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Abstract: In many studies of health economics, we are interested in the expected

total cost over a certain period for a patient with given characteristics. Problems

can arise if cost estimation models do not account for distributional aspects of

costs. Two such problems are (1) the skewed nature of the data, and (2) censored

observations. In this paper we propose an empirical likelihood (EL) method for

constructing a confidence region for the vector of regression parameters, and a

confidence interval for the expected total cost of a patient with the given covariates.

We show that this new method has good theoretical properties and we compare its

finite-sample properties with those of the existing method. Our simulation results

demonstrate that the new EL-based method performs as well as the existing method

when cost data are not so skewed, and outperforms the existing method when cost

data are highly skewed. Finally, we illustrate the application of our method to a

data set.

Key words and phrases: Censored data, empirical likelihood, health care costs,

prediction.

1. Introduction

Prospective payment models, such as capitation, have a long history in the

financing of private and public sector health care. Capitated payments are set at

the expected total cost of a patient, which payors (e.g., employers or Medicare)

and recipients (e.g., health plans or Medicare HMOs) find mutually acceptable

if those payments equal actual average cost (Maciejewski, Zhou, Fortney and

Burgess (2005)). Problems arise if prospective payment models do not account

for distributional aspects of costs that can lead to significant deviations from

actual average costs, especially for particular populations or groups. Hence, it is

important to accurately predict the expected total cost of a patient over a certain

time period [0, τ ] after adjusting for patients’ characteristics. If one is interested

in median regression with censored cost data, see the paper by Bang and Tsiatis

(2002).
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One of the main features in the distribution of health care costs that can

impede reliable prediction is its skewness due to a small percentage of patients

who invariably incur extremely high costs relative to most patients. Recent

efforts have yielded new statistical analysis methods that can adjust for the spe-

cial features in the distribution of health care costs (Zhou, Gao and Hui (1997),

Zhou and Tu (1999) and Zhou, Stroupe and Tierney (2001)).

Censoring can also be a major issue in estimating the average lifetime cost, or

cost in a certain time period. Censoring occurs when the complete costs of some

subjects in the certain time period for some subjects are not available because

the subjects are lost to follow-up before the end of the study. If we only include

uncensored subjects in analysis, we may underestimate the average cost: subjects

who survive a long time are likely to be censored and not included in analysis,

while subjects who die early are likely to be uncensored and included in analysis.

Subjects who die shortly after entering a study often use the fewest resources

(Etzioni, Feuer, Sullivan, Lin, Hu and Ramsey (1999)).

The main challenge in the analysis of censored cost data is that the total cost

at the time of censoring is not independent of the total cost at the time of death,

even if the time of death and time of censoring are independent. Hence stan-

dard survival analysis techniques (e.g., Cox models), which assume independent

censoring, cannot be directly used for the analysis of censored costs data by treat-

ing censored costs as censored survival times. For estimating the average cost

of censored cost data without covariates, Lin, Feuer, Etzioni and Wax (1997),

Bang and Tsiatis (2000), Zhao and Tian (2001) and Jiang and Zhou (2004) have

proposed several appropriate methods. For estimating the average cost of cen-

sored cost data with covariates, Lin (2000a,b, 2003) proposed several regression

models.

The existing regression models for incomplete cost data focus mostly on

finding consistent and asymptotically normal estimators for the individual com-

ponents of the vector of regression parameters (β). However, the expected total

cost of a patient with a vector of given covariates is a complicated function of β.

Although it is possible to derive confidence intervals for the expected total

cost of a patient over a certain period based on the asymptotical normality of

the estimator for β, several problems can arise. First, the normal approximation

can have poor coverage accuracy if the distribution of data is skewed, which

is common for cost data. Second, as it is well known in the literature, the

confidence region of the multi-dimensional parameter β, based on the normal

approximation, can have poor coverage accuracy even if the coverage probabilities

for the univariate components of β are close to the nominal level.

Empirical likelihood (EL) methods are popular non-parametric methods for

constructing confidence intervals and bands. As previously demonstrated (Owen
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(2001)), an EL method has several advantages over the normal approximation
method in constructing confidence bands and intervals. First, EL methods do
not assume a symmetric shape, instead its shape is determined by data and the
EL regions are Bartlett correctable in most cases (DiCiccio, Hall and Romano
(1991)). Hence, the EL-based method is especially suitable for skewed data.
Second, EL methods allow for confidence band construction without an informa-
tion/variance estimator. Third, the EL methods allow us to employ likelihood
methods without having to pick a parametric family for the data. In this paper,
we develop a new EL-based confidence region for β and intervals for the expected
total cost over the period [0, τ ].

2. Data Setup and Regression Models

In this section, we use regression models for the mean cost over the period
[0, τ ], and for the survival time. We follow the notation used in Lin (2003). For
patient i (i = 1, . . . , n), let Yi(t) be the total cost of the patient up to time t.
We can only observe Yi(t) at a finite number of time points, t0, . . . , tK = τ . Let
yki be the total cost over the kth (k = 1, . . . ,K) interval [tk−1, tk), where t0 = 0
and tK = τ . That is, yki = Yi(tk) − Yi(tk−1). Then, the total cost accumulated
by the patient i over the entire interval [0, τ) is Yi =

∑K
k=0 yki. Let Ti and Ci

be the survival and censoring times of patient i, i = 1, . . . , n. Let Zi(t) be the
p × 1 vector of potentially time-dependent covariates for patient i. Let Zki be
the value of Zi(t) when t is in the kth interval. Since we take the position that
no additional cost can be accumulated after death, we have Yi(t) = Yi(t ∧ Ti).
To model the effect of covariates Z on the marginal distribution of yki, we use
the same model as in Lin (2003):

E(yki|Zki) = g(β′Zki), k = 1, . . . ,K; i = 1, . . . , n, (1)

where g is some link function. This model includes both the previously proposed
linear regression model and the proportional mean model for censored medical
cost (Lin (2000a,b)).

3. An Existing Estimation Procedure

In the presence of censoring, not all the yki’s are observable. Let T ∗
ki =

min(tk, Ti), δ∗ki = I(T ∗
ki ≤ Ci), Xi = min(Ti, Ci), and δi = I(Ti ≤ Ci). So, yki

is observable if and only if δ∗ki = 1. Define Fi = {I(Ti ≤ t), Yi(t), L̄i(t)}, where
L̄i(t) represents all the measured covariate processes, and H̄(t) = {H(s) : s ≤ t}
for any process H(·). Let G(t | F̄i) = P (Ci > t | F̄i(Ti)). Lin (2003) proposed
the following generalized estimating equation for β:

Û(β) ≡
n∑

i=1

K∑

k=1

δ∗ki

Ĝ(T ∗
ki | F̄i)

h(Zki;β)(yki − g(β′Zki))Zki = 0,
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where h(Zki;β) is a given scalar weight function. For simplification, we let the

weight function h(Zik;β) be 1 in our analysis, although more general choices are

possible. Misspecification of the weight function will not affect the consistency

of the resulting estimator, only the efficiency. Here Ĝ(· | Fi) is a consistent

estimator of G(· | Fi). In the case of completely random censoring, we may set

Ĝ(· | F̄) to be the Kaplan-Meier estimator Ĝ(·) for the common survival function

of Ci. Otherwise, we take Ĝ(· | Fi) to be the Breslow and Haug (1972) estimator,

defined by

Ĝ(· | F̄i) = exp
[
−

n∑

j=1

δ̄iI(Xj < t)eγ̂′Wi(Xj)

S(0)(Xj ; γ̂)

]
.

Here Wi(t) is a vector of known functions of Fi, δ̄i = 1 − δi, and γ̂ is the maxi-

mum partial likelihood estimator of the regression parameters in the proportional

hazards model (Cox (1972))

λ(t | F̄i) = λ0(t)e
γ̂′Wi(t), i = 1, . . . , n,

S(ρ)(t; γ) =

n∑

i=1

I(Xi ≥ t)eγ′
W

⊗ρ
i (t), ρ = 0, 1, 2.

Here and in the sequel, we adopt the notation: a⊗0 = 1, a⊗1 = a, and a⊗2 = aa′.

The solution β̂ to the above estimating equation is taken as an estimator of

β. Lin (2003) obtained the limiting distribution of β̂:

√
n(β̂ − β)

L−→ N(0, A−1V A−1), (2)

where A = − limn→∞ n−1E(∂Û (β)/∂β), and V is given by (5) low when we

discuss our EL method.

4. Empirical Likelihood Confidence Region for β

In this section we propose EL-based confidence region for β. Let

Di =

K∑

k=1

δ∗ki

G(T ∗
ki | F̄i)

h(Zki;β)(yki − g(β′Zki))Zki,

D̂i =
K∑

k=1

δ∗ki

Ĝ(T ∗
ki | F̄i)

h(Zki;β)(yki − g(β′Zki))Zki.

First consider the testing problem, H0 : β = β0 vs. H1 : β 6= β0. Since E(Di) = 0

for all i = 1, . . . , n, the problem of testing whether β0 is true is equivalent to

testing whether EU(β0) = 0, where U(β0) =
∑n

i=1 Di. This can be done by

using Owen’s EL method (1990, 1991).
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Let p = (p1, . . . , pn) satisfy
∑n

i=1 pi = 1 and pi ≥ 0 for all i. Then the

empirical likelihood, evaluated at the true parameter value β0, is

L̃(β0) = sup
{ n∏

i=1

pi :
n∑

i=1

pi = 1,
n∑

i=1

piDi = 0
}

.

Since the Di’s depend on G(· | F̄i), which is unknown, replacing Di by D̂i, we

obtain the estimated empirical likelihood for β0:

L(β0) = sup
{ n∏

i=1

pi :

n∑

i=1

pi = 1,

n∑

i=1

piD̂i = 0
}

.

Then, using Lagrange multipliers, we can easily get pi = (1/n){1 + λ′D̂i}−1,

i = 1, . . . , n, where λ = (λ1, . . . , λp)
′ is the solution of

1

n

n∑

i=1

D̂i

1 + λ′D̂i

= 0. (3)

Note that
∏n

i=1 pi, subject to
∑n

i=1 pi = 1, attains its maximum n−n at pi = n−1.

So we define the empirical likelihood ratio at β0 by

R(β0) =

n∏

i=1

(npi) =

n∏

i=1

{1 + λ′D̂i}−1.

The corresponding empirical log-likelihood ratio can be defined as

l(β0) = −2 log R(β0) = 2
n∑

i=1

log{1 + λ′D̂i}, (4)

where λ = (λ1, . . . , λp)
′ is the solution to (3).

Before introducing the main theorem, we need some additional notation. If

censoring occurs in a completely random fashion, take ηi =
∫ ∞

o q(t)dMi(t), where

Mi(t) = δ̄iI(Xi ≤ t) −
∫ t

0
I(Xi ≥ x)λ(x)dx,

λ(x) = −d log G(x)

dx
, and

q(t) = lim
n→∞

n−1
n∑

i=1

K∑

k=1

δ∗kiI(T ∗
ki > t)

G(T ∗
ki | F̄i)P (Xi ≥ t)

h(Zki;β)(yki − g(β′Zki))Zki.
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Otherwise, take ηi =
∫ ∞

0 [q(t) + bΩ−1(Wi(t) − w̄(t))]dMi(t), where

Mi(t) = δ̄iI(Xi ≤ t) −
∫ t

0
I(Xi ≥ x)eγ′Wi(t)λ0(x)dx,

q(t) = lim
n→∞

n−1
n∑

i=1

K∑

k=1

δ∗kiI(T ∗
ki > t)eγ′Wi(t)

Ĝ(T ∗
ki | F̄i)s(0)(t)

h(Zki;β)(yki − g(β′Zki))Zki,

s(ρ)(t) = lim
n→∞

n−1S(ρ)(t) (ρ = 0, 1, 2),

b = lim
n→∞

n−1
n∑

i=1

K∑

k=1

δ∗ki

Ĝ(T ∗
ki | F̄i)

h(Zki;β)(yki − g(β′Zki))Zkir
′(T ∗

ki;Wi),

r(t;W) =

∫ t

0
eγ′W(x)[W(x) − w̄(x)]λ0(x)dx,

w̄(t) =
s(1)(t)

s(0)(t)
, and

Ω =

∫ ∞

0

[s(2)(t)

s(0)(t)
− w̄⊗2(t)

]
s(0)(t)λ0(t)dt.

Let

V1 = lim
n→∞

n−1
n∑

i=1

D⊗2
i and V = lim

n→∞
n−1

n∑

i=1

(Di + ηi)
⊗2. (5)

The following conditions are needed.

C1. q(t) < ∞ and s(ρ)(t) < ∞ (ρ = 0, 1, 2) for every t.

C2. ‖b‖ < ∞ and ‖Ω‖ < ∞.

C3. V1 and V are positive definite matrices.

C4. maxk,i

∥∥∥{δ∗ki/G(T ∗
ki | F̄i)}h(Zki;β)(yki − g(β′Zki))Zki

∥∥∥ = op(n
1/2).

Theorem 1. Assume C1-C4 hold. If β0 is true, then l(β0) is asymptotically

distributed as a weighted sum of independent chi-square random variables with 1

degree of freedom, l(β0)
L−→ l1χ

2
1,1 + · · ·+ lpχ

2
p,1, where the χ2

i,1’s, are independent

chi-square random variables with one degree of freedom, 1 ≤ i ≤ p, and the

weights li, 1 ≤ i ≤ p, are the eigenvalues of V −1
1 V .

We provide a proof in the Appendix. In order to apply Theorem 1, we first

need to estimate the weights li, 1 ≤ i ≤ p. Toward this end, let

η̂i = δ̄iQ(Xi) −
n∑

j=1

δ̄jI(Xj ≤ Xi)Q(Xj)∑n
l=1 I(Xl ≤ Xj)

, if Ĝ is the Kaplan-Meier estimator,
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where

Q(t) =

∑n
i=1

∑K
k=1

δ∗
ki

I(T ∗
ki

>t)h(Zki;β̂)(yki−g(β̂′Zki))Zki

Ĝ(T ∗
ki

)∑n
j=1 I(Xj ≥ t)

;

η̂i = δ̄iNi(Xi)−
n∑

j=1

δ̄jI(Xj ≤ Xi)e
γ̂′

Wi(Xj)Ni(Xj)

S(0)(Xj ; γ̂)
, if Ĝ is the Breslow estimator.

Here

Ni(t) = Q̃(t) + BΩ̂−1
[
Wi(t) −

S(1)(t; γ̂)

S(0)(t; γ̂)

]
,

Q̃(t) =

n∑

i=1

K∑

k=1

δ∗kiI(T ∗
ki > t)eγ̂′

Wi(t)

Ĝ(T ∗
ki | F̄i)S(0)(t; γ̂)

h(Zki; β̂)(yki − g(β̂′Zki))Zki,

B = n−1
n∑

i=1

K∑

k=1

δ∗ki

Ĝ(T ∗
ki | F̄i)

h(Zki; β̂)(yki − g(β̂′Zki))ZkiR
′(T ∗

ki;Wi),

R(t;W) =

n∑

i=1

δ̄iI(Xi < t)eγ̂′W(Xi)
[
W(Xi) −

S(1)(Xi; γ̂)

S(0)(Xi; γ̂)

] 1

S(0)(Xi; γ̂)
,

and Ω̂ =

n∑

i=1

δ̄i

[S(2)(Xi; γ̂)

S(0)(Xi; γ̂)
− S(1)(Xi; γ̂)⊗2

S(0)(Xi; γ̂)2

]
.

Then we can consistently estimate V1 and V by

V̂1 = n−1
n∑

i=1

D̃⊗2
i , (6)

V̂ = n−1
n∑

i=1

(D̃i + η̂i)
⊗2, (7)

respectively, where

D̃i =

K∑

k=1

δ∗ki

Ĝ(T ∗
ki | F̄i)

h(Zki; β̂)(yki − g(β̂′Zki))Zki.

The estimator V̂ of V is the same as the one given in Lin (2003). Hence li,

1 ≤ i ≤ p, can be consistently estimated by the eigenvalues l̂i’s of V̂ −1
1 V̂ .

Confidence regions for β can be constructed as follows. Let

Rα(β) = {β : l(β) ≤ cα}, (8)
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where cα is the Monte Carlo approximation to the (1 − α)th quantile of the

weighted chi-square distribution l1χ
2
1,1 + · · · + lpχ

2
p,1. Then from the earlier dis-

cussion, Rα(β) gives an approximate confidence region of β with asymptotically

correct coverage probability 1 − α: P (β0 ∈ Rα(β)) = 1 − α + o(1).

There is another method for constructing a confidence region of β without

resorting to Monte Carlo simulation. Define

rn(β) =
tr(V̂ −1Sn)

tr(V −1
1n Sn)

,

where

V1n =
1

n

n∑

i=1

D̂iD̂
′

i, Sn =
( 1√

n

n∑

i=1

D̂i

)( 1√
n

n∑

i=1

D̂i

)′

,

and V̂ is defined at (7). Then, by examining the proof of Theorem 1 (see Ap-

pendix), we have

rn(β)l(β)
L−→ r(β)

p∑

i=1

liχ
2
i,1, as n → ∞,

where r(β) = p/tr(V −1
1 V ), with tr(·) the trace operator. Rao and Scott (1981)

showed that the distribution of r(β)
∑p

i=1 liχ
2
i,1 could be approximated by the

standard χ2
p distribution. Therefore, an approximate 1 − α confidence region of

β0 can be constructed as follows:

{β : rn(β)l(β) ≤ χ2
p(α)}, (9)

where χ2
p(α) is the (1−α)-th quantile of the standard χ2

p distribution. The adjust-

ment factor rn(β) can be motivated from the fact that r(β)= tr(V −1V)/tr(V −1
1 V);

replacing V −1, V −1
1 and V by V̂ −1, V −1

1n and Sn respectively leads to rn(β).

Before we end this section, we remark that when there is no censoring in the

observations, ηi = 0 for i = 1, . . . , n, and l(β0)
L−→ χ2

p. So Theorem 1 reduces to

Wilks Theorem in the context of generalized linear regression models.

5. Empirical Likelihood Based Intervals for the Expected Total Costs

Let zk0 and yk0 be the covariate value and the total cost of a patient at the

kth interval [tk, tk+1), where k = 1, . . . ,K. Then, the total cost of the patient

over the entire interval [0, τ) is Y0 =
∑K

k=1 yk0. We want to construct a confidence

interval for u0 =
∑K

k=1 E(yk0 | zk0). Based on the generalized linear model in

Section 2, we obtain an expression for u0 as follows:

u0 =

K∑

k=1

g(β′zk0). (10)
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Let R be the (1 − α)100% empirical likelihood-based confidence region for β, as

defined in (9). Then, we can obtain a confidence interval for the expected cost

u0 of a patient with z = (z01, . . . , z0K)′ as

{
µ(z) =

K∑

k=1

g(β′zk0) : β ∈ R
}

. (11)

This confidence interval has coverage probability greater than or equal to 1 − α,

with equality when g(·) is an one-one function.

6. Numerical Studies

We carry out three simulation studies to compare the finite-sample properties

of our proposed method with that of Lin (2003). The first two are on the coverage

accuracy of the confidence regions of β, and the third is on the coverage accuracy

of the confidence intervals of the expected cost u0.

In the first simulation, we adopt a similar parameter set-up as in Lin (2003).

Survival and censoring times are generated from the exponential distribution

with mean m and the uniform (0, c) distribution, respectively. The combinations

of (m, c) = (5, 40), (5, 20), and (10, 20) yield the mean censored rates of approxi-

mately 12.6%, 24.4%, and 43.2%, respectively. We divide the entire study period

into three equally spaced intervals. We set

yki =
[
I(k = 1)ud

i + I(Ti > tk)(εi + uki)

+I(tk−1 < Ti ≤ tk){(εi + uki)(Ti − tk−1) + uf
i }

]
exp(ξZi)

for k = 1, 2, 3; i = 1, . . . , n, where εi, uki, u
d
i and uf

i are independent random

variables with uniform distributions. Specifically, εi and uki are uniform (0, 1),

ud
i and uf

i are uniform (0, 5) and (0, 10), respectively. This scheme creates J-

shaped time patterns. For the same subject, the costs in different intervals share

a common random effect and thus are positively correlated. It is easy to see that

the cost data satisfy E[yki|Zi] = µk exp{ξZi}. So, β = (ξ, µ1, µ2, µ3), with µk as

the mean cost in time (k − 1, k] for the subject with the covariate Z = 0. We

choose two different sets of values for (m,u1, u2, u3): (5, 4.313, 1.484, 1.215), and

(10, 3.928, 1.292, 1.1689). We set Z to be a treatment indicator with n/2 subjects

in each of the two groups and ξ to be 1. We choose n = 100, 200 and 500 as

in Lin (2003). We summarize the results from 500 repetitions in Table 1, along

with the coverage accuracy of the confidence regions for β using our method, and

the normal approximation method based on Lin’s approach. Our results for ξ

are very similar to those reported in Lin (2003), and hence are not reported in

Table 1 as our focus is on β.
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Table 1. Coverage accuracy of confidence regions for β; symmetric distribu-

tion.

m c n censored rate CP EL.CP

5 40 100 0.126 0.916 0.913

200 0.922 0.920

500 0.942 0.932

5 20 100 0.244 0.902 0.911

200 0.920 0.918

500 0.938 0.938

10 20 100 0.432 0.916 0.929

200 0.928 0.936

500 0.938 0.938

In Table 1, EL.CP is the coverage probability of the 95% nominal level

confidence region for β based on the empirical likelihood method. CP is the

coverage probability of the 95% nominal level confidence region for β, based on

the normal approximation of β̂, given in Lin (2003), and defined by

n(β̂ − β)T (Â−1V̂ Â−1)−1(β̂ − β) ≤ χ2
p(α), (12)

where Â and V̂ are consistent estimators of A and V respectively (see also (2) in

Section 3). From Table 1 we see that both the empirical likelihood and normal

approximation methods yield confidence regions for β that are close to the nom-

inal level, and the empirical likelihood method is slightly better than the normal

approximation method under heavy censoring.

Since generated cost observations in Table 1 are from some uniform distri-

butions, the resulting cost data have an approximately normal distribution. In

fact, simulation studies done in Lin’s papers (2000a, 2000b, 2003) assumed that

cost data followed a normal distribution. However, as we know from the litera-

ture (Zhou, Gao and Hui (1997) and Jiang and Zhou (2004)), cost data are not

normally distributed but skewed. In the second simulation study, we generate

cost data from such a distribution. This study is similar to the first one, except

that covariates are generated from a normal distribution N(ν, σ2), where ν = 2,

σ is chosen to be 1 or 2, and the coefficient ξ was chosen to be 0.1, 0.2, 0.4, and

0.6. Under this setup, the distribution of the total medical cost of a patient is

more skewed for large σ and ξ.

The results, with a fixed sample size of 100 from 500 repetitions, are summa-

rized in Table 2. With lightly skewed cost data, the improvement in the coverage

accuracy of the empirical likelihood-based confidence region is minimal compared

to the one based on the normal approximation confidence region. But when the
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skewness increases, the improvement is noticeable, and the coverage probability

of the empirical likelihood-based confidence region is much closer to the nominal

level than is the normal approximation confidence region.

Table 2. Simulation results, asymmetric distribution and n = 100.

censored β

m c rate σ ξ Skewness CP EL.CP

5 40 0.1256 1 0.1 0.7841 0.9128 0.9226

2 0.1 0.9763 0.8887 0.9085

1 0.2 0.9763 0.8800 0.8972

2 0.2 1.5151 0.7816 0.8360
1 0.4 1.5151 0.7800 0.8283

2 0.4 2.7259 0.5000 0.7419

1 0.6 2.1101 0.6480 0.7445

2 0.6 3.9317 0.2773 0.6721

5 20 0.2444 1 0.1 0.7841 0.9063 0.9163

2 0.1 0.9763 0.8864 0.9106
1 0.2 0.9763 0.8760 0.8994

2 0.2 1.5151 0.7711 0.8421

1 0.4 1.5151 0.7680 0.8347

2 0.4 2.7259 0.4900 0.7425

1 0.6 2.1101 0.6600 0.7404
2 0.6 3.9317 0.2872 0.6755

10 20 0.4318 1 0.1 1.0155 0.9047 0.9165

2 0.1 1.1760 0.8763 0.8925

1 0.2 1.1760 0.8700 0.8880

2 0.2 1.6308 0.7856 0.8193

1 0.4 1.6308 0.7840 0.8096
2 0.4 2.7321 0.5140 0.7379

1 0.6 2.1592 0.6460 0.7264

2 0.6 3.9001 0.2990 0.6862

Numerical studies are also conducted at a larger sample size under the same

simulation scheme as in Table 2. Table 3 shows a comparison of the two types

of confidence regions with n = 400. With the increase in sample size, the per-

formance of both types of confidence regions improve; however, the coverage

probabilities from the normal approximation approach are still much lower than

the nominal level when the cost distribution is severely skewed. The empiri-

cal confidence region has better and more robust performance than the normal

approximation approach for all the cases considered here.
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Table 3. Simulation results, asymmetric distribution and n = 400.

censored β
m c rate σ ξ Skewness CP EL.CP

5 40 0.1247 1 0.1 0.8221 0.948 0.950

2 0.1 1.0491 0.952 0.952

1 0.2 1.0491 0.952 0.952

2 0.2 1.7364 0.920 0.920

1 0.4 1.7364 0.920 0.920
2 0.4 3.6446 0.700 0.832

1 0.6 2.6122 0.840 0.878

2 0.6 5.9674 0.458 0.734

5 20 0.2455 1 0.1 0.8221 0.936 0.940

2 0.1 1.0491 0.942 0.946

1 0.2 1.0491 0.942 0.946
2 0.2 1.7364 0.932 0.932

1 0.4 1.7364 0.932 0.928

2 0.4 3.6446 0.696 0.830

1 0.6 2.6122 0.846 0.886
2 0.6 5.9674 0.470 0.734

10 20 0.4334 1 0.1 1.0477 0.932 0.936
2 0.1 1.2323 0.924 0.932

1 0.2 1.2323 0.924 0.932

2 0.2 1.8215 0.916 0.926

1 0.4 1.8215 0.916 0.926
2 0.4 3.5986 0.724 0.829

1 0.6 2.6179 0.842 0.869

2 0.6 5.9025 0.450 0.723

Another major goal of the paper is to find a confidence interval for the

expected total cost given a covariate value. Since there is no closed form for

the confidence interval of the expected total cost when the empirical likelihood

method is used, we propose a numerical method to determine the EL-based con-

fidence interval. Note that the expected total cost over [0, τ ] is
∑τ

k=1 µk exp{ξz}
when Z = z, and that the univariate empirical likelihood confidence region is

always an interval. Let β = (ξ, µ1, . . . , µτ )
T , and R be the 95% confidence region

for β. Then we can write the EL-based confidence interval for the expect total

cost on (0, τ) as (q0, q1), where

q0 = min
{ τ∑

k=1

µk exp{ξz} : β ∈ R
}
,

and q1 = max
{ τ∑

k=1

µk exp{ξz} : β ∈ R
}
.
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From (8), we know that we can write q0 and q1 as

q0 = min
{ τ∑

k=1

µk exp{ξz} : l(β) = c, 0 ≤ c ≤ cα

}

≈ min
{
∪N

i=1

{ τ∑

k=1

µk exp{ξz} : l(β) = ci

}}
for large N,

q1 = max
{ τ∑

k=1

µk exp{ξz} : l(β) = c, 0 ≤ c ≤ cα

}

≈ max
{
∪N

i=1

{ τ∑

k=1

µk exp{ξz} : l(β) = ci

}}
for large N,

where {c1, . . . , cN} is a random sample of size N generated from the uniform on

[0, cα]. Therefore, for estimating q0 and q1, we need to solve the equation l(β) = c

for any c ∈ [0, cα]. Tian, Liu, Zhao and Wei (2003) proposed a numerical algo-

rithm for a similar problem, but their method requires an initial approximation

to the solution of l(β) = c, which is difficult to obtain in our case. Therefore, we

propose a nonpa rametric technique to solve l(β) = c. First, we note that it is

feasible to compute l(β) for any given β, and that R may be approximated by

R0 = {β : µ̂k − 1.96σ̂k ≤ µk ≤ µ̂k + 1.96σ̂k, k = 1, . . . , τ,

and ξ̂ − 1.96σ̂ ≤ ξ ≤ ξ̂ + 1.96σ̂},

where σ̂k is the estimator of the standard error of µ̂k, k = 1, . . . , τ and σ̂ is the

estimator of the standard error of ξ̂. By generating J vectors β(j), j = 1, . . . , J

uniformly over R0 to satisfy l(β)(j) ≤ cα, we can estimate β to satisfy l(β) = c

for any given c ∈ [0, cα] by a smoothing technique (for example, local linear or

spline) based on the data (β(j), l(β(j))), j = 1, . . . , J , where J depends on the

number of parameters.

In a third simulation study, we use the same set-up as in the second to test

the accurate of our approximate confidence interval. Using J = 400, and with

a fixed sample size of 400 from 500 simulated data sets, the coverage proba-

bilities of the approximate confidence interval of the total cost at Z = 0 are

presented in Table 4. From the results in Table 4, we reach the same conclusion

on confidence intervals for average costs as was seen when looking at confidence

regions for β. When cost data are only lightly skewed, the EL-based and normal

approximation-based intervals have similar coverage accuracy. When the data

are highly skewed, the EL-based intervals have better coverage accuracy than

the normal approximation-based intervals.
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Table 4. Simulation results for the approximate confidence interval for the
total cost at Z = 0 using random search (n = 400).

censored the total cost

m c rate σ ξ Skewness CP EL.CP

5 40 0.1247 1 0.2 1.0491 0.950 0.952

2 0.2 1.7364 0.925 0.944

1 0.4 1.7364 0.919 0.927

In summary, the coverage accuracy of the EL-based confidence intervals and

the normal approximation-based intervals have similar properties when data is

less skewed. When cost data are highly skewed, which is likely to occur in

practice, the EL-based confidence regions and intervals greatly outperform the

normal approximation-based ones.

7. A Data Example

To illustrate our methodology, we use the same SEER Medicare database

used by Lin (2003). The data consist of 985 and 2647 patients diagnosed with

regional and distant stages of epithelial ovarian cancer, respectively. The data

on survival time and monthly medical expenditures are available from 1983 to

1990. The subjects who were still alive at the end of 1990 are censored. For the

regional stage group and the distant stage group, the percentage of censoring are

28.04% and 19.31%, respectively. There is no voluntary loss to follow-up in this

study, so that censoring, which is solely caused by limited study duration, can

be regarded as completely random. Thus, the proposed method with Ĝ as the

Kaplan-Meier estimator can be used. Since most of the patients did not survive

long, we confine our attention to the first six years after diagnosis. The focus

of our analysis is to provide a confidence interval for the expected total cost of

a patient during the six years after the first diagnosis of cancer, using the given

covariates of the patient.

From Figure 4 in Lin (2003), we see that the effects of the stages on the cost

are not constant over time on either an additive or a multiplicative scale. So,

we compute the expected total cost on [0, τ ] separately for regional and distant

groups. To illustrate the proposed methodology, we also include a continuous

covariate Z, the time of the first diagnosis, in the model, where Z = 0 corresponds

to a new cancer patient. We are interested in constructing a confidence interval

for the expected total cost over [0, τ ] for a patient with Z = z, where τ = 72

months. Let Y0 be the total cost over [0, τ ] of a patient with Z = z0. Then, we

wish a 95% confidence interval for u0 = E(Y0 | Z = z0).

Let yki denote the total cost over the kth month for patient i, k = 1, . . . , τ =

72, and let Zi be the value of Z for the ith patient. We fit a separate generalized
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linear model for patients with regional stages and patients with distant stages,
respectively. The fitted model has the following general form:

E(yki|Zi) = µk exp{ξZi},
where k = 1, . . . , τ = 72.

In our example, for τ = 12, J = 1, 000 is significant; similarly, for τ = 24,
we take J = 2, 000 and, for τ = 72, J = 20, 000.

In Tables 5 and 6, we report the 95% confidence interval for u0 = E(Y0 | Z =
z0) when z0 = 0. The EL-based confidence interval is wider than the interval
based on the normal approximation. The result is consistent with our simulation
results which have shown that the normal approximation interval has a coverage
probability that is lower than the nominal level while the EL based interval has
a coverage probability that is close to the nominal level.

Table 5. The average cost for the regional-stage patients in the first six years.

τ average cost 95% CI(normal) 95%CI(EL)

12 31638.17 [30325.31, 32951.03] [28928.03, 35801.20]

24 45321.87 [43049.58, 47594.16] [40075.41, 51216.07]

36 56053.82 [52619.14, 59488.51] [49916.64, 60339.97]

48 63734.03 [59266.65, 68201.42] [56401.28, 74029.19]

60 71861.62 [66095.95, 77627.29] [63872.28, 84207.23]

72 77967.85 [71267.34, 84668.37] [70927.91, 89366.97]

Table 6. The average cost for the distant-stage patients in the first six years.

τ average cost 95%CI(normal) 95%CI(EL)

12 38028.34 [37007.67, 39049.00] [35195.77, 41972.41]

24 56373.66 [54557.11, 58190.21] [51378.09, 62906.75]

36 70895.30 [68057.08, 73733.51] [66108.69, 76880.35]

48 82330.58 [78034.04, 86627.12] [76459.93, 88756.02]

60 92018.35 [86056.14, 97980.55] [84334.12, 100357.07]

72 99249.84 [91981.43, 106518.24] [91162.97, 109599.23]

8. Discussion

In this paper we developed an empirical likelihood (EL)-based interval esti-
mation method for the expected total cost of a patient with given covariates over
a certain period when costs of some patients are censored. We developed the un-
derlying asymptotic theory for the proposed EL-based method, and conducted a
simulation study to compare its performance with the existing method in finite-
sample sizes. Simulation results show that the proposed EL-based method per-
forms as well as the existing method when cost data are not so skewed, and does
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better when cost data are moderately or highly skewed. Since cost data are usu-
ally skewed, (see Katon, Von Korff, Lin, Simon, Ludman, Russo, Ciechanowski,
Walker and Bush (2004) and Liu, Hedrick, Chaney, Heagerty, Felker, Hasenberg,
Fihn and Katon (2003)), we believe that our new method has more practical
relevance that the existing method.

Than EL has better coverage probability properties than the direct normal
approximation is not a surprise, (see Qin and Jing (2001), Qin and Tsao (2003),
Li and Wang (2003) and Wang, Linton and Hardle (2004), among others). Fu-
ture research will be in the direction of finding the Edgeworth expansion for the
coverage probability of EL intervals, as this may shed light on why EL methods
have better coverage accuracy than do the direct normal approximation intervals.

As noticed by the referee, the EL confidence intervals can have poor coverage,
when the data is seriously skewed. We win investigate whether one can obtain
better intervals by rist transforming the original data before we apply our EL
method.

Although our newly proposed method is motivated by estimation of average
costs, it can also be applied to other areas. For example, as in Pfeifer and Bang
(2005), our proposed method can be applied to interval estimation of mean cus-
tomer lifetime value.
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Appendix. Proof of Theorem 1

We need a few lemmas for proving Theorem 1.

Lemma 1. (See Lin (2003)) (1/n)
∑n

i=1 D̂i
L−→ N(0, V ).

Lemma 2. (i) maxi ‖D̂i‖ = op(n
1/2) (ii) (1/n)

∑n
i=1 D̂iD̂

′
i

p−→ V1.

Proof of Lemma 2. (i). From the condition C4, we have maxi ‖Di‖ = op(n
1/2).

Using the uniform consistency of Kaplan-Meier estimator and Breslow estimator,
we get

D̂i −Di =

K∑

k=1

Ĝ(T ∗
ki | F̄i) − G(T ∗

ki | F̄i)

G(T ∗
ki | F̄i)Ĝ(T ∗

ki | F̄i)
δ∗kih(Zki;β)(yki − g(β′Zki))Zki

= op(1) (13)



INFERENCES IN CENSORED COST REGRESSION MODELS 1229

uniformly for i = 1, . . . , n. So,

max
i

‖D̂i‖ ≤ max
i

‖D̂i −Di‖ + max
i

‖Di‖ = op(n
1

2 )

(ii) Let Ṽ1 = (1/n)
∑n

i=1 DiD
′
i. Note that V1n = (1/n)

∑n
i=1 D̂iD̂

′
i. For any

a ∈ Rp, we have the decomposition

a′(V1n−Ṽ1)a =
1

n

n∑

i=1

(
a′(D̂i−Di)

)2
+

2

n

n∑

i=1

(a′Di)
(
a′(D̂i−Di)

)

≤
( 1√

n

n∑

i=1

|a′(D̂i−Di)|
)( 1√

n
max

i
|a′(D̂i−Di)| +

2√
n

max
i

|a′Di|
)

≡ J0(J1 + 2J2). (14)

From the proof of (i), we obtain that J1 = op(1) and J2 = op(1). Now look

at the term J0. If the Kaplan-Meier estimator Ĝ is used as the estimator of G,

using (13) and the following martingale representation for Ĝ,

n
1

2 (G(t) − Ĝ(t))

G(t)
= n− 1

2

n∑

j=1

∫ t

0

dMj(x)

P (Xj ≥ x)
+op(1),

we have

J0 =
∣∣∣n− 1

2

n∑

j=1

∫ ∞

0
q1(t)dMj(t)

∣∣∣+op(1) = Op(1)+op(1) = Op(1),

where

q1(t) = lim
n→∞

n−1
n∑

i=1

∣∣∣
K∑

k=1

δ∗kiI(T ∗
ki > t)

Ĝ(T ∗
ki | F̄i)P (Xi ≥ t)

h(Zki;β)(yki − g(β′Zki))(a
′Zki)

∣∣∣.

Similarly, if we use the Breslow estimator Ĝ(t | F̄) of G(t | F̄), using (13) and

the following representation due to Lin, Fleming and Wei (1994), we obtain that

n
1

2

(
G(t | F̄) − Ĝ(t | F̄)

)

G(t | F̄)

= n−
1

2

n∑

j=1

∫ t

0

eγ′W(x)dMj(x)

s(0)(x)
+ r′(t;W)Ω−1n−

1

2

n∑

j=1

∫ ∞

0

[
Wj(x) − w̄(x)

]
dMj(x)

+op(1).

Hence we can also get J0 = Op(1). Therefore V1n = Ṽ1 + op(1), and Lemma 2(ii)

is proved.
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Proof of Theorem 1. Applying Taylor’s expansion to (4), we get

l(β0) = 2

n∑

i=1

log{1 + λ′D̂i} = 2

n∑

i=1

(
λ′D̂i −

1

2
(λ′D̂i)

2
)

+ rn, (15)

where |rn| ≤ C
∑n

i=1(λ
′D̂i)

3 in probability. Write λ = κθ, where κ ≥ 0 and

‖θ‖ = 1. From the proof of Lemma 2(ii), we get θ ′V1nθ = θ′Ṽ1θ + op(1). Then,

using Lemma 1, Lemma 2(ii), and the argument similar to the one in Owen

(1990), we can show that

‖λ‖ = Op(n
− 1

2 ). (16)

Hence using (16) and Lemma 2 together, we obtain

|rn| ≤ C‖λ‖3 max
1≤i≤n

‖D̂i‖
n∑

i=1

‖D̂i‖2 = op(1). (17)

Note that

1

n

n∑

i=1

D̂i

1+λ′D̂i

=
1

n

n∑

i=1

D̂i

[
1 − λ′D̂i +

(λ′D̂i)
2

1 + λ′D̂i

]

=
1

n

n∑

i=1

D̂i−
( 1

n

n∑

i=1

D̂iD̂
′
i

)
λ+

1

n

n∑

i=1

D̂i(λ
′D̂i)

2

1+λ′D̂i

.

From (3), (16), and Lemma 2, it follows that

λ =
( n∑

i=1

D̂iD̂
′
i

)−1
n∑

i=1

D̂i + op(n
− 1

2 ). (18)

Again by (3), we get that

0=

n∑

i=1

λ′D̂i

1+λ′D̂i

=

n∑

i=1

(λ′D̂i) −
n∑

i=1

(λ′D̂i)
2 +

1

n

n∑

i=1

(λD̂′
i)

3

1+λ′D̂i

. (19)

By (16) and Lemma 2, we obtain

1

n

n∑

i=1

(λ′D̂i)
3

1 + λ′D̂i

= op(1). (20)

From (19) and (20), we get

n∑

i=1

λ′D̂i =

n∑

i=1

(λ′D̂i)
2 + op(1). (21)
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By (15), (17), (18) and (21), we get

l(β0) =

n∑

i=1

λ′D̂iD̂
′
iλ + op(1)

=
(
n− 1

2

n∑

i=1

D̂i

)′(
n−1

n∑

i=1

D̂iD̂
′
i

)−1(
n− 1

2

n∑

i=1

D̂i

)
+ op(1)

=
(
V − 1

2 n− 1

2

n∑

i=1

D̂i

)′(
V

1

2 V −1
1 V

1

2

)(
V − 1

2 n− 1

2

n∑

i=1

D̂i

)
+ op(1).

Then Theorem 1 directly follows from Lemma 1, Lemma 2(ii) and Lemma 5 in

Qin and Jing (2001).
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