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Abstract: Various approaches have been developed to deal with missing covariate
problems in regression analysis when the data are missing at random. Among
them, three main non-likelihood approaches are through weighting, imputation and
conditional likelihood. The imputation method replaces the missing contribution
to the estimating function with its conditional expectation. The inverse probability
weighting method weights each observed record by the inverse of the observation
probability. The conditional method constructs an unbiased estimating function
using only complete records by modelling the conditional mean, given that record
is observed. In the literature, the efficiencies of these methods have been compared
via simulation. In this paper we compare the asymptotic variances and prove
some inequalities. We show that in logistic regression the asymptotic variance of
the conditional likelihood method is smaller than or equal to that of the inverse
probability weighting method. When the fully observed variables are categorical,
the imputation method is more efficient than the inverse probability weighting
method given that the observation model is correctly specified. We also show that
if the missing mechanism is MCAR and the true known probability of observation is
used, the asymptotic variance of the inverse probability weighting method is greater
than or equal to that of the complete case analysis. We also conduct simulation
studies to compare performances in finite samples and later illustrate the methods
using data from a stroke study.

Key words and phrases: Efficiency, estimating equation, imputation, inverse prob-
ability weighting, logistic regression, missing at random, missing covariate.

1. Introduction

We consider the situation where the conditional mean of outcome Y of a

subject given covariates X and Z is of interest. When all data are observed, this
often constitutes a regression analysis. We consider the case in which Y and Z

are always observed, but X could be missing for some subjects. Throughout the
paper the probability of missingness is assumed not to depend on X, i.e., X is

missing completely at random or missing at random.

In the presence of a missing covariate, a common practice is complete case
(CC) analysis in which records with missing covariates are simply deleted. Un-

der certain missingness mechanisms, the CC analysis would yield biased esti-

mators. There are mainly three non-likelihood based approaches to deal with
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this problem: weighting (Zhao and Lipsitz (1992), Robins, Rotnitzky and Zhao

(1994) and Zhao, Lipsitz and Lew (1996)), imputation (Reilly and Pepe (1995))
and Paik (1997)) and conditional likelihood (Brelow and Cain (1988) and Wang

(1999)). The efficiencies of the estimators from the aforementioned approaches

have been compared by simulation studies. Zhao and Lipsitz (1992) have shown

that the conditional method performs better than the inverse probability weight-
ing method when the probability of observing is known. The semiparametric

efficient estimator proposed by Robins, Rotnitzky and Zhao (1994), an extension

of the weighting method, would in theory achieve the semiparametric variance

bound. Robins, Rotnitzky and Zhao (1994) showed that the efficiency of the in-
verse probability weighting estimator can be improved by subtracting an extra

term, namely the projection of the backbone estimating function onto the nui-

sance tangent space formed by nuisance score. However, computation is often in-

tensive, and the efficiency gain over the imputation method is decisive only when
the sample size is very large (Paik (2000)). Therefore, the efficiency compari-

son among the imputation, the inverse probability weighting without efficiency

adjustment and the conditional method is still of interest among practitioners.
Throughout the paper, we call the method of Zhao and Lipsitz (1992) inverse

probability weighting. The efficient version of RRZ is referred to as efficient

inverse probability weighting.

In this paper we analytically compare the asymptotic variances of the impu-
tation, inverse probability weighting (IPW) and conditional likelihood methods,

and show some new inequalities among the asymptotic variances. We prove that

for the logistic model, when the probability of observation is known, the condi-

tional method is more efficient than the IPW method. We also show that when
the completely observed variables are categorical, the imputation method has a

smaller asymptotic variance than that of the IPW method. Under the same con-

dition, we prove that the imputation method is equivalent to the improved IPW

method. Among the IPW estimators based on different models for missingness,
we show that the asymptotic variance of the IPW estimators from an over-fitted

missingness model is smaller than or equal to that from a simpler missingness

model.

We present results from simulation studies. For the most part, the simulation
results agree with the theoretical findings. We also illustrate the various methods

using data from the Northern Manhattan Stroke Study, which include 3,202

subjects randomly sampled from the northern Manhattan. We analyze two -year

stroke incidence as a function of various risk factors. One of the risk factors,
left ventricular hypertrophy, is missing for 1,147 subjects because the variable

requires taking an ECHO cardiogram. Logistic regression models are applied

using the three aforementioned approaches for missing covariates, and the results

are compared.
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In Section 2, we review the three approaches handling missing covariates.

In Section 3, we compare their asymptotic variances. In Section 4 simulation

results are shown. We compare the different estimates using stroke study data

in Section 5.

2. Methods to Handle Missing Covariates

In this section, we review the three approaches and present the model as-

sumptions and the asymptotic variances associated with the different methods.

2.1. Model and notation

Suppose that the conditional mean of outcome Y given covariate X and Z

is E(Y |X,Z;β), where β is an unknown finite dimensional parameter vector of

interest. Here Y and X are scalars, and Z can be a vector of covariates. We

assume that the missing mechanism is missing at random (Rubin (1976)), that

is, the probability of observing X may depend on Y and Z, but not on X. Let

R be an indicator of X being observed. We also assume that the observation

probability is not zero and can be modelled parametrically, say π(X,Y,Z) =

π(X,Y,Z;α), where π is a known, twice-differentiable function and α is a finite-

dimensional unknown nuisance parameter. By the MAR assumption, we have

π(X,Y,Z) = π(Y,Z) and π(X,Y,Z;α) = π(Y,Z;α). Throughout the paper, we

use π(Y,Z) to generically denote the observation probability, known or unknown,

and π(Y,Z;α) to denote the parametrically specified observation probability with

unknown α. Finally, we assume that (Ri, Yi, Xi, Zi), i = 1, . . . , n, are i.i.d.. Let

µ(X,Z;β) = E(Y |X,Z;β). Then without missing data, the most efficient linear

estimating function would be

S(Yi|Xi, Zi;β) =
∂

∂β
{µ(Xi, Zi;β)}w(Xi, Zi;β)−1{Yi − µ(Xi, Zi;β)}, (2.1)

where w(Xi, Zi;β) = Var(Yi|Xi, Zi;β).

Since R is Bernoulli with mean π(Y,Z;α), the nuisance score from logistic

regression is

U(Ri|Yi, Zi;α) = Ri
∂

∂α
log{π(Yi, Zi;α)}+(1−Ri)

∂

∂α
log{1−π(Yi, Zi;α)}. (2.2)

We occasionally use S(Y |X,Z;β) and U(R|Y,Z;α) without the subscript i to

denote the contribution from a single observation to the estimating function for

β and for α, respectively.

Throughout the paper, we use the following notation: n is the total number

of subjects; Y is the outcome variable; X is the covariate that is subject to

missing; Z is the fully observed covariates; V is the set of records in which X are
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observed; V̄ is the set of records in which X are missing; R = 1 if X is observed,
0 otherwise; V zy and V̄ zy are the subset of completely observed sample and

partially observed sample, respectively, with Y = y and Z = z; nv
zy and nv̄

zy are
the number of subjects in V zy and V̄ zy, respectively.

2.2. Complete case analysis

A common treatment of missing data in statistical package is the complete-

case (CC) analysis, where the records with missing values are simply deleted.
The CC analysis uses the following estimating equation:

SCC(β) =

n
∑

i=1

RiS(Yi|Xi, Zi;β) = 0.

When the missing mechanism is missing completely at random (MCAR), that
is, the observation probability does not depend on Y and X, but may depend on

Z, the estimator from the CC analysis, say β̂cc, is consistent, and
√

n(β̂cc − β) is
asymptotically normally distributed with mean zero and variance

Vcc =
[

E{π(Z)S(Y |X,Z;β)S(Y |X,Z;β)T }
]

−1
. (2.3)

When the observation probability is a constant π0, the asymptotic variance is
(1/π0)I

−1
v , where Iv = E{S(Y |X,Z;β)S(Y |X,Z;β)T }; but when the observation

probability depends on Y , which is the case under MAR, it may yield a biased
estimator.

2.3. Imputation

When Y and Z are categorical and X is partially observed, Reilly and Pepe

(1995) proposed an imputation method which uses the following estimating equa-
tion:

Sim(β) =

n
∑

i=1

RiS(Yi|Xi, Zi;β)+

n
∑

i=1

(1−Ri)Ê{S(Yi|Xi, Zi;β)|Yi, Zi} = 0, (2.4)

where Ê{S(Y |X,Z)|y, z} =
∑

j∈V zy S(Y |X,Z;β)/nv
zy. When Z is continuous,

the method can be easily extended using a parametric modelling (See Fleiss,

Levin and Paik (2003)).
Reilly and Pepe (1995) show that the estimator, β̂im, is consistent and the

asymptotic variance of
√

nβ̂im is

Vim = I−1
v E

[ 1

π(Y,Z)
S(Y |X,Z;β)S(Y |X,Z;β)T

]

I−1
v

−I−1
v E

(1 − π(Y,Z)

π(Y,Z)
S(Y |Z;β)S(Y |Z;β)T

)

I−1
v , (2.5)
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where S(Y |Z;β) = E{S(Y |X,Z;β)|Y,Z}. They show that estimating equation

(2.4) can also be expressed as

Sim(β) =
n
∑

i=1

(nZiYi

nv
ZiYi

)

RiS(Yi|Xi, Zi;β) = 0, (2.6)

which is equivalent to the inverse probability weighting estimating equation when

the empirical estimator of π(Y,Z) is used.

2.4. Inverse probability weighting

The Inverse Probability Weighting (IPW) method weights each record by

the inverse of its probability being observed. When π(Y,Z) is known, Zhao and

Lipsitz (1992) proposed the IPW method using the estimating equation

Sw(β) =
n
∑

i=1

Ri

π(Yi, Zi)
S(Yi|Xi, Zi;β) = 0.

Zhao and Lipsitz (1992) showed that the estimator, β̂w, is consistent and asymp-

totically normally distributed, and the asymptotic variance of
√

nβ̂w is

Vwt = I−1
v E

[ 1

π(Y,Z)
S(Y |X,Z;β)S(Y |X,Z;β)T

]

I−1
v . (2.7)

When π(Y,Z) is not known, its estimate can be used. If Y and Z are

categorical, we can use the sample mean of R given Y and Z among the com-

pletely observed records, which yields the same estimator as in the imputation

method. Equivalence between the IPW and the imputation approach when both

the imputation and missingness models are saturated is reported by Little (1986),

Reilly and Pepe (1995) and Paik (1997). When Y or some components of Z

are continuous, we can assume a parametric model for π(Y,Z), for example,

π(Y,Z) = π(Y,Z;α), where π is a known function indexed by unknown parame-

ter α. Then β and α can be estimated simultaneously by the following estimating

equations (e.g. Zhao, Lipsitz and Lew (1996)):

Sw(α, β) =

n
∑

i=1

Ri

π(Yi, Zi;α)
S(Yi|Xi, Zi;β) = 0,

U(α) =

n
∑

i=1

U(Ri|Yi, Zi;α) = 0.

Zhao, Lipsitz and Lew (1996) showed that the asymptotic variance of (β̂w, α̂) is

of a sandwich-type, I−1ΣI−1, where I is the derivative of {Sw(α, β), U(α)}, and
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Σ = Var{Sw(α, β), U(α)}. In the appendix we show the derivation of the follow-

ing alternative form of the asymptotic variance of
√

n(β̂w − β), which facilitates

the comparisons:

Vwe = I−1
v E

[ 1

π(Y,Z;α)
S(Y |X,Z;β)S(Y |X,Z;β)T

]

I−1
v − I−1

v Ω12I
−1
α ΩT

12I
−1
v ,

(2.8)

where Iα = EY Z

(

π̇(Y,Z;α)π̇(Y,Z;α)T /[π(Y,Z;α){1 − π(Y,Z;α)}]
)

, π̇(Y,Z;α)

= ∂/∂α{π(Y,Z;α)}, Ω12 = EY Z{S(Y |Z;β)π̇(Y,Z;α)T /π(Y,Z;α)}.

2.5. Improved inverse probability weighting method

Robins, Rotnitzky and Zhao (1994) showed that the efficiency of IPW can

be improved by subtracting the projection of the estimating function onto the

nuisance tangent space that is the closed span of nuisance scores. The resulting

estimating function has the following form:

Siw =

n
∑

i=1

( Ri

π(Yi, Zi)
S(Yi|Xi, Zi;β) − Ri − π(Yi, Zi)

π(Yi, Zi)
S(Yi|Zi;β)

)

, (2.9)

where S(Yi|Xi, Zi;β) = h(Xi, Zi;β){Yi − µ(Xi, Zi;β)}, and h(Xi, Zi;β) = ∂/∂β

{µ(Xi, Zi;β)}w(Xi, Zi;β)−1. The resulting estimator is the improved augmented

IPW estimator. It should be noted that it is the most efficient among those that

use S(Yi|Xi, Zi;β) as the ‘kernel’ with fixed function h. When h is allowed to be

arbitrary, a fully efficient estimator can be obtained, but h should be solved to

satisfy (23) in Robins, Rotnitzky and Zhao (1994). In this paper we restrict our

attention to the case in which h is fixed, because computation for optimal h is

impractically complicated.

Since S(Y |Z;β) is usually unknown as the distribution of X is usually un-

known, its estimate is used in practice. Zhao, Lipsitz and Lew (1996) discussed

modelling S(Y |Z;β) parametrically and gave a simulation result for continuous

Z. We show in Section 3 that for categorical Y and Z with saturated auxiliary

models, the imputation method is equivalent to the improved weighting method.

2.6. Conditional method

Breslow and Cain (1988) proposed the parameter estimator based on the

conditional likelihood of Y given X, Z and R = 1 when Y is binary. This

approach could be extended to the case in which Y is not binary, but a dis-

tributional assumption on Y is required. To keep to the main point, we con-

sider the case where Y is binary with probability of logistic form µ(X,Z;β) =

E(Y |X,Z;β) = exp(βT W )/{1 + exp(βT W )}, where W = (1, ZT , X)T . Let
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η(X,Z;β) = P (Y = 1|X,Z,R = 1;β), π(1, Z) = P (R = 1|Y = 1, Z), and

π(0, Z) = P (R = 1|Y = 0, Z). Then η(X,Z;β), µ(X,Z;β), and π(Y,Z) satisfy

the following relation:

η(X,Z;β) =
π(1, Z)µ(X,Z;β)

π(1, Z)µ(X,Z;β) + π(0, Z){1 − µ(X,Z;β)} .

When π(Y,Z) is known, the estimating equation based on the conditional likeli-

hood is:

Sc(β) =

n
∑

i=1

RiWi{Yi − η(Xi, Zi;β)} = 0.

The estimator β̂c is consistent for β, and
√

n(β̂c − β) is asymptotically normally

distributed with mean 0 and variance Vct = I−1
c , where

Ic = EXZ

[

W
π(1, Z)µ(X,Z;β)π(0, Z){1 − µ(X,Z;β)}

π(1, Z)µ(X,Z;β) + π(0, Z){1 − µ(X,Z;β)}W T
]

.

When π(Y,Z) is not known, it can be parametrically modelled as in the IPW

method, and (β, α) can be obtained by solving the following estimating equations

simultaneously:

Sc(β, α) =
n
∑

i=1

RiWi{Yi − η(Xi, Zi;β, α)} = 0,

U(α) =

n
∑

i=1

U(Ri|Yi, Zi;α) = 0.

As discussed by Wang (1999), it can be shown that the estimator β̂c is consistent

and
√

n(β̂c−β) is asymptotically normally distributed with mean 0 and variance

Vce = I−1
c − I−1

c ΩcI
−1
α ΩT

c I−1
c , (2.10)

where

Ωc = EXZ

(

W
π(1, Z;α)π(0, Z;α)µ(X,Z;β){1 − µ(X,Z;β)}

π(1, Z;α)µ(X,Z;β) + π(0, Z;α){1 − µ(X,Z;β)}
[

∂
∂αT {π(1, Z;α)}

π(1, Z;α)
−

∂
∂αT {π(0, Z;α)}

π(0, Z;α)

])

.

3. Comparison of Asymptotic Variances

3.1. Summary of results

We outline our results below. Each result is elaborated upon in a subsequent

section.
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1. Under the MCAR missing mechanism, the asymptotic variance of the IPW

estimator using the true observation probability is greater than or equal to

that of the CC estimator; equality holds when the observation probability is

a constant.

2. When Y and Z are categorical, the asymptotic variance of the imputation

method is smaller than or equal to that of the IPW method; equality holds

when both the imputation model and the model for π(Y,Z;α) of the IPW are

saturated.

3. When the fully observed variables Y and Z are categorical, the imputation

method is asymptotically equivalent to the improved weighting method.

4. Asymptotically the overfitted models for the observation probability yield the

more efficient IPW estimators.

5. When Y is binary and a logistic model for Y is used, using the true π(Y,Z), the

conditional likelihood method performs asymptotically better than the IPW

method in the sense that the difference between the asymptotic variances of

the IPW and the conditional estimators is positive semidefinite.

Note that Results 1 and 4 apply to the case of all types of Y and Z, while

Results 2 and 3 apply to the case of categorical Y and Z. Result 5 holds for

dichotomous Y but all types of Z. For the observation probability π(Y,Z) used,

Results 1 and 5 apply to the case in which the true and known π(Y,Z) is used,

while Results 2, 3 and 4 mainly concern the case in which the estimated π(Y,Z)

is used.

3.2. Comparison between IPW and CC

Since the CC estimator is biased and the IPW estimator adjusts the bias, a

comparison of efficiency between the two would not be interesting under MAR.

When the missingness mechanism is MCAR, both analyses yield consistent esti-

mators, and we can compare the efficiencies of IPW and CC estimators. In this

section, we use notation π(Z) instead of π(Y,Z) since the observation probability

does not depend of Y .

Result 1. Under the MCAR missing mechanism, the asymptotic variance of the

IPW estimator, using the true observation probability, is greater than or equal

to that of the CC estimator. Equality holds when the observation probability is a

constant.

Proof. Under MCAR, β̂cc from CC analysis is consistent, and the asymp-

totic variance of
√

nβ̂cc and
√

nβ̂w is Vcc (2.3) and Vwt (2.7), respectively. Let

a1 = {1/
√

π(Z)}S(Y |X,Z;β), a2 =
√

π(Z)S(Y |X,Z;β), and a = a1 −E(a1a
T
2 )
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{E(a2a
T
2 )}−1a2. Then we see that

Vwt − Vcc = I−1
v E

[ 1

π(Z)
S(Y |X,Z;β)S(Y |X,Z;β)T

]

I−1
v

−
[

E{π(Z)S(Y |X,Z;β)S(Y |X,Z;β)T }
]

−1

= {E(a1a
T
2 )}−1E(aaT ){E(a2a

T
1 )}−1

is positive semi-definite. It is zero only when a = 0, that is, π(Z) is a constant.

Although the IPW method is effective in adjusting the bias when data are

missing at random, the IPW estimator using the true π(Z) performs no better

than the CC estimator under MCAR.

3.3. Comparison of IPW with the imputation method

Result 2. When Y and Z are categorical, the asymptotic variance of the im-

putation estimator is smaller than or equal to that of the IPW method. Equality

holds when both the imputation model and the model for π(Y,Z;α) of the IPW

are saturated.

Proof. Using (2.5) and (2.8), the difference between the asymptotic variances

of
√

nβ̂w and
√

nβ̂im is

Vwe − Vim = I−1
v MdI

−1
v , (3.1)

where Md = E
(

[{1−π(Y,Z;α)}/π(Y,Z;α)]S(Y |Z;β)S(Y |Z;β)T
)

−Ω12I
−1
α ΩT

12.

Let b1 = S (Y |Z; β)
√

{1 − π (Y, Z; α)} / π(Y,Z;α), b2 = π̇(Y, Z; α)T

/[
√

π(Y,Z;α){1 − π(Y,Z;α)}], and b = a − E(b1b
T
2 ){E(b2b

T
2 )}−1b2. Then (3.1)

can be expressed as

I−1
v

[

E
{1 − π(Y,Z;α)

π(Y,Z;α)
S(Y |Z;β)S(Y |Z;β)T

}

− Ω12I
−1
α ΩT

12

]

I−1
v

= I−1
v

[

E(b1b
T
1 ) − E(b1b

T
2 ){E(b2b

T
2 )}−1E(b2b

T
1 )
]

I−1
v

= I−1
v E(bbT )I−1

v ,

which is positive semidefinite. It is zero if and only if b = 0, i.e, when S(Y |Z;β) =

E(b1b
T
2 ){E(b2b

T
2 )}−1π̇(Y,Z;α)T /[π(Y,Z;α){1 − π(Y,Z;α)}], or when S(Y |Z;β)

is a linear transformation of π̇(Y,Z;α). This occurs when the model for π(Y,Z;α)

is saturated if Y and Z are categorical.

Result 3. When the fully observed variables Y and Z are categorical, the impu-

tation method is asymptotically equivalent to the improved weighting method.
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Proof. We show that the estimator from (2.9), β̂iw, has the asymptotic variance

of β̂im at (2.5). Since Siw(β) =
∑n

i=1

(

{Ri/π(Yi, Zi)}S(Yi|Xi, Zi;β) − [{Ri −

π(Yi, Zi)}/π(Yi, Zi)]S(Yi|Zi;β)
)

, −(1/n)∂/∂β{Siw(β)} p→ Iv, and

Var
[ 1√

n
Siw(β)

]

= E
[ 1

π(Y,Z)
S(Y |X,Z;β)S(Y |X,Z;β)T

]

−E
(1 − π(Y,Z)

π(Y,Z)
S(Y |Z;β)S(Y |Z;β)T

)

.

Thus the asymptotic variance of
√

nβ̂iw is

I−1
v E

[ 1

π(Y,Z)
S(Y |X,Z;β)S(Y |X,Z;β)T

]

I−1
v

−I−1
v E

(1 − π(Y,Z)

π(Y,Z)
S(Y |Z;β)S(Y |Z;β)T

)

I−1
v ,

which is exactly the same as the variance of the imputation estimator in (2.5).

Furthermore, we show below that when Y and Z are categorical and the

empirical estimate of P (X|Y,Z) is used to estimate S(Y |Z;β), the improved

inverse probability weighting estimating function is the same as that of the im-

putation method. Let S∗

iw(β) =
∑n

i=1({Ri/π(Yi, Zi)}S(Yi|Xi, Zi;β) − [{Ri −
π(Yi, Zi)}/π(Yi, Zi)]Ŝ(Yi|Zi;β)). If Ŝ(Y |Z;β) = Ê{Sβ(Y |X,Z)|Y,Z} =

∑

i∈V Y Z

S(Yi|Xi, Zi;β)/nv
Y Z , then

n
∑

i=1

Ri − π(Yi, Zi)

π(Yi, Zi)
Ŝ(Yi|Zi;β)

=
n
∑

i=1

Ri

π(Yi, Zi)

∑

j∈V ZiYi

S(Yj|Xj , Zj ;β)

nv
ZiYi

−
n
∑

i=1

∑

j∈V ZiYi

S(Yj |Xj , Zj ;β)

nv
ZiYi

=
∑

i∈V

∑

j∈V ZiYi

1

π(Yj , Zj)

S(Yj |Xj , Zj ;β)

nv
ZiYi

−
n
∑

i=1

∑

j∈V ZiYi

S(Yj|Xj , Zj ;β)

nv
ZiYi

=
∑

Y Z

∑

i∈V ZY

∑

j∈V ZiYi

1

π(Yj , Zj)

S(Yj|Xj , Zj ;β)

nv
ZY

−
∑

Y Z

nZY

nv
ZY

∑

j∈V ZY

S(Yj|Xj , Zj ;β)

=
∑

Y Z

∑

j∈V Y Z

S(Yj |Xj , Zj ;β)

π(Yj , Zj)
−
∑

Y Z

nZY

nv
ZY

∑

j∈V ZY

S(Yj |Xj , Zj ;β)

=

n
∑

i=1

Ri

π(Yi, Zi)
S(Yi|Xi, Zi;β) −

n
∑

i=1

Ri
nYiZi

nv
YiZi

S(Yi|Xi, Zi;β).
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Hence

S∗

iw(β) =

n
∑

i=1

{ Ri

π(Yi, Zi)
S(Yi|Xi, Zi;β) − Ri − π(Yi, Zi)

π(Yi, Zi)
Ŝ(Yi|Zi;β)}

=

n
∑

i=1

Ri
nYiZi

nv
YiZi

S(Yi|Xi, Zi;β).

This is the estimating equation (2.6) in the imputation method.

3.4. Effect of modelling π(Y, Z; α) on efficiency of IPW estimator

Result 4. Aymptotically, the overfitted models for the missingness probability

yield the more efficient IPW estimators.

In this section we consider IPW estimators obtained under various models
for π(Y,Z;α), and compare their asymptotic variances. For clarity, denote the
IPW estimator using the true π(Y,Z) by β̂w(π), and using the estimated π(Y,Z)
by β̂w(π̂). Consider the case where π(Y,Z) is known and only depends on Z,
say π(Z). This happens in a two-stage study design where the study sub-sample
is randomly selected given stratum Z for the second stage. Even when π(Z) is
known, it can be estimated. Comparing the variance formulae (2.7) and (2.8)
we see that the variance of β̂w using the true π(Z) is greater than or equal to
that using the estimated π(Z). So by estimating π(Z) the efficiency of β̂w can
be improved. However, π(Z) can be estimated using various models. We further
distinguish the estimated observation probability as follows: we write π̂Z if π(Z)
is estimated using Z as a covariate, π̂Y Z if estimated using Y and Z, and finally
π̂S if estimated via the saturated model including the interaction term between
Y and Z. If the model for the observation probability does not involve Y , Ω12

in (2.8) would be 0 and hence the asymptotic variance of β̂(π̂Z) is the same as
that of using true π(Z). If the model includes Y , we have non-zero Ω12 and
Var{β̂w(π̂Y Z)} ≤ Var{β̂w(π̂Z)} = Var{β̂w(π)}. In addition, by Result 2, we have
Var{β̂w(π̂S)} ≤ Var{β̂w(π̂Y Z)}. This implies that even under MCAR, including
Y in the model for the observation probability is a good practice since it improves
the efficiency. In summary, asymptotically we have

Var{β̂w(π̂S)} ≤ Var{β̂w(π̂Y Z)} ≤ Var{β̂w(π̂Z)} = Var{β̂w(π)}.

Note that the IPW estimators we discuss in this section are the ones using the
estimated π(Y,Z), and the IPW estimator in Section 3.2 is obtained using the
true π(Y,Z).

3.5. Comparison of IPW and conditional method

Result 5. When Y is binary and a logistic model for Y is used, the conditional

likelihood method using the true π(Y,Z) performs asymptotically better than the
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IPW method in the sense that the difference between the asymptotic variances of

the IPW estimator and the conditional estimator is positive semidefinite.

Proof. For the logistic model, S (Y |X, Z; β ) = W {Y − µ (X, Z; β )}, Iv =
E[Wµ(X,Z;β){1 − µ(X,Z;β)}W T ], and thus the asymptotic variance of

√
nβ̂w

in (2.7) when π(Y,Z) is known is

Vwt = I−1
v E

[ 1

π(Y,Z)
S(Y |X,Z;β)S(Y |X,Z;β)T

]

I−1
v

= I−1
v E

[

Wµ(X,Z;β){1 − µ(X,Z;β)}W T

π(0, Z){1 − µ(X,Z;β)} + π(1, Z)µ(X,Z;β)

π(1, Z)π(0, Z)

]

I−1
v .

To facilitate the comparison between the variances of IPW and conditional
estimators, we write
d = [π(1, Z)µ(X,Z;β) + π(0, Z){1 − µ(X,Z;β)}]/{π(1, Z)π(0, Z)},
c1 = W

√

µ(X,Z;β){1 − µ(X,Z;β)}d, c2 = W
√

µ(X,Z;β){1 − µ(X,Z;β)}/d,
c = c1 − E(c1c

T
2 ){E(c2c

T
2 )}−1c2. Then Vwt = {E(c1c

T
2 )}−1E(c1c

T
1 ){E(c1c

T
2 )}−1,

and when π(Y,Z) is known, the asymptotic variance of
√

nβ̂c is Vct = I−1
c =

{E(c2c
T
2 )}−1. Thus

Vwt − Vct = I−1
v E

[ 1

π(Y,Z)
S(Y |X,Z;β)S(Y |X,Z;β)T

]

I−1
v − I−1

c

= {E(c1c
T
2 )}−1E(ccT ){E(c2c

T
1 )}−1,

which is positive semidefinite. Equality holds when c = 0, which occurs when
π(Y,Z) is a constant, and in that case both methods are equivalent to the CC
analysis.

Thus in the case that π(Y,Z) is known, the conditional method yields esti-
mators with smaller asymptotic variances than the inverse probability weighting
method under MAR.

When π(Y,Z) is estimated, simulation results (Table 1 and Table 2) show
that, using the same model for the observation probability, the variance of the
conditional estimate is similar to or smaller than that of the IPW estimate.

As pointed out in Section 2.6, the conditional analysis for non-binary Y
requires a distributional assumption, and yields a complicated form of asymptotic
variance. The results in this section do not apply in the settings other than
logistic regression, such as binary regression with other link functions or linear
regression models.

4. Simulation

We conducted simulation studies with 500 replications to examine the per-
formances of the non-likelihood approaches with sample sizes n = 100 and
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500, representing small and large sample sizes. Two models were considered:
logistic and classical linear models. For logistic regression models, we gener-
ated Y according to P (Y = 1|Z,X;β) = logit−1(β0 + βZZ + βXX), where X
is a binary variable with P (X = 1) = 0.5. For Z, two types were consid-
ered: a standard normal variable and a binary variable with P (Z = 1) = 0.5.
For the binary Z case, β = (β0, βZ , βX) = (−0.5, log 2, log 2); for the nor-
mal Z case, β = (−0.5, 0.2, log 2). For linear models, Y is generated from a
normal distribution with mean β0 + βZZ + βXX and variance 1, where β =
(β0, βZ , βX ) = (−1, 0.5, 0.5), and X and Z are generated as binary variables
with P (X = 1) = P (Z = 1) = 0.5. For both linear and logistic regression cases,
X and Z are generated independently.

For all models we generated the observation indicator with π(Y,Z;α) =

P (R = 1|Z, Y ;α) = logit−1(α0 + αZZ + αY Y ). Under MCAR, we set α =

(α0, αZ , αY ) = (−0.5, log 2, 0) for logistic models with binary Z, (0.2, 0.3, 0) for

logistic models with normal Z, and (0, log 2, 0) for linear models. Under MAR,

we set α = (α0, αZ , αY ) = (−0.5, log 2, 0.5) for logistic models with binary Z,

(0.2, 0.3, log 2) for logistic models with normal Z, and (0, log 2, 0.2) for linear

models.

We considered three nested models for π(Y,Z;α). The factors included in

these models were Z only (Model 0), Z and Y main effects only (Model 1), and

Z, Y and their interaction (Model 2). Under MAR, these three models repre-

sent under-specified, correctly specified, and over-specified models, respectively;

and under MCAR, Model 0 is correctly specified, and Models 1 and 2 are over-

specified. The corresponding IPW estimates using the estimated π(Y,Z) from

these models are denoted by IPW0, IPW1, and IPW2, respectively. Note that

under MAR, the estimated π(Y,Z) from Model 0 is not consistent, thus IPW0 is

not consistent. To calculate the imputation estimates (Impu) and the improved

augmented IPW estimates (IPWeff), we estimated P (X = 1|Z, Y ) by fitting a

logistic model with Z, Y and their interaction term. Note that when Z is nor-

mal, this imputation model is mis-specified. The IPW estimates using the true

π(Y,Z) (IPWt), the complete case estimates (CC) and the maximum likelihood

estimates from the full data (Full) were also calculated. For logistic models, we

also calculated the conditional estimates using the true π(Y,Z) (Cont), and using

the estimated π(Y,Z) from Model 1 (Con1) and Model 2 (Con2).

The first half of the Tables 1, 2 and 3 present the simulation results under

MCAR for logistic models with binary Z, continuous Z, and for linear models,

respectively.

First note that under MCAR, all the estimates have negligible bias. In

both logistic and linear models, the simulation standard deviations of the IPW

estimates using the true observation probability π(Y,Z) (IPWt) are bigger than

those of the CC estimates, consistent with Result 1 in Section 3.2.
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Table 1. Simulation results for the logistic model, binary Z. Parame-
ter (β0, βZ , βX) being estimated in the logistic regression model P (Y =
1|Z, X) = logit−1(β0 +βZZ +βXX) is (−0.5, log 2, log 2); Z is a binary vari-
able with probability 0.5; the probability of observing X is P (R = 1|Z, Y ) =
logit−1(α0 + αZZ + αY Y ). Sample bias (Bias), which is the difference be-
tween the sample mean and the true values, simulation standard deviation
(SD), the mean of estimated standard error (MSD), and the proportion of
the 95 percent confidence interval containing the true parameter (CP) over
500 replicates are given. The sample size is n, and no is the average of the
number of observed records in 500 replicates.

Full CC IPWt IPW0 IPW1 IPW2 Cont Con1 Con2 IPWff Impu

(α0, αZ , αY ) = (−0.5, log 2, 0)(MCAR)
n = 100, no = 46.5

β0 Bias -0.01 -0.04 -0.05 -0.05 -0.05 -0.06 -0.04 -0.04 -0.04 -0.06 -0.06
SD 0.375 0.658 0.667 0.675 0.584 0.493 0.658 0.563 0.471 0.493 0.493
MSD 0.368 0.611 0.607 0.606 0.544 0.466 0.611 0.541 0.459 0.466 0.466
CP 0.97 0.96 0.94 0.95 0.96 0.96 0.96 0.96 0.97 0.96 0.96

βZ Bias -0.00 0.02 0.02 0.03 0.02 0.02 0.02 0.01 0.01 0.02 0.02
SD 0.435 0.706 0.711 0.713 0.695 0.467 0.706 0.688 0.459 0.467 0.467
MSD 0.426 0.668 0.667 0.668 0.660 0.461 0.668 0.658 0.457 0.461 0.461
CP 0.95 0.94 0.94 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95

βX Bias 0.04 0.10 0.11 0.12 0.12 0.12 0.10 0.10 0.10 0.12 0.12
SD 0.416 0.666 0.681 0.694 0.696 0.699 0.666 0.666 0.666 0.699 0.699
MSD 0.426 0.659 0.669 0.669 0.669 0.669 0.659 0.654 0.652 0.669 0.669
CP 0.96 0.97 0.97 0.96 0.96 0.96 0.97 0.96 0.96 0.96 0.96

n = 500,no = 230.3

β0 Bias -0.01 0.01 0.01 0.01 0.00 -0.00 0.01 0.00 -0.00 -0.00 -0.00
SD 0.158 0.264 0.265 0.265 0.231 0.202 0.264 0.231 0.201 0.202 0.202
MSD 0.161 0.256 0.257 0.257 0.229 0.197 0.256 0.227 0.195 0.197 0.197
CP 0.96 0.94 0.94 0.94 0.96 0.94 0.94 0.96 0.94 0.94 0.94

βZ Bias 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02
SD 0.192 0.283 0.283 0.283 0.278 0.196 0.283 0.278 0.196 0.196 0.196
MSD 0.186 0.281 0.281 0.281 0.279 0.192 0.281 0.279 0.192 0.192 0.192
CP 0.94 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.95 0.95

βX Bias 0.00 0.00 -0.00 -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00
SD 0.186 0.292 0.297 0.297 0.297 0.297 0.292 0.292 0.292 0.297 0.297
MSD 0.186 0.278 0.282 0.283 0.283 0.283 0.278 0.277 0.277 0.283 0.283
CP 0.95 0.94 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94

(α0, αZ , αY ) = (−0.5, log 2, 0.5)(MAR)
n = 100,no = 53.1

β0 Bias -0.01 0.27 -0.01 0.26 -0.03 -0.03 -0.01 -0.03 -0.03 -0.03 -0.03
SD 0.375 0.595 0.600 0.611 0.524 0.458 0.595 0.511 0.444 0.458 0.458
MSD 0.368 0.563 0.559 0.561 0.502 0.440 0.563 0.501 0.436 0.440 0.440
CP 0.97 0.93 0.94 0.92 0.95 0.95 0.95 0.96 0.96 0.95 0.95

βZ Bias -0.00 -0.07 0.01 -0.07 0.01 0.01 0.01 0.02 0.01 0.01 0.01
SD 0.435 0.653 0.655 0.658 0.638 0.452 0.653 0.635 0.448 0.452 0.452
MSD 0.426 0.627 0.626 0.627 0.616 0.450 0.627 0.615 0.448 0.450 0.450
CP 0.95 0.94 0.94 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95

βX Bias 0.04 0.08 0.09 0.10 0.10 0.10 0.08 0.08 0.08 0.10 0.10
SD 0.416 0.629 0.644 0.659 0.656 0.659 0.629 0.629 0.629 0.659 0.659
MSD 0.426 0.623 0.628 0.633 0.630 0.630 0.623 0.619 0.617 0.630 0.630
CP 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.95 0.95

n = 500,no = 263.2

β0 Bias -0.01 0.29 0.01 0.29 -0.00 -0.01 0.01 -0.00 -0.01 -0.01 -0.01
SD 0.158 0.242 0.242 0.242 0.216 0.190 0.242 0.216 0.190 0.190 0.190
MSD 0.161 0.238 0.239 0.239 0.214 0.188 0.238 0.213 0.187 0.188 0.188
CP 0.96 0.75 0.96 0.76 0.96 0.94 0.96 0.96 0.94 0.94 0.94

βZ Bias 0.02 -0.07 0.01 -0.07 0.01 0.02 0.01 0.01 0.02 0.02 0.02
SD 0.192 0.270 0.270 0.270 0.265 0.196 0.270 0.265 0.196 0.196 0.196
MSD 0.186 0.265 0.265 0.265 0.262 0.190 0.265 0.262 0.190 0.190 0.190
CP 0.94 0.95 0.96 0.95 0.96 0.94 0.96 0.96 0.94 0.94 0.94

βX Bias 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SD 0.186 0.278 0.282 0.283 0.282 0.282 0.278 0.278 0.278 0.282 0.282
MSD 0.186 0.264 0.267 0.268 0.267 0.267 0.264 0.264 0.264 0.267 0.267
CP 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
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Table 2. Simulation result for the logistic model, normal Z. Parame-
ter (β0, βZ , βX) being estimated in the logistic regression model P (Y =
1|Z, X) = logit−1(β0 +βZZ +βXX) is (−0.5, 0.2, log 2); Z is a standard nor-
mal variable; the probability of observing X is P (R = 1|Z, Y ) = logit−1(α0+
αZZ+αY Y ). Sample bias (Bias), which is the difference between the sample
mean and the true values, simulation standard deviation (SD), the mean of
the estimated standard error (MSD), and the proportion of the 95 percent
confidence interval containing the true parameter (CP) over 500 replicates
are given. The sample size is n, and no is the average of the number of
observed records in 500 replicates.

Full CC IPWt IPW0 IPW1 IPW2 Cont Con1 Con2 IPWff Impu

(α0, αZ , αY ) = (0.2, 0.3, 0)(MCAR)
n = 100, no = 54.6

β0 Bias -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.03 -0.03 -0.03
SD 0.327 0.452 0.457 0.458 0.407 0.408 0.452 0.401 0.400 0.405 0.402
MSD 0.304 0.423 0.424 0.424 0.378 0.375 0.423 0.375 0.372 0.374 0.374
CP 0.94 0.94 0.94 0.94 0.95 0.95 0.94 0.96 0.96 0.96 0.96

βZ Bias 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
SD 0.217 0.311 0.317 0.324 0.320 0.244 0.311 0.306 0.238 0.225 0.223
MSD 0.217 0.308 0.305 0.302 0.300 0.227 0.308 0.298 0.230 0.224 0.224
CP 0.97 0.97 0.95 0.93 0.94 0.95 0.97 0.95 0.97 0.96 0.97

βX Bias 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
SD 0.444 0.616 0.620 0.618 0.618 0.621 0.616 0.616 0.616 0.623 0.618
MSD 0.422 0.586 0.590 0.589 0.589 0.588 0.586 0.583 0.582 0.590 0.589
CP 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.94 0.94

n = 500,no = 274.3

β0 Bias -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
SD 0.130 0.181 0.183 0.183 0.162 0.160 0.181 0.160 0.158 0.160 0.160
MSD 0.132 0.179 0.180 0.180 0.160 0.159 0.179 0.159 0.158 0.159 0.159
CP 0.96 0.94 0.94 0.94 0.95 0.95 0.94 0.96 0.96 0.95 0.95

βZ Bias 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SD 0.096 0.131 0.133 0.133 0.132 0.101 0.131 0.130 0.101 0.098 0.098
MSD 0.093 0.128 0.130 0.130 0.129 0.097 0.128 0.127 0.097 0.095 0.095
CP 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

βX Bias 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
SD 0.183 0.248 0.250 0.250 0.250 0.251 0.248 0.248 0.248 0.251 0.250
MSD 0.184 0.250 0.252 0.252 0.252 0.252 0.250 0.249 0.249 0.252 0.252
CP 0.96 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95

(α0, αZ , αY ) = (0.2, 0.3, log 2)(MAR)
n = 100,no = 61.9

β0 Bias -0.03 0.24 -0.02 0.24 -0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02
SD 0.327 0.430 0.435 0.438 0.392 0.393 0.430 0.387 0.386 0.388 0.386
MSD 0.304 0.388 0.390 0.390 0.353 0.351 0.388 0.351 0.349 0.353 0.351
CP 0.94 0.87 0.95 0.86 0.95 0.94 0.95 0.95 0.95 0.95 0.95

βZ Bias 0.01 -0.03 0.01 -0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SD 0.217 0.299 0.301 0.307 0.301 0.238 0.299 0.295 0.235 0.223 0.222
MSD 0.217 0.285 0.284 0.282 0.278 0.221 0.285 0.276 0.223 0.222 0.222
CP 0.97 0.96 0.96 0.94 0.95 0.95 0.97 0.96 0.97 0.97 0.97

βX Bias 0.07 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.07 0.06
SD 0.444 0.584 0.587 0.591 0.590 0.590 0.584 0.584 0.584 0.590 0.588
MSD 0.422 0.547 0.549 0.550 0.549 0.548 0.547 0.545 0.544 0.552 0.549
CP 0.95 0.94 0.94 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94

n = 500,no = 310.3

β0 Bias -0.01 0.25 -0.01 0.25 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
SD 0.130 0.167 0.167 0.168 0.147 0.145 0.167 0.146 0.145 0.145 0.145
MSD 0.132 0.166 0.166 0.166 0.150 0.150 0.166 0.150 0.149 0.150 0.150
CP 0.96 0.66 0.95 0.66 0.95 0.96 0.95 0.95 0.95 0.96 0.96

βZ Bias 0.01 -0.04 0.01 -0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SD 0.096 0.127 0.129 0.129 0.127 0.100 0.127 0.125 0.100 0.098 0.098
MSD 0.093 0.119 0.120 0.121 0.119 0.095 0.119 0.117 0.095 0.094 0.094
CP 0.94 0.93 0.94 0.92 0.94 0.93 0.94 0.93 0.94 0.94 0.94

βX Bias 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
SD 0.183 0.233 0.233 0.234 0.233 0.233 0.233 0.233 0.233 0.233 0.233
MSD 0.184 0.234 0.235 0.236 0.235 0.235 0.234 0.234 0.234 0.235 0.235
CP 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.95
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Table 3. Simulation results for the linear model. The parameter (β0, βZ , βX)

being estimated in the classical linear model E(Y |Z, X) = β0 + βZZ +

βXX , is (−1, 0.5, 0.5); the probability of observing X is P (R = 1|Z, Y ) =

logit−1(α0+αZZ+αY Y ). Sample bias (Bias), which is the difference between

the sample mean and the true values, simulation standard deviation (SD),

the mean of estimated standard error (MSD), and the proportion of the

95 percent confidence interval containing the true parameter (CP) over 500

replicates are given. The sample size is n, and no is the average of the

number of observed records in 500 replicates.

Full CC IPWt IPW0 IPW1 IPW2 IPWeff Impu

(α0, αZ , αY ) = (0, log 2, 0)(MCAR)
n = 100, no = 54.4

β0 Bias 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02
SD 0.177 0.245 0.247 0.247 0.225 0.209 0.210 0.209
MSD 0.175 0.243 0.235 0.235 0.215 0.195 0.195 0.195
CP 0.94 0.94 0.92 0.92 0.93 0.92 0.91 0.92

βZ Bias -0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01
SD 0.199 0.261 0.261 0.260 0.260 0.210 0.207 0.207
MSD 0.202 0.269 0.261 0.261 0.259 0.204 0.205 0.206
CP 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94

βX Bias -0.01 -0.03 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02
SD 0.202 0.267 0.271 0.272 0.275 0.281 0.282 0.278
MSD 0.202 0.266 0.261 0.260 0.261 0.261 0.258 0.259
CP 0.95 0.95 0.94 0.94 0.94 0.93 0.92 0.93

n = 500,no = 291.3

β0 Bias -0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.01 -0.01
SD 0.075 0.108 0.108 0.108 0.099 0.089 0.088 0.088
MSD 0.077 0.107 0.107 0.107 0.098 0.088 0.087 0.087
CP 0.95 0.96 0.96 0.96 0.96 0.94 0.95 0.95

βZ Bias -0.00 -0.01 -0.01 -0.01 -0.01 -0.00 -0.00 -0.00
SD 0.087 0.117 0.117 0.117 0.116 0.088 0.088 0.088
MSD 0.089 0.119 0.118 0.118 0.117 0.091 0.091 0.091
CP 0.97 0.96 0.95 0.95 0.95 0.96 0.96 0.96

βX Bias 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01
SD 0.094 0.123 0.124 0.124 0.124 0.124 0.122 0.122
MSD 0.089 0.117 0.118 0.118 0.118 0.118 0.115 0.115
CP 0.94 0.94 0.95 0.95 0.95 0.94 0.94 0.94

(α0, αZ , αY ) = (0, log 2, 0.2)(MAR)
n = 100,no = 55.8

β0 Bias 0.01 0.13 0.03 0.13 0.03 0.03 0.02 0.02
SD 0.177 0.253 0.263 0.255 0.235 0.215 0.211 0.205
MSD 0.175 0.254 0.245 0.242 0.221 0.197 0.196 0.197
CP 0.94 0.92 0.92 0.90 0.92 0.92 0.93 0.93

βZ Bias -0.00 -0.04 -0.00 -0.04 -0.01 -0.01 -0.00 -0.00
SD 0.199 0.271 0.277 0.272 0.274 0.212 0.209 0.209
MSD 0.202 0.276 0.270 0.267 0.267 0.206 0.207 0.207
CP 0.95 0.95 0.95 0.95 0.94 0.93 0.95 0.95

βX Bias -0.01 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02 -0.02
SD 0.202 0.273 0.285 0.281 0.291 0.297 0.296 0.284
MSD 0.202 0.272 0.270 0.267 0.269 0.268 0.264 0.266
CP 0.95 0.94 0.93 0.93 0.93 0.91 0.91 0.93

n = 500,no = 278.9

β0 Bias -0.00 0.10 -0.00 0.10 -0.00 -0.00 -0.00 -0.00
SD 0.075 0.110 0.114 0.111 0.103 0.091 0.087 0.087
MSD 0.077 0.111 0.113 0.111 0.102 0.091 0.088 0.087
CP 0.95 0.85 0.94 0.84 0.95 0.95 0.95 0.95

βZ Bias -0.00 -0.04 -0.00 -0.04 -0.00 -0.00 -0.00 -0.00
SD 0.087 0.120 0.122 0.120 0.120 0.090 0.089 0.089
MSD 0.089 0.121 0.123 0.120 0.121 0.092 0.092 0.092
CP 0.97 0.95 0.95 0.95 0.95 0.96 0.96 0.96

βX Bias 0.00 -0.00 0.01 -0.00 0.01 0.01 0.01 0.01
SD 0.094 0.123 0.127 0.125 0.129 0.129 0.123 0.122
MSD 0.089 0.119 0.123 0.120 0.123 0.123 0.119 0.119
CP 0.94 0.95 0.96 0.95 0.96 0.95 0.95 0.95
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In assessing the effect of over-specification of the observation models, the

estimates using the most over-fitted models (IPW2) overall show smaller variance

than those using the second most over-fitted models (IPW1), which in turn show

smaller variances than the estimates using the correctly specified models (IPW0),

or the estimates using the true model assuming that it is known (IPWt). Note

that under MCAR, IPW0 gives valid estimates, and is as efficient as the IPWt,

consistent with Result 4 in Section 3.4. However, for some cases with n = 100,

with small observation probability (e.g., α0 = −1 for the logistic model, binary

Z, MCAR case, not shown in the table), the estimates from more complicated

observation models are unstable due to non-convergence problems. This echoes

the speculation of a referee that the benefit of the over-fitted observation models

may not be present when the estimates of the observation model are unstable for

finite sample sizes.

The imputation estimate generally has no bigger variance than all the IPW

estimates. Note that when all variables are categorical, the imputation estimate

(Impu) and the IPW2 estimate become identical. And the Impu is the same

as the improved augmented IPW estimates (IPWeff), consistent with Results 2

and 3 in Section 3.3. When Z is continuous, the imputation estimates generally

have smaller variances than the IPW estimates. These trends are notable in the

estimates for β0 and βZ , but not for βX , in which case, the efficiencies of the two

approaches are very similar.

Note that for logistic models under MCAR, the conditional method using

the true π(Z) reduces to the complete case method. The tables show that the

conditional estimates (Cont) have smaller variances than the IPWt, consistent

with Result 5 in Section 3.5.

The second half of the Tables 1, 2 and 3 show the results under MAR for

logistic models with binary Z, continuous Z, and for linear models, respectively.

First, note that under MAR, the CC estimates and the IPW0 estimates using

the under-specified observation model are biased. Other than these, the tables

show similar results as in the MCAR case, confirming the theoretical findings

shown in Results 2-5. Although we do not have analytic comparison of efficiencies

between the conditional and the IPW estimators when π(Y,Z) is estimated,

comparisons between Con1 and IPW1, Con2 and IPW2, the conditional and the

IPW estimates that use the same estimated π(Y,Z), suggest that the conditional

estimates have comparable, or smaller, variances than the corresponding IPW

estimates.

5. Analysis of Data from a Stroke Study

The Northern Manhattan Stroke Study (NOMASS) is a prospective study

whose main goal is to identify the risk factors for stroke (Sacco, Boden-Albala,
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Gan, Chen, Kargman, Shea, Paik and Hauser (1998)). We analyzed two years

of follow-up data for 3, 202 subjects who were stroke-free at the beginning of

follow-up. The outcome of the analysis is an indicator of stroke or stroke-related

death during the first two years. Fifty seven subjects had a positive outcome.

Covariates included hypertension (HTN, 74% ), diabetes (22%), moderate alco-

hol drinking (MALCOHOL, 33%), smoking status (non-smoker (47%), former

smoker (38%) and current smoker (15%)), age (cut off at 65, 65% older than 65),

gender (37% male) , race (white 21% , black 25%, Hispanic 54%) and education

(45% completed high school). Another important covariate, abnormal left ven-

tricular hypertrophy (ABNORMLV) was observed only for 2, 055 subjects, and

was missing for 1,147 subjects.

We fitted logistic models handling missing covariates by the IPW, imputation

and conditional approaches. For the probability of observing ABNORMLV, we

used logistic regression models. Also, the imputation models for ABNORMLV

were specified as logistic models. As one of the covariates of the model for the

probability of observation, we used the stroke indicator, allowing the case of

MAR.

Table 4 shows the estimates and standard errors (SE) of auxiliary mod-

els, namely, the observation models and imputation models. In the observation

model, we found that the subjects with stroke or stroke death are more likely

to have missing ABNORMLV values, indicating the data are missing at random,

rather than missing completely at random. The estimates from the two nested

observation models are similar. Model R2 represents an over-fitted model. For

imputation models, gender, age, race, hypertension, and diabetes are strong pre-

dictors of ABNORMLV. Model X2 has smoking variables as additional covariates,

but the effect of smoking is weak. Model X2 represents an over-fitted imputation

model.

Table 5 lists the estimates from the complete case analysis (CC), the inverse

probability weighting estimates using the estimated probability of observation

from model R1 (IPW1) and model R2 (IPW2), the imputation estimates using

imputation model X1 (Impu1) and model X2 (Impu2), and the improved aug-

mented IPW (IPWeff). For the improved augmented IPW estimate, we used the

estimated probability of observation from model R1 and the imputation model

X1. Various models yielded qualitatively similar results, except that the age vari-

able is significant under the imputation methods and the improved augmented

IPW (IPWeff), and is nonsignificant under other methods. In addition, the im-

putation estimates and IPWeff reveal a positive effect of hypertension and the

diminished risk of race (black). For all models, the odds of having a stroke

within two years among diabetics is more than 2.4 times than for those without

diabetes. The results also show that smoking (former smoker or current smoker)
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and old age are risk factors for stroke, while higher education and moderate

alcohol drinking are moderate protective factors for stroke.

Table 4. Simulation results for the logistic model, binary Z. Parame-

ter (β0, βZ , βX) being estimated in the logistic regression model P (Y =

1|Z, X) = logit−1(β0 +βZZ +βXX) is (−0.5, log 2, log 2); Z is a binary vari-

able with probability 0.5; the probability of observing X is P (R = 1|Z, Y ) =

logit−1(α0 + αZZ + αY Y ). Sample bias (Bias), which is the difference be-

tween the sample mean and the true values, simulation standard deviation

(SD), the mean of estimated standard error (MSD), and the proportion of

the 95 percent confidence interval containing the true parameter (CP) over

500 replicates are given. The sample size is n, and no is the average of the

number of observed records in 500 replicates.

Probability of observation model Imputation model

Model R1 Model R2 Model X1 Model X2

Biasimate SE Estimate SE Estimate SE Estimate SE

Intercept 0.521 0.151 0.228 0.181 -1.747 0.165 -1.783 0.173
Male 0.223 0.083 0.217 0.083 0.601 0.097 0.588 0.100
Age65 -0.526 0.123 -0.516 0.124 0.323 0.101 0.323 0.102
Black 0.065 0.135 0.097 0.137 0.520 0.145 0.520 0.146
Hisp 0.421 0.121 0.564 0.134 -0.064 0.127 -0.057 0.128
Hedu 0.254 0.090
MALCOHOL 0.823 0.169 0.828 0.170
Smoker1 0.095 0.159 0.086 0.160 0.075 0.106
Smoker2 -0.440 0.171 -0.431 0.171 0.064 0.146
HTN 0.102 0.089 0.798 0.118 0.799 0.118
Diabetes 0.076 0.093 0.320 0.113 0.316 0.113
Stroke -0.559 0.273 -0.566 0.275 0.683 0.406 0.676 0.407
Age65*Smoker1 0.001 0.186 0.010 0.186
Age65*Smoker2 0.378 0.223 0.369 0.223
Black*MALCOHOL -0.760 0.229 -0.778 0.230
Hisp*MALCOHOL -0.582 0.208 -0.596 0.209

In terms of precision, the imputation estimate has smaller standard errors

than the IPW estimates. The standard errors of the imputation and the improved

augmented IPW (IPWeff) estimate are similar. Using the same specified prob-

ability of observation model, the conditional estimates generally show smaller

standard errors than the IPW estimates. Note that Model R1 for the probability

of observation is nested in Model R2, but since the additional terms in model

R2 involve only the covariates and not the outcome of the main analysis, the

efficiency of IPW2 is not improved over IPW1. The imputation estimates from

the two imputation models are quite similar.

The results from this data analysis are mostly consistent with the asymptotic

results in Section 3. Although the estimators using the over-fitted missingness
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models have smaller variances asymptotically for the IPW methods, the example
does not demonstrate an advantage of IPW2 over IPW1. This is possibly due to
small cell counts in some variables.

Table 5. Estimated coefficients and standard errors for the probability of
having a stroke within two years of follow-up, logit(µit) = β0 + β1Malei +
β2Age65i + β3Blacki + β4Hispi + β5Hedui + β6HTNi + β7Diabetesi +
β8Malcoholi + β9Smoker1i + β10Smoker2i + β11Abnormlvi. In each cell,
the first row is the point estimate, the second row is the standard error; *
indicates significant at 0.05 level.

param CC IPW1 IPW2 Con1 Con2 Impu1 Impu2 IPWeff

Intercept -6.007* -5.550* -5.486* -5.777* -5.736* -5.567* -5.563* -5.542*
0.956 1.116 1.118 1.102 1.098 0.709 0.708 0.711

Male -0.229 -0.317 -0.342 -0.258 -0.257 0.002 0.004 0.020
0.426 0.407 0.409 0.399 0.399 0.308 0.308 0.308

Age65 0.783 0.862 0.873 0.837 0.836 1.226* 1.227* 1.238*
0.482 0.498 0.500 0.491 0.490 0.426 0.426 0.423

Black 0.545 0.429 0.389 0.572 0.568 -0.149 -0.148 -0.130
0.626 0.635 0.641 0.622 0.622 0.389 0.389 0.389

Hisp 0.118 -0.110 -0.167 0.091 0.072 -0.256 -0.257 -0.261
0.672 0.734 0.748 0.708 0.707 0.436 0.436 0.436

Hedu -0.042 -0.163 -0.205 -0.041 -0.075 -0.361 -0.362 -0.354
0.468 0.502 0.508 0.495 0.494 0.355 0.355 0.356

HTN -0.010 0.098 0.102 -0.008 -0.021 0.394 0.395 0.417
0.521 0.517 0.519 0.513 0.513 0.403 0.403 0.403

Diabetes 1.240* 1.140* 1.155* 1.238* 1.228* 0.883* 0.883* 0.897*
0.400 0.413 0.412 0.408 0.408 0.281 0.281 0.281

MALCOHOL -0.316 -0.225 -0.198 -0.355 -0.355 -0.531 -0.531 -0.540
0.459 0.442 0.445 0.450 0.450 0.339 0.339 0.336

Smoker1 0.419 0.413 0.405 0.406 0.406 0.123 0.118 0.120
0.461 0.482 0.483 0.476 0.475 0.329 0.329 0.329

Smoker2 0.891 0.842 0.820 0.913 0.913 0.467 0.463 0.473
0.556 0.548 0.544 0.553 0.552 0.399 0.399 0.400

ABNORMLV 0.729 0.599 0.580 0.730 0.731 0.696 0.690 0.574
0.409 0.406 0.405 0.406 0.406 0.404 0.403 0.411

Appendix. Derivation of Variance of IPW and Conditional Estimators

We show asymptotic variance formulas that are expressed differently from
the original references to facilitate comparisons.

A.1. Derivation of (2.8) when π(Y, Z) is estimated

When π(Y,Z) is not known, and a parametric model π(Y,Z;α), is assumed,
(β, α) can be obtained by solving

(

Sw(α, β)

U(α)

)

=

(

∑n
i=1

Ri

π(Yi,Zi;α)S(Yi|Xi, Zi;β)
∑n

i=1 U(Ri|Yi, Zi;α)

)

=

(

0

0

)

,
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where S(Yi|Xi, Zi;β) and U(Ri|Yi, Zi;α) are defined as in (2.1) and (2.2), respec-

tively. Let

I(β, α) =

(

− ∂
∂βT {Sw(α, β)} − ∂

∂αT {Sw(α, β)}
− ∂

∂βT {U(α)} − ∂
∂αT {U(α)}

)

,

Σw =

(

E{Sw(α, β)Sw(α, β)T } E{Sw(α, β)U(α)T }
E{U(α)S(β)T } E{U(α)U(α)T }

)

.

We have −(1/n)∂/∂βT {Sw(α, β)} p→ Iv, and −(1/n)∂/∂αT {Sw(α, β)} = (1/n)
∑n

i=1 RiS(Yi|Xi, Zi;β)∂/∂αT {π(Yi, Zi;α)}/{π(Yi, Zi;α)2} p→
EY Z [S(Yi|Zi;β)∂/∂αT {π(Yi, Zi;α)}/π(Yi, Zi;α)] = Ω12.

On the other hand, −(1/n)∂/∂β{U(α)} = 0, and −(1/n)∂/∂αT {U(α)} =

−(1/n)
∑n

i=1 ∂/∂αT {U(Ri|Yi, Zi;α)} p→
E
(

∂/∂α{π(Yi, Zi;α)}∂/∂αT {π(Yi, Zi;α)}/[π(Yi, Zi;α){1 − π(Yi, Zi;α)}]
)

= Iα.

Then

−
( 1

n

)

I(β, α)
p→
(

Iv Ω12

0 Iα

)

.

Also, since

E
{ 1

n
Sw(α, β)Sw(α, β)T

}

= E
[ Ri

π(Yi, Zi;α)2
S(Yi|Xi, Zi;β)ST

β (Yi|Xi, Zi)
]

= E
[ 1

π(Yi, Zi;α)
E{S(Yi|Xi, Zi;β)ST

β (Yi|Xi, Zi)|Yi, Zi}
]

= Ωw,

E
{ 1

n
Sw(α, β)U(α)T

}

= E
[ Ri

π(Yi, Zi;α)
S(Yi|Xi, Zi;β)U(Ri|Yi, Zi;α)T

]

= E
[

Sβ(Yi|Zi)
∂

∂αT

π(Yi, Zi;α)

π(Yi, Zi;α)

]

= Ω12,

and E[(1/n)E{U(α)U(α)T }] = E{U(Ri|Yi, Zi;α)U(Ri|Yi, Zi;α)T } = Iα, we have

Var
[ 1√

n
{Sw(α, β), U(α)}T

]

=
1

n
Σw =

(

Ωw Ω12

ΩT
12 Iα

)

.
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Then
√

n(β̂w −β, α̂−α)T has an asymptotic normal distribution with mean
0 and variance

(

Iv Ω12

0 Iα

)−1(
Ωw Ω12

ΩT
12 Iα

)(

Iv 0

ΩT
12 Iα

)−1

.

Since

(

Iv Ω12

0 Iα

)−1

=

(

I−1
v −I−1

v Ω12I
−1
α

0 I−1
α

)

,

it follows that the asymptotic variance of
√

n(β̂w − β) is

I−1
v E

[ 1

π(Y,Z;α)
S(Y |X,Z;β)S(Y |X,Z;β)T

]

I−1
v − I−1

v Ω12I
−1
α ΩT

12I
−1
v .

A.2. Derivation of variance of conditional estimator when π(Y, Z) is

known

The conditional likelihood given R = 1 is

Lc(β) =
n
∏

i=1

[

η(Xi, Zi;β)Yi{1 − η(Xi, Zi;β)}1−Yi

]Ri

,

where η(Xi, Zi;β) = E(Yi|Xi, Zi, Ri = 1;β).

The score function is

Sc(β) =

n
∑

i=1

RiWi{Yi − η(Xi, Zi;β)},

and the information matrix is

Ic = −E
[ 1

n

∂

∂β
{Sc(β)}

]

= E
(

Wiη(Xi, Zi;β){1 − η(Xi, Zi;β)}
[

π(1, Zi)µ(Xi, Zi;β) + π(0, Zi){1 − µ(Xi, Zi;β)}
])

= E
[

Wi
π(1, Zi)µ(Xi, Zi;β)π(0, Zi){1 − µ(Xi, Zi;β)}

π(1, Zi)µ(Xi, Zi;β) + π(0, Zi){1 − µ(Xi, Zi;β)}W T
i

]

.

Thus
√

nβ̂c has the asymptotic variance I−1
c .

A.3. Derivation of (2.10) when π(Y, Z) is estimated

As in the weighting method, when π(Y,Z) is not known and a parametric
model π(Y,Z;α) is assumed, (β, α) can be obtained by solving

(

Sc(α, β)

U(α)

)

=

(∑n
i=1 RiWi{Yi − η(Xi, Zi;β, α)}
∑n

i=1 U(Ri|Yi, Zi;α)

)

=

(

0

0

)

.
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Let

I(β, α) =

(

− ∂
∂β

{Sc(α, β)} − ∂
∂α

{Sc(α, β)}
− ∂

∂β
{U(α)} − ∂

∂α
{U(α)}

)

,

Σc =

(

E{Sc(α, β)Sc(α, β)T } E{Sc(α, β)U(α)T }
E{U(α)Sc(α, β)T } E{U(α)U(α)T }

)

.

Since −(1/n)∂/∂β{Sc(α, β)} p→ Ic,

−
( 1

n

) ∂

∂α
{Sc(α, β)}

=
1

n

n
∑

i=1

RiWi
∂

∂α
{η(Xi, Z;β, α)}

p→ E
[

RiWi
∂

∂α
{η(Xi, Z;β, α)}

]

= E
(

Wi
π(1, Zi;α)π(0, Zi;α)µ(Xi, Zi;β){1 − µ(Xi, Zi;β)}

π(1, Zi;α)µ(Xi, Zi;β) + π(0, Zi;α){1 − µ(Xi, Zi;β)}
[

∂
∂αT {π(1, Zi;α)}

π(1, Zi;α)
−

∂
∂αT {π(0, Zi;α)}

π(0, Zi;α)

])

= Ωc,

−(1/n)∂/∂β{U(α)} = 0, and −(1/n)∂/∂α{U(α)} p→ Iα, we have

−
( 1

n

)

I(β, α)
p→
(

Ic Ωc

0 Iα

)

.

Also, since E { (1/n)Sc(α, β)Sc(α, β)T } = Ic, E{(1/n)Sc(α, β)U(α)T } =

E[RiWi{Yi−η(Xi, Zi;β, α)}U(Ri|Yi, Zi;α)T ] = Ωc, and E[(1/n)E{U(α)U(α)T }]
= Iα, we have

Var
[ 1√

n
{Sc(α, β), U(α)}T

]

=
1

(n)Σc
=

(

Ic Ωc

ΩT
c Iα

)

.

Then
√

n(β̂c − β, α̂ − α)T has asymptotic variance

(

Ic Ωc

0 Iα

)−1(
Ic Ωc

ΩT
c Iα

)(

Ic 0

ΩT
c Iα

)−1

.

Since

(

Ic Ωc

0 Iα

)−1

=

(

I−1
c −I−1

c ΩcI
−1
α

0 I−1
α

)

,

it follows that the asymptotic variance of
√

nβ̂c is I−1
c − I−1

c ΩcI
−1
α ΩT

c I−1
c .
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