this fitted model is presented in Figure 5 with the

solid line. For comparison, three simple ARFIMA models, including a FI(d),

an ARFIMA(1,d,0) and an ARFIMA(0,d,1), are fitted to the same data and

their corresponding fitted autocorrelation functions are also displayed in Figure

5 with the broken lines. Clearly, the fitted long-memory wavelet model captures

the empirical dependence better than any of the ARFIMA models considered.

For checking the performance of prediction for the last 13 observations (t =

651, . . . , 663), the averaged prediction mean squared errors (PMSE)
∑663

t=651(yt −

ŷt)
2/13 under the fitted long-memory wavelet model with (J,K) = (5, 0) is 0.735

which is slightly smaller than the averaged PMSEs of 0.745, 0.807 and 0.792

under the fitted FI(d), ARFIMA(1,d,0) and ARFIMA(0,d,1), respectively.

6. Conclusions

According to Craigmile, Percival and Guttorp (2001), the between-scale cor-

relations of DWT for a FI process can be made arbitrary small by increasing the

length of the wavelet filter, however the within-scale correlations between wavelet

coefficients would be fitted better by considering an AR dependence structure.

Following this fact, our wavelet model can be extended by allowing an AR de-

pendence between wavelet coefficients within some scales (particularly for larger

scales). The extended model becomes even more feasible in approximating both

long-memory and short-memory behaviors for a stationary process.
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The proposed wavelet model can be easily incorporated into other useful

long-memory models such as long-memory stochastic volatility models, multi-

variate long-memory models, common factor models with long-range dependence

and generalized linear long-memory models. As another advantage, for analyzing

large data sets, the model selection issue can actually be taken into account in the

class of long-memory wavelet models, owing to fast computations. This capabil-

ity is difficult to achieve by conventional ARFIMA models due to time-consuming

computations.
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