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Abstract: The theoretical results in Robins, Rotnitzky and Zhao (1994) and Robins

and Rotnitzky (1992) are revisited for semiparametric regression models with miss-

ing data. The main results provide a more relevant format for the calculations

of efficient score functions. The intuition behind those abstract results and major

steps of their proofs are discussed. The surrogate outcome regression problem is

studied as a new application. Beyond the derivation of its efficient score function,

an estimating method based on the efficient score function is proposed. A set of

regularity conditions is given that provides desirable large sample properties for the

proposed method.
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1. Introduction

Improving efficiency of estimators in semiparametric regression models

with missing data has been an interesting and active research subject.

Robins, Rotnitzky and Zhao (1994) (hereafter RRZ) provided profound calcula-

tions of efficient score functions and information bounds using score projection for

models with data missing at random (MAR, a terminology of Little and Rubin

(1987)). Part of their calculations can also be found in Robins and Rotnitzky

(1992) (hereafter RR). Their basic idea is to bridge the model with missing data

(observed model) and the corresponding model without missing data (full model)

if certain properties of the full model are known or easily obtained. The results

are fundamental and can be applied to a variety of regression models, but the

proofs are difficult and short on intuition. We think it useful to revisit these

important results.

The purpose of this study is to explain RRZ and RR using the score projec-

tion method discussed by Bickel, Klaassen, Ritov and Wellner (1993) (hereafter

BKRW), and to explicate their results by introducing new regression model:

the mean regression with response variable sometimes missing and a surrogate
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variable always available, termed the surrogate outcome regression model. The

desired outcome is that a wider audience of statisticians interested in semipara-

metric models with missing data will better understand the recent developments

in the area, and apply the results in RRZ and RR.

We begin by introducing the general semiparametric model with data MAR,

with the surrogate outcome regression model as a special case. In Section 3,

we introduce three theorems for the calculation of efficient score functions for

data MAR. The most general result is Theorem 3.1 for arbitrary missingness;

Theorem 3.2 is a direct consequence of Theorem 3.1 for monotone missingness;

Theorem 3.3 is for two-phase sampling designs that are special cases of monotone

missingness, and widely used in practice. We provide some insights and intuition

behind these theorems, especially Theorem 3.1, to illustrate the ideas and major

steps of the proofs. For rigorous proofs, see Yu and Nan (2005). In Section

4, we discuss the surrogate outcome regression problem. We provide detailed

derivation of the efficient score function for this model to illustrate the application

of the theoretical results in Section 3. Beyond the calculation of the efficient

score, we also propose a nonparametric estimating method, and give a set of

regularity conditions under which the estimator for the parameter of interest

is asymptotically normal. Simulations show that the proposed estimator works

well. The method for the surrogate outcome regression is a new addition to the

literature.

2. Missing Data Models

In this section, we first discuss missing data models in general, and then

introduce the surrogate outcome regression problem as an example of two-phase

designs.

2.1. A general model

Suppose the underlying full data are i.i.d. copies of the m-dimensional ran-

dom vector X = (X1, . . . , Xm). Then we can focus on a single observation for

the derivation of the efficient score function. We denote the model for X as

Q = {Qθ,η}, where Qθ,η is a distribution function, θ is the finite dimensional

parameter of interest, and η is an infinite-dimensional nuisance parameter or a

vector of several infinite-dimensional nuisance parameters.

Let R = (R1, . . . , Rm) be a random vector with Rj = 1 if Xj is observed,

and Rj = 0 if Xj is missing, j = 1, . . . ,m. Let r = (r1, . . . , rm) be the realized

value of R. For some R, we observe data X (R) = (R1 ∗X1, . . . , Rm ∗Xm), where
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we define

Rj ∗ Xj ≡

{
Xj , Rj = 1,

Missing, Rj = 0,
j = 1, . . . ,m.

Throughout the paper we assume that the data are MAR, i.e.,

π(r) ≡ P (R = r|X) = P (R = r|X (r)) ≡ π(r,X (r)). (2.1)

Thus the observed data are i.i.d. copies of (R,X (R)). We also assume that the

probability of observing full data X is bounded away from zero,

π(1m) ≥ σ > 0, (2.2)

where 1m is a vector of 1’s with length m and σ is a constant. Here R = 1m means

that we observe full data X ≡ X (1m). We use π(r) to denote the conditional

probability in (2.1) for ease of notation. It is obvious that
∑

r

π(r) = 1. (2.3)

The missing probability π(r) can be either known or unknown, in either case

the efficient score function for θ has the same form. This becomes clear in (2.4)

below, where π(r) is factored out from other parts of the density. To be general,

we denote π(r) as another parameter. The induced model for the observed data

(R,X(R)) is denoted as P = {Pθ,η,π}, where Pθ,η,π is a distribution function with

an additional nuisance parameter π.

Let qθ,η be the density function of the probability measure Qθ,η, and pθ,η,π

the density function of the probability measure Pθ,η,π. By the MAR assumption

in (2.1), we have:

pθ,η,π(r,x(r)) = π(r)

∫

qθ,η(x)

m∏

j=1

(

dµj(xj)
)1−rj

, (2.4)

where the µj are dominating measures for xj, j = 1, . . . ,m.

Our goal is to derive the efficient score function for θ in model P under dif-

ferent missing patterns: arbitrary missingness, monotone missingness, and a two-

phase sampling design where some random variables in X are always observed,

and others are either observed or missing simultaneously. Arbitrary missing-

ness means that the pattern of 1’s and 0’s in vector r is arbitrary. Monotone

missingness means that r ∈ {1j : j = 1, . . . ,m}, where

1j = (1, . . . , 1
︸ ︷︷ ︸

j

, 0, . . . , 0
︸ ︷︷ ︸

m−j

), j = 1, . . . ,m. (2.5)
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A natural example of monotone missingness is a longitudinal study with dropouts.

Sometimes monotone missingness can be obtained by rearranging the order of the

random variables X1, . . . , Xm. For example, if we put all the fully observed ran-

dom variables in front of the variables with missing data in a two-phase sampling

design, then the data structure becomes monotone missing with r ∈ {1t, 1m},

where t is a fixed integer. It is clear to see that a two-phase sampling design is

a simple case of monotone missingness.

2.2. An example: the surrogate outcome regression

It is common in medical research that outcome variables of interest are diffi-

cult, or expensive, to ascertain. Surrogate outcome variables (or their correlates),

however, can sometimes be readily obtained. Many examples are described in

the introductions of Pepe (1992) and Pepe, Reilly and Fleming (1994).

Let Y be an outcome of interest that is not always observable. Let S be

a surrogate variable of Y that is always available. The association of Y and a

covariate vector Z is of major interest. Existing methods often require that the

conditional density fθ(Y |Z) be known up to the finite dimensional parameter

θ. However, any misspecification of the conditional density function may cause

biased estimates.

Instead of modeling the conditional density function fθ(Y |Z) parametrically,

we only assume

E(Y |Z) = g(Z; θ) , (2.6)

where g(· ; θ) is a known function, θ ∈ Rd. Let ε = Y − g(Z; θ), then

E(ε|Z) = 0 . (2.7)

Under (2.6), the underlying joint density function of (S, Y,Z) can be written

as

qθ,f1,f2,f3
(s, y, z) = f1(s|y, z)f2(y − g(z; θ)|z)f3(z) , (2.8)

where f1 is the conditional density function of S given (Y,Z), f2 is the conditional

density function of Y , equivalently ε, given Z, and f3 is the density function of

Z. Thus the model at (2.6) is semiparametric in the sense that functions f1, f2,

and f3 in (2.8) are unspecified, in effect they are infinite dimensional nuisance

parameters.

Let R be 1 when Y is observed and 0 otherwise. We assume that Y is missing

at random, i.e., P (R = 1|S, Y,Z) = P (R = 1|S,Z) ≡ π(S,Z). We also assume

that π(S,Z) ≥ σ > 0 for some constant σ. Denote the observed data as

(S,R ∗ Y,Z, R) ≡

{

(S, Y,Z) if R = 1,

(S,Z) if R = 0.
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Then the density function for the observed data (S,R ∗ Y,Z, R) is

pθ,f1,f2,f3
(s, r ∗ y, z, r)=

{

π(s, z)qθ,f1,f2,f3
(s, y, z)

}r

×
{

(1 − π(s, z))

∫

qθ,f1,f2,f3
(s, y, z)dν(y)

}1−r
, (2.9)

where r ∈ {0, 1}, q is the density in (2.8), and ν is a dominating measure. Clearly

this is a two-phase sampling design problem, and the above density function is a

special case of that in (2.4).

3. Main Results

In this section, we place the fundamental results of the efficient score cal-

culations of RRZ and RR in a more relevant format. Detailed proofs are in

Yu and Nan (2005), Section 4.

Let l̇0θ and l̇θ be the score functions for θ in models Q and P, respectively,

the partial derivatives of the corresponding log likelihood functions with respect

to θ. Let l∗0θ and l∗θ be the efficient score functions for θ in models Q and P,

respectively. Here the superscript “0” stands for the full data.

Let Q̇η be the tangent space for the nuisance parameter η in model Q, and

Q̇⊥
η the orthogonal complement of Q̇η in L0

2(Q). Let Ṗη,π, Ṗη, and Ṗπ be the

tangent spaces for nuisance parameters (η, π), η, and π, respectively, in model

P, and Ṗ⊥
η,π, Ṗ⊥

η , and Ṗ⊥
π be their orthogonal complements in L0

2(P ). Here L0
2(·)

is the space of all zero mean and square integrable functions with respective to a

probability measure that is either Q or P here. We refer to BKRW for definitions

and detailed discussions on tangent spaces.

The goal is to obtain l∗θ , the efficient score function for θ in model P. When

l∗θ is obtained, the information matrix Iθ = E{l∗θ l
∗

θ
T} can be computed at given

values of θ and η. Its inverse is the lower bound of the asymptotic variance

matrices of all regular asymptotically linear estimators for θ in model P. BKRW

introduced two approaches to the calculation of efficient score functions: the

nonparametric approach via derivatives of functions (BKRW, Section 3.3), and

the semiparametric approach via score projections (BKRW, Section 3.4). Usually

the second approach is more convenient for semiparametric models, and it is the

approach used by RRZ and RR.

According to the score projection method of BKRW, efficient score functions

l∗0θ and l∗θ can be written as

l∗0θ = l̇0θ −Π(l̇0θ |Q̇η) = Π(l̇0θ |Q̇
⊥

η ), l∗θ = l̇θ −Π(l̇θ|Ṗη,π) = Π(l̇θ|Ṗ
⊥

η,π). (3.1)

Here Π denotes projection. Model (2.4) often becomes complicated even though

the density qθ,η is simple (which implies the calculation of the first projection in
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(3.1) is easy), and the calculation of l∗θ directly from (2.4) through the second

projection above can be extremely difficult. RRZ and RR are able to relate l∗θ
to the full data efficient score function l∗0θ based on the following conditional

expectations, making the calculation of l∗θ possible.

Definition 3.1.

1. For g0 ∈ L0
2(Q), define the conditional expectation map A from L0

2(Q) to

L0
2(P ) by

A(g0) ≡ E{ g0(X) |R,X(R) } =
∑

r

I(R = r)E{g0(X) |R = r,X (r)} .

2. The transpose of A, denoted as AT, is a map from L0
2(P ) to L0

2(Q) satisfying

EP (g ·Ah0) = EQ(ATg · h0)

for all g ∈ L0
2(P ) and all h0 ∈ L0

2(Q).

Apparently A is linear and continuous, its transpose is often called the ad-

joint of A. A use of A and its transpose is clearly seen in the following nice

connection between models P and Q.

Lemma 3.1.

1. A(l̇ 0
θ ) = l̇θ and A(l̇ 0

η ) = l̇η.

2. The transpose of A is given by AT(g) = E(g |X) for g ∈ L0
2(P ).

3. The composite map ATA from L0
2(Q) to L0

2(Q) is given by ATA(g0)=E{A(g0)

|X} =
∑

r π(r)E{g0(X) |R = r,X (r)}.

Assertions 1 and 2 of Lemma 3.1 are the content of BKRW (see BKRW

Section 4.6, p.144; Section 6.6, pp.271-272.) The proof of the lemma is given

in Yu and Nan (2005) (see their proof of Lemma 2.1 that amounts to straight-

forward calculations of conditional expectations). The geometric meaning of the

mapping ATA is that it projects a function g0 in L0
2(Q) to L0

2(P ), then projects

the projection in L0
2(P ) back to the space L0

2(Q). Notice that AT usually is not

the inverse of A, thus ATA does not usually return g0. The inverse of ATA is

actually more important. From the Theorem 3.1 below we see that (ATA)−1 con-

nects the two efficient score functions l∗θ and l∗0θ . Explicit calculation of (ATA)−1

is the key to obtaining the efficient score function l∗θ , as seen in Theorems 3.2

and 3.3. The invertibility of both A and ATA is shown by Yu and Nan (2005)

in their Lemmas 4.1 and 4.2.

3.1. Arbitrary missingness

We first take

N (AT) ≡
{

a(R,X(R)) : E( a |X ) = 0, a ∈ L0
2(P )

}
, (3.2)
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as the space of square integrable functions of observed data with conditional

mean 0 given full data X. By rearranging the material of Proposition 8.1 in RRZ

to emphasize the calculation of efficient score function, we obtain the following

theorem.

Theorem 3.1. The efficient score function for θ in model P has the form

l∗θ = U(h0) −Π
(

U(h0)
∣
∣
∣N (AT)

)

= A(ATA)−1(h0) , (3.3)

where U(h0) ≡ {I(R = 1m)/π(1m)}h0, and h0 is the unique function in Q̇⊥
η

satisfying

Π
(

(ATA)−1(h0)
∣
∣
∣ Q̇⊥

η

)

= l∗0θ . (3.4)

Note that U(h0) yields a Horvitz-Thompson inverse probability weighted es-

timating function (see e.g., Horvitz and Thompson (1952)) for the missing data

problem when h0 ∈ Q̇⊥
η . The indicator I(R = 1m) in the estimating function

U(h0) shows that only completely observed data are used in h0, and weighted by

1/π(1m). Since it throws away all partially observed data, the Horvitz-Thompson

inverse probability weighted estimating function U(h0) usually yields an ineffi-

cient estimator. Theorem 3.1 gives the most efficient estimating function. Also

note that (3.4) is usually an integral equation.

It is helpful to think about the intuition behind the theorem. From (3.1),

we know that l∗θ = l̇θ − Π(l̇θ|Ṗη,π). Since l̇θ = A(l̇0θ) by assertion 1 of Lemma

3.1, and it can be shown that Π(l̇θ|Ṗη,π) = Π(l̇θ|Ṗη) = A(a0) for some a0 ∈ Q̇η

(see Yu and Nan (2005), Section 4), we have l∗θ = A(l̇0θ − a0). Knowledge of a0

at this stage would allow computation of l∗θ . This is not always possible due to

the complicity of model P. All we know now is l∗θ = A(g0) and Π(g0|Q̇⊥
η ) = l∗0θ

(by (3.1) and a0 ∈ Q̇η), where g0 = l̇0θ − a0 ∈ L0
2(Q). The form of g0, given as

(ATA)−1(h0) in Theorem 3.1, is determined by the following argument.

If we have the class of all estimating functions for regular asymptotically

linear estimators for θ, then the optimal estimating function should be equivalent

to the efficient score function (possibly multiplied by a constant), see e.g., BKRW.

We can show that functions in such a class have the form U(h0) + a where

h0 ∈ Q̇⊥
η and a ∈ N (AT), see Proposition 5.1, labeled as Proposition 4.2 in

Yu and Nan (2005). Similar to the argument in van der Vaart (1998), page 383,

a = −E{U(h0)|N (AT)} may minimize the variance of U(h0) + a for a given h0.

Then we should be able to find the efficient score function by minimizing the

variance of U(h0) − E{U(h0)|N (AT)} over all h0 ∈ Q̇⊥
η . This heuristic yields

the first equality in (3.3) for some h0.



1200 MENGGANG YU AND BIN NAN

Now we combine the two arguments above. Since l∗θ = A(g0), and U(h0) −
l∗θ = U(h0) − A(g0) ∈ N (AT) for the h0 that determines the efficient score
function in the form of U(h0)−E{U(h0)|N (AT)}, we have AT{U(h0)−A(g0)} =

0. Since ATU(h0) = h0 (which can be verified by straightforward conditional

expectation calculation) and ATA is invertible, we have h0 = ATA(g0), and thus
g0 = (ATA)−1(h0). As a result, the corresponding efficient score function is

A(ATA)−1(h0).

The above idea is simple. But a proof requires care (see Section 4 of
Yu and Nan (2005)). It is worth mention that this simple heuristic idea actually

establishes the major steps of the proof of Theorem 3.1.

Without the middle expression in (3.3), Theorem 3.1 would look like a rewrite
of the two equalities in (3.1), replacing (ATA)−1(h0) by l̇0θ − a0 as in the above

discussion. It is the middle expression in (3.3) that makes the whole argument

meaningful. In addition to introducing the map (ATA)−1 into the efficient score
formulation, it also gives us a hint about the functional form of l∗θ . It can even

be applied to calculate the efficient score l∗θ directly if more knowledge about the

structure of the space N (AT) is available, which is the case for two-phase designs
when π is given (see Subsection 3.3).

An explicit form of (ATA)−1, however, is not available for arbitrary miss-

ingness patterns. We will see in the next subsection that the explicit form of
(ATA)−1 does exist for monotone missingness. From Theorem 3.1 we see that

for any specific full data model Q, in addition to an explicit form of (ATA)−1,

we also need the following three ingredients in order to derive the efficient score

function via l∗θ = A(ATA)−1(h0): (1) the efficient score function l∗0θ ; (2) the
characterization of space Q̇⊥

η ; and (3) the calculation of projecting functions in

L0
2(Q) to space Q̇⊥

η . Very often the efficient score function l∗0θ is ready to use.
The other two, however, usually need more work (see e.g., Subsection 4.1 for the

surrogate outcome regression).

3.2. Monotone missingness

We know that for monotone missingness, we have r ∈ {1j : j = 1, . . . ,m}.
If r = 1k, then X(r) = (X1, . . . , Xk). Instead of using the whole vector R or r,

we can actually work on the individual indicator for each of the random variables
in X . Let Rk be the kth element of R and R0 = 1 for convenience. Then Rk = 1

implies Rj = 1 whenever j ≤ k. As in RRZ, we define

πk = P (Rk = 1 |Rk−1 = 1,X (1k−1)) and π̄k =

k∏

j=1

πj . (3.5)

Let π0 = 1 and π̄0 = 1. Then we have the following result for monotone missing-

ness, corresponding to Proposition 8.2 in RRZ.
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Theorem 3.2. When data are missing in monotone patterns, the efficient score

function for θ in model P has the form

l∗θ =
Rm

π̄m
h0 −

m∑

k=1

Rk − πkRk−1

π̄k
E(h0 |X (1k−1)) , (3.6)

where h0 is the unique function in Q̇⊥
η satisfying

Π
( 1

π̄m
h0 −

m∑

k=1

1 − πk

π̄k
E(h0 |X(1k−1))

∣
∣
∣ Q̇⊥

η

)

= l∗0θ . (3.7)

Notice that I(R = 1m) = Rm, and it can be easily shown that π(1m) = π̄m.

So we see that the leading term on the right hand side of (3.6) is equal to U(h0)

in (3.3), which is an inverse sampling probability weighted estimating function

using completely observed data.

Theorem 3.2 is obtained directly from Theorem 3.1 by replacing (ATA)−1 by

its explicit form for the monotone missingness problem, which becomes the key

part of the proof of Theorem 3.2. This explicit form can be derived by using the

Neumann series and mathematical induction, see the proof of Proposition 4.3 in

Yu and Nan (2005) for details.

3.3. Two-phase sampling designs

Consider the two-phase sampling scheme where we have either R = 1m or

R = 1t for a known integer t < m. Hence π(1t) = 1 − π(1m), which means that

π(1m) is a function of X (1t), the set of always observed variables.

Theorem 3.3. For two-phase sampling designs, the efficient score function for

θ in model P has the form

l∗θ =
I(R = 1m)

π(1m)
h0 −

I(R = 1m) − π(1m)

π(1m)
E(h0 |X(1t)) , (3.8)

where h0 is the unique function in Q̇⊥
η satisfying

Π

(
1

π(1m)
h0 −

1 − π(1m)

π(1m)
E(h0 |X (1t))

∣
∣
∣ Q̇⊥

η

)

= l∗0θ . (3.9)

Remark. When π ≡ π(1m) is given, the space N (AT) for a two-phase de-

sign is well characterized. Let a(R,X (R)) ≡ a(Rm,X (R)) ∈ N (AT). It is clear

that Rm = 1 corresponds to R = 1m and 0 otherwise. Since a(Rm,X (R)) =

Rma(1,X) + (1 − Rm)a(0,X (1t)) and E(a|X) = 0, we have πa(1,X) + (1 −
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π)a(0,X (1t)) = 0, which yields a(1,X) = −(1 − π)π−1a(0,X (1t)). Hence

a(Rm,X(R)) = −(Rm − π)π−1a(0,X (1t)). So we obtain N (AT) = {−(Rm −

π)π−1φ(X(1t)) : φ ∈ L2(Q)}.

The projection Π
(

U(h0)|N (AT)
)

can thus be easily calculated. Since the

projection is in N (AT), we let Π
(

U(h0)|N (AT)
)

= (Rm − π)π−1φ∗(X(1t)), and

then obtain

0 = E

[{

U(h0) −
Rm − π

π
φ∗(X(1t))

}

·
Rm − π

π
φ(X(1t))

]

= E

[{
Rm − Rmπ

π2
h0 −

Rm − 2πRm + π2

π2
φ∗(X(1t))

}

· φ(X(1t))

]

= E

[
1 − π

π

{
E(h0|X(1t)) − φ∗(X(1t))

}
φ(X(1t))

]

for all φ(X(1t)) ∈ L2(Q). Hence φ∗(X(1t)) = E(h0|X(1t)) for the nontrivial case

that π 6= 1. The same functional form of l∗θ can be obtained directly from the

first equality in (3.3), and the corresponding equation to (3.4) for a two-phase

design can be determined by direct calculation, using the property that l∗θ ⊥ Ṗη.

4. Surrogate Outcome Regression

In this section, we study surrogate outcome regression with the conditional

mean model introduced in Subsection 2.2. The goal is two-fold: to illustrate the

steps of deriving the efficient score function for a missing data problem using the

theoretical results in Section 3, and to develop an estimating method for surrogate

outcome regression. The latter is itself an interesting statistical methodological

problem with a broad range of applications.

4.1. The efficient score function

Since the surrogate outcome regression model we are interested in belongs to

the family of two-phase designs with the nuisance parameter η = (f1, f2, f3), The-

orem 3.3 applies directly. To do this, we first need to obtain the three ingredients

listed at the end of Subsection 3.1. They are given in the following lemmas. We

give detailed proofs here in order to clearly illustrate the application of Theorem

3.3 to the surrogate outcome regression model.

Lemma 4.1. For any b ∈ L0
2(Q), we have

Π(b|Q̇⊥

η ) =
E{b(S, Y,Z)ε|Z}

E(ε2|Z)
ε . (4.1)
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Proof. In (2.8), for any one-parameter family of conditional densities

{f1,λ(s|y, z)} with f1,0 =f1, define

a1(s, y, z) =
∂

∂λ
log f1,λ(s|y, z)

∣
∣
∣
λ=0

.

Then the score for the nuisance parameter f1 is l̇f1
a1 = a1(s, y, z). Similarly, we

can define the scores for nuisance parameters f2 and f3 as a2(y, z) and a3(z),

respectively.

Direct calculations show that the three components of the tangent space of

(2.8), Q̇1, Q̇2, and Q̇3, corresponding to f1, f2, and f3, respectively, are

Q̇1 = [a1(S, Y,Z) : E(a1|Y,Z) = 0, Ea2
1 < ∞] , (4.2)

Q̇2 = [a2(Y,Z) : E(a2|Z) = 0, E(εa2|Z) = 0, Ea2
2 < ∞], (4.3)

Q̇3 = [a3(Z) : Ea3 = 0, Ea2
3 < ∞] . (4.4)

Here [·] denotes the closed linear span. It can be verified easily that these three

spaces are mutually orthogonal. Thus the nuisance tangent space becomes: Q̇η =

Q̇1+Q̇2+Q̇3, according to BKRW. The second restriction in (4.3) comes from the

assumption that E(ε|Z) = 0. That Q̇2 contains the right side in (4.3) is difficult

to prove, as in the constrained models considered by BKRW (see the discussion

in BKRW, pp.76-77). We assume equality as in RRZ, where they considered the

mean regression model with missing covariates.

For any b ∈ L0
2(Q), let

rb =
E{εb(S, Y,Z)|Z}

E(ε2|Z)
ε .

To prove (4.1), we show that rb ∈ Q̇⊥
η = (Q̇1 + Q̇2 + Q̇3)

⊥ and that b − rb ∈

(Q̇1 + Q̇2 + Q̇3). For any a1 ∈ Q̇1,

〈rb, a1〉L0

2
(Q) = E(rba1) = E

{
E(εb|Z)E(εa1|Z)

E(ε2|Z)

}

= E

{
E(εb|Z)E{E(εa1|Y,Z)|Z}

E(ε2|Z)

}

= E

{
E(εb|Z)E{εE(a1|Y,Z)|Z}

E(ε2|Z)

}

= 0

by (4.2). For any a2∈Q̇2, 〈rb, a2〉L0

2
(Q) =E(rba2)=E{E(εb|Z)E(εa2|Z)/E(ε2|Z)}

= 0 by (4.3). And, for any a3 ∈ Q̇3, 〈rb, a3〉L0

2
(Q) = E(rba3) = E{E(εb|Z)a3(Z)

E(ε|Z)/E(ε2|Z)} = 0 since E(ε|Z) = 0. Hence rb ∈ Q̇⊥
η .
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Rewrite b−rb as b−rb = b−E(b|Z)−rb+E(b|Z). Since E{b−E(b|Z)−rb|Z} =

0 and E{(b−E(b|Z)−rb)ε|Z} = 0, we know that b−E(b|Z)−rb ∈ Q̇2. The other

part has zero mean since b ∈ L0
2(Q), so E(b|Z) ∈ Q̇3. Thus b− rb ∈ (Q̇2 + Q̇3) ⊂

Q̇η, which shows the desired result.

Lemma 4.2. The efficient score for θ in the full data model is

l∗0θ = Π(l̇0θ |Q̇
⊥

η ) =
∂g(Z; θ)/∂θ

E(ε2|Z)
ε , (4.5)

where l̇0θ is the usual score function for θ in the full data model.

Proof. The score function of θ in (2.8) is l̇0θ = −(f ′
2/f2)(ε|z)∂g(z; θ)/∂θ. Thus

the efficient score l∗0θ in (4.5) can be obtained via direct calculation from (4.1) us-

ing the definition l∗0θ = Π(l̇0θ |Q̇
⊥
η ) in (3.1) and the fact that E{−ε(f ′

2/f2)(ε|Z)|Z}
= 1. The latter can be shown by differentiating both sides of (2.7), i.e.,

∫
εf2(ε|Z)

dε = 0.

Notice that the full data efficient score function in (4.5) has been established

by Chamberlain (1987) and RRZ.

Lemma 4.3. The orthogonal complement of Q̇η in L0
2(Q) is

Q̇⊥

η =

{

h(Z)ε : E{h2(Z)ε2} < ∞

}

. (4.6)

Proof. Take a1 ∈ Q̇1, a2 ∈ Q̇2, and a3 ∈ Q̇3. Then we have E{a1h(Z)ε|Z}
= E{h(Z)εE(a1|Y,Z)|Z} = 0, E{a2h(Z)ε|Z} = h(Z)E{a2ε|Z} = 0, and E{a3

h(Z)ε|Z} = a3h(Z)E{ε|Z} = 0, as in the proof of Lemma 4.1. This shows that

{h(Z)ε : E{ε2h2(Z)} < ∞} ⊂ Q̇⊥
η . Equation (4.1) shows the reverse inclusion,

since

E

{
E2(εb|Z)

E2(ε2|Z)
ε2

}

≤ Eb2 < ∞

by the Cauchy inequality.

Note that the above proofs of the three lemmas for the complete data

model Q slightly extend those in RRZ, van der Vaart (1998) and, in particu-

lar, Nan, Emond, and Wellner (2000) for the conditional mean regression model

without the random variable S. For different regression models, calculations dif-

fer. The basic principle, however, is the same. For a quick view of more examples,

we refer to Yu and Nan (2005), Section 5.

Plugging the results of Lemmas 4.1−4.3 into Theorem 3.3, we obtain the

following result on the efficient score function for θ in the observed data model

(2.9).
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Theorem 4.1. The efficient score function l∗θ for the observed data (S,R ∗

Y,Z, R) is given by

l∗θ =
∂g(Z; θ)/∂θ

E(ε∗2|Z)
ε∗, (4.7)

where

ε∗ =
R

π
Y −

R − π

π
E(Y |S,Z) − g(Z; θ) . (4.8)

Proof. Let h0 = h(Z)ε in (3.9). Then from equations (4.1), (4.5) and (4.6) in

Lemmas 4.1−4.3, we obtain

1

E(ε2|Z)
·
∂g(Z; θ)

∂θ
ε =

1

E(ε2|Z)
E

[
1

π
h(Z)ε2 − ε

1 − π

π
E{h(Z)ε|S,Z}

∣
∣
∣Z

]

ε

=
1

E(ε2|Z)
E

{
1

π
ε2 −

1 − π

π
E2(ε|S,Z)

∣
∣
∣Z

}

h(Z)ε .

Simplifying the above equality yields

h(Z) =
∂
∂θg(Z; θ)

E
{

1
π ε2 − 1−π

π E2(ε|S,Z)
∣
∣
∣Z
} .

Hence from (3.8) we obtain the efficient score l∗θ for the observed data in the

conditional mean model (2.6). It is given by

l∗θ =
R

π
h(Z)ε −

R − π

π
E{h(Z)ε|S,Z}

= h(Z)

{
R

π
ε −

R − π

π
E(ε|S,Z)

}

= h(Z)

{
R

π
Y −

R − π

π
E(Y |S,Z) − g(Z; θ)

}

=
∂
∂θg(Z; θ)

E(ε∗2|Z)
ε∗,

where ε∗ = (R/π)Y − [(R − π)/π]E(Y |S,Z)−g(Z; θ), and it is easy to show that

E(ε∗2|Z) = E{ε2/π − [(1 − π)/π]E2(ε|S,Z)
∣
∣
∣Z}.

Let Y ∗ = (R/π)Y −{(R−π)/π}E(Y |S,Z) be a kind of “transformation” to

the response variable Y . Using the nested conditional expectation property, we

can easily verify that E(Y ∗|Z) = E(Y |Z) = g(Z; θ). Hence by comparing (4.5)

and (4.7), we see that the efficient score l∗θ actually has the same form as that
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of the efficient score for the “full” data (Y ∗,Z). Analyzing the observed data

(S,R ∗ Y,Z, R) with the outcome Y missing at random, and the availability of

a surrogate outcome S, is actually similar to analyzing the “full” data (Y ∗,Z)

with the same conditional mean structure as that of (Y,Z). The interpretation

of the parameter θ does not change at all, even though the scale of Y ∗ may not

be the same as that of Y .

4.2. Estimation

When we have complete data, the surrogate outcome S does not contribute

to the estimation of θ, as seen in Lemma 4.2. Chamberlain (1987) and RRZ

(Proposition 3.1, p.852), among others, showed that the asymptotically efficient

estimator of θ for complete data can be obtained by solving the estimating equa-

tion

∑

i

∂
∂θg(Zi; θ)

E(ε2|Zi)
εi = 0 . (4.9)

This equation has the same form as the quasi-likelihood estimating equation,

see e.g., McCullagh (1983). Inevitably, the conditional variance Var (Y |Z) =

E(ε2|Z) needs to be specified or estimated in order to calculate the estimator for

θ, and correctly specified or consistently estimated in order to achieve efficiency.

Carroll and Ruppert (1982) and Robinson (1987) showed that for a linear model,

g(Z; θ) = ZT θ, substituting E(ε2|Z) by its kernel smoothing estimator in the

above estimating equation yields the efficient estimator for θ. Newey (1993)

extended the smoothing method to generalized linear models.

For the surrogate outcome regression problem, we propose an estimating

method for θ based on the efficient score function (4.7) in this subsection. Since

(4.7) contains unknown quantities E(Y |S,Z) and E(ε∗2|Z), we need to either

model or estimate them. In some biomedical studies, the surrogate outcome

might have been investigated to the degree that the functional form of E(Y |S,Z)

could be estimated from previous studies, especially when S satisfies the surrogate

criterion of Prentice (1989): E(Y |S,Z) = E(Y |S). Then Y ∗ could be obtained for

each record in a new study, and the observed data could be treated as independent

and identically distributed copies of (Y ∗,Z). Thus estimation using the efficient

score (4.7) would be a standard practice of quasi-likelihood methods.

The more interesting case occurs when there is no previous study that al-

lows the estimation of E(Y |S,Z). Following the ideas for the estimation with full

data from equation (4.9), we can estimate both E(Y |S,Z) and E(ε∗2|Z) nonpara-

metrically via smoothing. We assume the probability function π(s, z) is known,

which is the case for two-phase designs where missing data are caused by design.
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Let η = (η1, η2), where η1 = E(Y |S,Z) and η2 = E(ε∗2|Z). We rewrite l∗θ as

l∗θ,η. Thus,

l∗θ,η =
∂
∂θg(Z; θ)

η2

{
R

π
Y −

R − π

π
η1 − g(Z; θ)

}

, (4.10)

and θ is estimated by solving

n∑

i=1

l∗θ,η̂n(θ)(Si, Ri ∗ Yi,Zi, Ri) = 0 . (4.11)

Here is an algorithm for solving (4.11).

Step 1: Estimate η1 = E(Y |S,Z) via smoothing, using all fully observed records.

Note that the observing probabilities for those records vary, so the ith fully

observed record should have weight 1/π(Si,Zi). Calculate η̂1,n for all records,

including those with missing data.

Step 2: Choose an initial value of the estimator for θ, θ̂(0).

Step 3: Calculate Y ∗

i and thus the residuals ε∗i = Y ∗

i − g(Zi; θ̂(0)), i = 1, . . . , n.

Then estimate η2 = E(ε∗2|Z) using a smoothing method.

Step 4: Plug η̂1,n and η̂2,n(θ̂(0)) into (4.11) and solve for θ̂n.

Step 5: Use the root of (4.11) in Step 4 as a new initial value of θ̂n and repeat

Steps 2−4 until θ̂n converges.

The variance estimator for θ̂n is

(
n∑

i=1

l̇∗
θ̂n,η̂n,i

)−1( n∑

i=1

l∗
θ̂n,η̂n,i

l∗T
θ̂n,η̂n,i

)(
n∑

i=1

l̇∗
θ̂n,η̂n,i

)−1

,

where l̇∗θ,η = ∂l∗θ,η/∂θ. It is asymptotically equivalent to
(
∑n

i=1 l∗
θ̂n,η̂n,i

l∗T
θ̂n,η̂n,i

)−1
,

and thus θ̂n is semiparametrically efficient, if the smoothing estimates for η1 =

E(Y |S,Z) and η2 = E(ε∗2|Z) are consistent.

In the above algorithm, the initial value of θ̂(0) can be obtained using the

following Horvitz-Thompson estimating equation for θ:

n∑

i=1

Ri

π(Si,Zi)

∂
∂θg(Zi; θ)

Var (Y |Zi)

{

Yi − g(Zi; θ)
}

= 0 .

When Z is discrete, E(ε∗2|Z) = Var (Y ∗|Z) can be estimated from data

grouped on distinct values of Z without using residuals, and thus the above

algorithm does not need iteration.
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The estimator obtained from the above algorithm has the following nice

asymptotic properties, under mild regularity conditions.

Theorem 4.2. Suppose the regularity conditions given in the Appendix hold.

Then the estimator of θ in (2.6), with distribution (2.9), obtained by solving

equation (4.11) is consistent and asymptotically Gaussian. In particular, if both

η1 and η2 are consistently estimated, then the corresponding estimator achieves

the information bound determined by the efficient score in equation (4.7).

The proof of Theorem 4.2 requires modern empirical process theory and can

be found in Appendix A of Yu and Nan (2005), where the corresponding result is

labeled as Theorem 6.2. Note that we do not require consistent estimators for any

nuisance parameters to obtain the asymptotic normality for θ̂n mainly because

El∗θ = 0 for any η1 and η2. We do, however, need consistent estimators for both

η1 and η2 in order to achieve the information bound. Their estimators, however,

can converge to the truth without restrictions on rates. But a slower rate, which

happens when applying a smoothing technique, may require a larger sample size

to achieve a stable estimator for θ, as shown by the following simulation study.

4.3. A simulation study

We conducted simulations with continuous Z and S to investigate the validity

of handling continuous variables Z and S via smoothing. Suppose the underlying

true model is

E(Y |S,Z) = θ0 + θ1Z + θ2f(S), (4.12)

and the model of interest is

E(Y |Z) = θ0 + θ1Z, (4.13)

where f(S) = S1/3 ∼ N(0, 1). Let Z ∼ N(0, 1), ε0 = Y − E(Y |S,Z) ∼ N(0, 1),

and θ0 = θ1 = θ2 = 1. Simulations are conducted using 1,000 replications

with cohort size n = 200 and 1, 000, respectively, and the selection probability

π(S,Z) = 0.5. In other words, we observe Y for half of the subjects. Here S

does not satisfy the definition of surrogate outcome given by Prentice (1989).

Since it is correlated with the true outcome Y , however, we can use it in the

same way as a surrogate outcome to improve efficiency. The following estimating

methods are simulated: (i) fitting the linear regression model (4.13) using fully

observed data only (complete-case method); (ii) using the proposed method with

η1 = E(Y |S,Z) estimated using the true linear regression model (4.12) (without

smoothing); and (iii) using the proposed method with η1 = E(Y |S,Z) estimated

by a generalized additive model via smoothing splines on S and Z. We use

smoother s() in Splus with default values of the smoothing parameters. We do
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not estimate the variance η2 = E(ε∗2|Z) for the above simulations since they are

actually constant. The simulation results are listed in Table 1. When sample

size is small (n = 200), the algorithm does not work very well. When we increase

the sample size to n = 1, 000, which means that about 500 records are used to

estimate E(Y |S,Z) using a generalized additive model, the algorithm works as

well as it would if the model for E(Y |S,Z) were correctly specified.

Table 1. Simulation summary statistics for estimating θ0 and θ1 in linear

models with 1,000 replications.

Methods mean mean s2(θ̂0,n) s2(θ̂1,n) meana meanb 95%CPc 95%CPd

θ̂0,n θ̂1,n Var (θ̂0,n) Var (θ̂1,n) θ̂0,n θ̂1,n

n = 200

CCe 0.9955 0.9944 0.0201 0.0206 0.0192 0.0215 0.953 0.940

CSMf 0.9960 0.9960 0.0149 0.0151 0.0150 0.0165 0.956 0.937

SMg 1.0040 0.9928 0.1644 0.1715 0.1761 0.3542 0.954 0.935

n = 1, 000

CC 1.0032 1.0021 0.0040 0.0040 0.0041 0.0045 0.952 0.934

CSM 1.0030 1.0027 0.0030 0.0030 0.0032 0.0033 0.950 0.937

SM 1.0038 1.0032 0.0031 0.0031 0.0033 0.0034 0.945 0.931

a Sample mean of variance estimators for θ̂0,n.
b Sample mean of variance estimators for θ̂1,n.
c Coverage probability for θ̂0,n, based on the asymptotically normal distribution.
d Coverage probability for θ̂1,n, based on the asymptotically normal distribution.
e Complete-case.
f Correctly specified model.
g Smoothing method.

5. Concluding Remarks

In practice it may not always be possible to obtain a useable form of the

efficient score function for developing an efficient estimator for θ. It then becomes

important to obtain the class of all estimating functions for regular estimators.

The following proposition gives us the desirable class of estimating functions, see

also Proposition 8.1 in RRZ.

Proposition 5.1. Ṗ⊥
η,π = {V(h0, a) : h0 ∈ Q̇⊥

η , a ∈ N (AT)}, where V(h0, a) is

the map from L0
2(Q) × L0

2(P ) to L0
2(P ) given by

V(h0, a) ≡ U(h0) + a −Π{U(h0) + a | Ṗπ} = Π{U(h0) + a | Ṗ⊥

π }.

The proof of the proposition is referred to Yu and Nan (2005), where the cor-

responding result is labeled as Proposition 4.2. Proposition 5.1 characterizes the
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space Ṗ⊥
η,π that contains all the estimating functions (or influence functions) for

regular asymptotically linear estimators in model P, including the efficient score

function. Since a ∈ N (AT) and Ṗπ ⊂ N (AT) (see Lemma 4.4 in Yu and Nan

(2005)), we know that any estimating function in model P is an inverse proba-

bility weighted estimating function in model Q, plus a term that has expectation

zero given full data X. This property gives us the flexibility to develop workable

estimating methods for a missing data problem if an explicit efficient estimating

function is hard to get.

From the remark following Theorem 3.3 we know that, for a two-phase sam-

pling design where π is given, the second term in any such estimating function has

the form −(Rm − π(1m))π(1m)−1φ(X (1t)), where φ has finite second moment.

This type of estimating function has the so-called double robustness property,

i.e., the estimating function

Rm

π(1m)
h0(X) −

Rm − π(1m)

π(1m)
φ(X (1t))

for an arbitrary full data estimating function h0 is unbiased if either π or φ(X (1t))

= E(h0 |X (1t)) is correctly specified. The details follow. If π is correctly speci-

fied, then for any h0 satisfying E(h0) = 0, and any φ(X(1t)) ∈ L2(Q), we have

E

{
Rm

π
h0 −

Rm − π

π
φ(X(1t))

}

= E
{
h0 − 0 · φ(X(1t))

}
= E(h0) = 0.

If φ(X(1t)) = E(h0|X(1t)) is correctly specified for a full data estimating function

h0, then for any π we have

E

{
Rm

π
h0 −

Rm − π

π
φ(X(1t))

}

= E

{
P (Rm = 1|X)

π
h0 −

P (Rm = 1|X) − π

π
E(h0|X(1t))

}

= E

{
P (Rm = 1|X(1t))

π
h0 −

P (Rm = 1|X(1t)) − π

π
E(h0|X(1t))

}

= E

{
P (Rm = 1|X(1t))

π
E(h0|X(1t)) −

P (Rm = 1|X(1t)) − π

π
E(h0|X(1t))

}

= E
{
E(h0|X(1t))

}
= E(h0) = 0.

Note that an unbiased estimating function does not necessarily yield an

asymptotically normally distributed estimator. Usually more work needs to be

done to obtain desirable asymptotic properties, as we have seen in the case of

the surrogate outcome regression model.
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Appendix. Regularity Conditions for Theorem 4.2

We give a set of regularity conditions that guarantee the desirable asymptotic

properties of the proposed estimators. They are reasonable for many practical

problems.

(C1) The surrogate outcome S and covariates Z have finite support.

(C2) The parameter space of θ, Θ, is compact.

(C3) supS,Z |η1(S,Z)| < M1 < ∞.

(C4) 0 < σ < η2(Z) < M2 < ∞ for all Z.

(C5) The function g(Z; θ) is twice differentiable in θ, with continuous second

derivative for all Z; and E{ġ(Z; θ0)ġ(Z; θ0)
T } is nonsingular. Here ġ =

∂g/∂θ, g̈ = ∂ġ/∂θT , and θ0 is the true parameter, an interior point in Θ.

(C6) The true parameter θ0 is the unique root of E0l
∗0
θ = 0 for an arbitrary

variance function. Here E0 denotes the expectation with respect to the

true probability measure of the underlying full data.

(C7) The parameters η1 and η2 and their estimators belong to Donsker classes.

Note Conditions (C1)−(C4) are common assumptions for regression models.

Condition (C5) holds for all the mean functions of the generalized linear models

discussed by McCullagh and Nelder (1989). Condition (C6) is a usual assumption

for the proof of consistency in estimating equation theory for problems without

missing data (Huber (2004), p.131). Condition (C7) holds when both η1 and η2

are estimated using generalized additive models (see e.g., Hastie and Tibshirani

(1990)) where each component in the generalized additive models is a nice func-

tion of its parameters, e.g., (the sum of) Lipschitz or bounded monotone func-

tions. An example of the latter situation estimates each component using poly-

nomial splines. We refer to van der Vaart and Wellner (1996) for general discus-

sions on Donsker properties.
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