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Abstract: A flexible nonparametric regression model is considered in which the re-

sponse depends linearly on some covariates, with regression coefficients as additive

functions of other covariates. Polynomial spline estimators are proposed for the

unknown coefficient functions, with optimal univariate mean square convergence

rate under geometric mixing condition. Consistent model selection method is also

proposed based on a nonparametric Bayes Information Criterion (BIC). Simula-

tions and data examples demonstrate that the polynomial spline estimators are

computationally efficient and as accurate as existing local polynomial estimators.
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1. Introduction

Parametric regression models are based on the assumption that a regression

function follows a pre-determined parametric form with finitely many unknown

parameters. A wrong model can lead to excessive estimation biases and erroneous

inferences. In contrast, nonparametric models impose less stringent assumptions

on the regression function. General nonparametric models, however, need large

sample sizes to obtain reasonable estimators when the predictors are high dimen-

sional. Much effort has been made to alleviate the “curse of dimensionality” by

imposing appropriate structure on the regression function.

Of special importance is the varying coefficient model (Hastie and Tibshirani

(1993)), whose regression function depends linearly on some regressors, with coef-

ficients as smooth functions of other predictor variables, called tuning variables.

A special type of varying coefficient model is called the functional coefficient

model by Chen and Tsay (1993b). Here all tuning variables are the same and

univariate. It was studied in the time series context by Cai, Fan and Yao (2000)

and Huang and Shen (2004). Xue and Yang (2006) extended the functional co-

efficient model to the case when the tuning variable is multivariate, with additive

structure on regression coefficients to avoid the “curse of dimensionality”. The
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regression function of the new additive coefficient model is

m (X,T) =

d1∑

l=1

αl (X) Tl, αl (X) = αl0 +

d2∑

s=1

αls (Xs) , (1.1)

in which the predictor vector (X,T) ∈ Rd2 ×Rd1 , with X = (X1, . . . , Xd2
)T , T =

(T1, . . . , Td1
)T . This additive coefficient model includes as special cases the vary-

ing/functional coefficient models, as well as the additive model (Chen and Tsay

(1993a) and Hastie and Tibshirani (1990)) and the linear regression model, see

Xue and Yang (2006) for asymptotic distributions of local polynomial marginal

integration estimators of the unknown coefficients. The parameters {αl0}d1

l=1

are estimated at the parametric rate 1/
√

n, and the nonparametric functions

{αls (xs)}d1,d2

l=1,s=1 are estimated at the univariate smoothing rate. Due to an in-

tegration step and its ‘local’ nature, the kernel method in Xue and Yang (2006)

is computationally expensive. Based on a sample of size n, to estimate the co-

efficient functions {αl (x)}d1

l=1 in (1.1) at any fixed point x, a total of (d2 + 1) n

least squares estimations have to be done. So the computational burden increases

dramatically as the sample size n and the dimension d2 of the tuning variables

increase.

In this paper, we propose a faster polynomial spline estimator for (1.1).

In contrast to a local polynomial, a polynomial spline requires global smoothing.

One solves only one least squares estimation to estimate all the components in the

coefficient functions, regardless of the sample size n and the dimension of the tun-

ing variable d2. So the computation is substantially reduced. As an alternative

to using local polynomials, polynomial splines have been used to estimate various

models, for example, the additive model (Stone (1985)), the functional ANOVA

model (Huang (1998a,b)), the varying coefficient model (Huang, Wu and Zhou

(2002)), and the additive model for weakly dependent data (Huang and Yang

(2004)). We have established the polynomial spline estimators’ rate of conver-

gence under geometric mixing conditions. A major innovation is the use of an ap-

proximation space with possibly unbounded basis. Huang, Wu and Zhou (2002),

for instance, imposed the assumption that T =(T1, . . . , Td1
)T in (1.1) has a com-

pactly supported distribution to make their basis bounded. Our method, in

contrast, imposes only mild moment conditions on T.

The paper is organized as follows. Section 2 discusses the identification

issue for model (1.1). Section 3 presents the polynomial spline estimators,

their L2 consistency and a model selection procedure based on Bayes Informa-

tion Criterion (BIC). These estimation and model selection procedures adapt

automatically to the varying coefficient model (Hastie and Tibshirani (1993)),

the functional coefficient model (Chen and Tsay (1993b)), the additive model
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(Hastie and Tibshirani (1990) and Chen and Tsay (1993a)), and the linear re-
gression model, a feature not shared by any kernel type estimators. Section 4
applies the methods to simulated and empirical examples. Technical assumptions

and proofs are given in the Appendix.

2. The Model

Let {(Yi,Xi,Ti)}n
i=1 be a sequence of strictly stationary observations, with

univariate response Yi, d2 and d1-variate predictors Xi and Ti. With unknown

conditional mean and variance functions m(Xi,Ti) = E(Yi|Xi,Ti), σ
2(Xi,Ti) =

Var (Yi|Xi,Ti), the observations satisfy

Yi = m (Xi,Ti) + σ (Xi,Ti) εi. (2.1)

The errors {εi}n
i=1 are i.i.d. with E (εi|Xi,Ti) = 0, E

(
ε2
i |Xi,Ti

)
= 1, and εi

independent of the σ-field Fi = σ {(Xj,Tj) , j ≤ i} for i = 1, . . . , n. The variables
(Xi,Ti) can consist of either exogenous variables or lagged values of Yi. For the
additive coefficient model, the regression function m takes the form in (1.1), and

satisfies the identification conditions that

E {αls (Xis)} = 0, 1 ≤ l ≤ d1, 1 ≤ s ≤ d2. (2.2)

The conditional variance function σ2 (x, t) is assumed to be continuous and

bounded. As in most works on nonparametric smoothing, estimation of the func-
tions {αls (xs)}d1,d2

l=1,s=1 is conducted on compact sets. Without lose of generality,

let the compact set be χ = [0, 1]d2 .
Following Stone (1985, p.693), the space of s-centered square integrable func-

tions on [0, 1] is

H0
s =

{
α : E {α (Xs)} = 0, E

{
α2 (Xs)

}
< +∞

}
, 1 ≤ s ≤ d2.

Next define the model space M, a collection of functions on χ × Rd1 , as

M =
{

m (x, t) =

d1∑

l=1

αl (x) tl; αl (x) = αl0 +

d2∑

s=1

αls(xs);αls ∈ H0
s

}
,

in which {αl0}d1

l=1 are finite constants. The constraints that E {αls (Xs)} = 0, 1 ≤
s ≤ d2, ensure unique additive representation of αl, but are not necessary for the
definition of space M.

In what follows, denote by En the empirical expectation, Enϕ =
∑n

i=1 ϕ(Xi,
Ti)/n. We introduce two inner products on M. For functions m1,m2 ∈ M, the
theoretical and empirical inner products are defined, respectively, as 〈m1,m2〉 =
E {m1 (X,T) m2 (X,T)} and 〈m1,m2〉n = En {m1 (X,T)m2 (X,T)}. The cor-

responding induced norms are ‖m1‖2
2 =Em2

1(X,T) and ‖m1‖2
2,n =Enm2

1(X,T).
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The model space M is called theoretically (empirically) identifiable if, for any

m ∈ M, ‖m‖2 = 0 (‖m‖2,n = 0) implies that m = 0 a.s..

Lemma 1. Under assumptions (C1) and (C2) in the Appendix, there exists a

constant C > 0 such that

‖m‖2
2 ≥ C

{ d1∑

l=1

(
α2

l0 +

d2∑

s=1

‖αls‖2
2

)}
, ∀ m =

d1∑

l=1

(
αl0 +

d2∑

s=1

αls

)
tl ∈ M.

Hence for any m ∈ M, ‖m‖2 = 0 implies αl0 = 0, αls = 0 a.s., for all 1 ≤ l ≤
d1, 1 ≤ s ≤ d2. Consequently the model space M is theoretically identifiable.

Proof. Let Al(X) = αl0 +
∑d2

s=1 αls(Xs) and A(X) = (A1(X), . . . , Ad1
(X))T .

Under (C2),

‖m‖2
2 = E

[ d1∑

l=1

{
αl0 +

d2∑

s=1

αls(Xs)
}

Tl

]2
= E

[
A(X)T

TTTA(X)
]

≥ c3E
[
A(X)T

A(X)
]

= c3E
[ d1∑

l=1

{
αl0 +

d2∑

s=1

αls(Xs)
}2]

which, by (2.2), is c3[
∑d1

l=1 α2
l0 +

∑d1

l=1 E{∑d2

s=1 αls(Xs)}2]. Applying Lemma 1

of Stone (1985)

‖m‖2
2 ≥ c3

[
d1∑

l=1

α2
l0 +

{
1 − δ

2

}d2−1 d1∑

l=1

d2∑

s=1

Eα2
ls(Xs)

]
,

where δ = (1 − c1/c2)
1/2, with 0 < c1 ≤ c2 as specified in (C1). By taking

C = c3{(1 − δ)/2}d2−1, the first part is proved. To show identifiability, notice

that for any m =
∑d1

l=1(αl0 +
∑d2

s=1 αls)tl ∈ M, with ‖m‖2 = 0, we have

0 = E
[ d1∑

l=1

{
αl0 +

d2∑

s=1

αls(Xs)
}

Tl

]2
≥ C

[ d1∑

l=1

α2
l0 +

d1∑

l=1

d2∑

s=1

E
{
α2

ls(Xs)
} ]

,

which entails that al0 = 0 and αls(Xs) = 0 a.s. for all 1 ≤ l ≤ d1, 1 ≤ s ≤ d2, or

m = 0 a.s..

3. Polynomial Spline Estimation

3.1. The estimators

In this paper, denote by Cp ([0, 1]) the space of p-times continuously differen-

tiable functions. For each tuning variable direction, s = 1, . . . , d2, a knot sequence

ks,n with Nn interior knots is ks,n = {0=xs,0 <xs,1 < · · ·<xs,Nn <xs,Nn+1 =1} .
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For an integer p ≥ 1, define ϕs = ϕp([0, 1] , ks,n), a subspace of Cp−1 ([0, 1])

consisting of functions that are polynomial of degree p (or less) on the intervals
[xs,i, xs,i+1), i = 0, . . . , Nn − 1, and [xs,Nn, xs,Nn+1]. Functions in ϕs are called

polynomial splines, piecewise polynomials connected smoothly on the interior
knots. A polynomial spline with degree p = 1 is a continuous piecewise linear

function, etc. The space ϕs is determined by the polynomial degree p and the
knot sequence ks,n. Let hs = hs,n = maxi=0,...,Nn |xs,i+1 − xs,i|, called the mesh

size of ks,n, and define h = maxs=0,...,d2
hs, the overall smoothness measure.

Lemma 2. For 1 ≤ s ≤ d2, let ϕ0
s = {gs : gs ∈ ϕs, Egs (Xs) = 0} be the space

of centered polynomial splines. There exists a constant c > 0 so that, for any

αs ∈ H0
s ∩Cp+1([0, 1]), there exists a gs ∈ ϕ0

s with ‖αs−gs‖∞ ≤ c‖α(p+1)
s ‖∞hp+1

s .

Proof. According to de Boor (2001, p.149), there exists a constant c > 0 and

a spline function g∗s ∈ ϕs, such that ‖αs − g∗s‖∞ ≤ c‖α(p+1)
s ‖∞hp+1

s . Note that

|Eg∗s | ≤ |E(g∗s − αs)| + |Eαs| ≤ ‖g∗s − αs‖∞. Thus for gs = g∗s − Eg∗s ∈ ϕ0
s, one

has

‖αs − gs‖∞ ≤ ‖αs − g∗s‖∞ + Eg∗s ≤ 2c‖α(p+1)
s ‖∞hp+1

s .

Lemma 2 entails that if the functions {αls (xs)}d1,d2

l=1,s=1 in (1.1) are smooth,

they are approximated well by centered splines
{
gls (xs) ∈ ϕ0

s

}d1,d2

l=1,s=1
. As the

definition of ϕ0
s depends on the unknown distribution of Xs, the empirically

defined space ϕ0,n
s = {gs : gs ∈ ϕs, En(gls) = 0} is used. Intuitively, m ∈ M is

approximated by some function from the approximate space

Mn =
{

mn (x, t) =

d1∑

l=1

gl (x) tl; gl (x) = αl0 +

d2∑

s=1

gls(xs); gls ∈ ϕ0,n
s

}
.

Given observations {(Yi,Xi,Ti)}n
i=1 from (2.1), the estimator of the un-

known regression function m is defined as its ‘best’ approximation from Mn,

m̂ = argmin
mn∈Mn

n∑

i=1

{Yi − mn (Xi,Ti)}2 . (3.1)

To be precise, write Jn = Nn + p, and let {ws,0, ws,1, . . . , ws,Jn} be a basis

of the spline space ϕs, for 1 ≤ s ≤ d2. For example, the truncated power basis is

used in the implementation
{

1, xs, . . . , x
p
s, (xs − xs,1)

p
+ , . . . , (xs − xs,Nn)p+

}
,

in which (x)p
+ = (x+)p. Let w = {1, w1,1, . . . , w1,Jn , . . . , wd2,1, . . . , wd2,Jn

}, then

{wt1, . . . ,wtd1
} is a Rn = d1 {d2Jn + 1} dimensional basis of Mn, and (3.1)
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amounts to

m̂ (x, t) =

d1∑

l=1

{
ĉl0 +

d2∑

s=1

Jn∑

j=1

ĉls,jws,j (xs)
}
tl, (3.2)

in which the coefficients {ĉl0, ĉls,j , 1 ≤ l ≤ d1, 1 ≤ s ≤ d2, 1 ≤ j ≤ Jn} minimize

the sum of squares

n∑

i=1

(
Yi −

d1∑

l=1

{
cl0 +

d2∑

s=1

Jn∑

j=1

cls,jws,j (Xis)
}
Til

)2
(3.3)

with respect to {cl0, cls,j, 1 ≤ l ≤ d1, 1 ≤ s ≤ d2, 1 ≤ j ≤ Jn}. Note that Lemma

A.5 entails that, with probability approaching one, the sum of squares in (3.3) has

a unique minimizer. For 1 ≤ l ≤ d1, 1 ≤ s ≤ d2, let α∗
ls(xs) =

∑Jn

j=1 ĉls,jws,j(xs).

Then the estimators of {αl0}d1

l=1 and {αls (xs)}d1,d2

l=1,s=1 in (1.1) are

α̂l0 = ĉl0 +

d2∑

s=1

Enα∗
ls, 1 ≤ l ≤ d1,

α̂ls(xs) = α∗
ls(xs) − Enα∗

ls 1 ≤ l ≤ d1, 1 ≤ s ≤ d2, (3.4)

where {α̂ls(xs)}d1,d2

l=1,s=1 are empirically centered to consistently estimate the theo-

retically centered function components in (1.1). These estimators are determined

by the knot sequences {ks,n}d2

s=1 and the polynomial degree p, which relates to

the smoothness of the regression function. We refer to an estimator by its degree

p. For example, a linear spline fit corresponds to p = 1.

Theorem 1. Under assumptions (C1)−(C5) in the Appendix, if αls ∈ Cp+1

([0, 1]), for 1 ≤ l ≤ d1, 1 ≤ s ≤ d2, one has

‖m̂ − m‖2 = Op

(
hp+1 + (nh)−

1
2

)
,

max
1≤l≤d1

|α̂l0 − αl0| + max
1≤l≤d1,1≤s≤d2

‖α̂ls − αls‖2 = Op

(
hp+1 + (nh)−

1
2

)
.

Theorem 1 has the optimal order of h as n−1/(2p+3), in which case ‖α̂ls − αls‖2

= Op

(
n−1/(2p+3)

)
, which is the same rate of mean square error as achieved by

the marginal integration estimators in Xue and Yang (2006).

3.2. Knot number selection

An appropriate selection of the knot sequence is important to efficiently

implement the proposed polynomial spline estimation method. Stone (1985)

found that the number of knots is more crucial than their location. We discuss
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an approach to select the number of interior knots Nn using the AIC criteria.

For knot location, we use either equally spaced knots or quantile knots (sample

quantiles with the same number of observations between any two adjacent knots).

According to Theorem 1, the optimal order of Nn is n1/(2p+3). Thus we

propose selecting the ‘optimal’ Nn, denoted N̂opt
n , from [0.5Nr,min (5Nr, T b)],

with Nr = n1/(2p+3) and Tb = {n/ (4d1) − 1} /d2 to ensure that the total number

of parameters in the least square estimation is less than n/4.

To be specific, we denote the estimator for the i-th response Yi by Ŷi (Nn) =

m̂ (Xi,Ti), for i = 1, . . . , n. Here m̂ depends on the knot sequence as given in

(3.2). Let qn = (1 + d2Nn) d1 be the total number of parameters in (3.3). Then

N̂opt
n is the one minimizing the AIC value

N̂opt
n = argmin

Nn∈[0.5Nr ,min(5Nr ,T b)]
AIC (Nn) , (3.5)

where AIC (Nn) = log (MSE) + 2qn/n, with MSE =
∑n

i=1{Yi − Ŷi(Nn)}2/n.

3.3. Model selection

For the full model (1.1), a natural question to ask is whether the functions

{αls (xs)}d1,d2

l=1,s=1 are all significant. A simpler model, found by setting some of

{αls (xs)}d1,d2

l=1,s=1 to zero, may perform as well as the full model. For 1 ≤ l ≤ d1,

let Sl denote the set of indices of the tuning variables which are significant in

the coefficient function of Tl, and S the collection of indices from all the sets

Sl. In particular, S for the full model is Sf = {Sf1, . . . , Sfd1
}, where Sfl ≡

{1, . . . , d2} , 1 ≤ l ≤ d1. For two indices S = {S1, . . . , Sd1
} , S′ =

{
S′

1, . . . , S
′
d1

}
,

we say that S ⊂ S ′ if and only if Sl ⊂ S′
l, for all 1 ≤ l ≤ d1 and Sl 6= S′

l,

for some l. The goal is to select the smallest sub-model, with indices S ⊂ Sf ,

which gives the same information as the full additive coefficient model. Following

Huang and Yang (2004), the Akaike Information Criterion (AIC) and the Bayes

Information Criterion (BIC) are considered.

For a submodel mS with indices S = {S1, . . . , Sd1
}, let Nn,S be the number

of interior knots used to estimate the model mS , and Jn,S = Nn,S + p. As in

the full model estimation, let {ĉl0, ĉls,j, 1 ≤ l ≤ d1, s ∈ Sl, 1 ≤ j ≤ Jn,S} be the

minimizer of the sum of squares

n∑

i=1

(
Yi −

d1∑

l=1

{
cl0 +

∑

s∈Sl

Jn,S∑

j=1

cls,jws,j (Xis)
}

Til

)2
. (3.6)

Define

m̂S (x, t) =

d1∑

l=1

{
ĉl0 +

∑

s∈Sl

Jn,S∑

j=1

ĉls,jws,j (xs)
}

tl. (3.7)
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Let Ŷi,s = m̂S (Xi,Ti),i = 1, . . . , n, MSES =
∑n

i=1

(
Yi − Ŷi,s

)2
/n, and qS =

∑d1

l=1 {1 + #(Sl) Jn,s}, the total number of parameters in (3.6). Then the sub-
model is selected with the smallest AIC (or BIC) values, defined as AICS =
log(MSES) + 2qS/n, BICS = log(MSES) + log(n)qS/n.

Let S0 and Ŝ be the index set of the true model and the selected model,
respectively. The outcome is defined as correct fitting, if Ŝ = S0; overfitting, if
S0 ⊂ Ŝ; and underfitting, if S0 6 ⊂Ŝ, that is, S0l 6 ⊂Ŝl, for some l. For either
overfitting or underfitting, we write Ŝ 6= S0.

Theorem 2. Under the same conditions as in Theorem 1, and Nn,S � Nn,S0
�

n1/(2p+3), the BIC is consistent: for any S 6= S0, limn→∞ P (BICS > BICS0
) = 1,

hence limn→∞ P (Ŝ = S0) = 1.

The condition that Nn,S � Nn,S0
is essential for the BIC to be consistent.

As a referee pointed out, the number of parameters qS depends on the number of
knots and the number of additive terms used in the model function. To ensure
BIC consistency, roughly the same sufficient number of knots should be used to
estimate the various models so that qS depends only on the number of functions
terms. In implementation, we have used the same number of interior knots N opt

n

(see (3.5), the optimal knot number for the full additive coefficient model) in the
estimation of all the submodels.

4. Examples

In this section, we first analyze two simulated data sets with i.i.d. and time
series set-ups, respectively. Both data sets have sample sizes n = 100, 250, 500
and 100 replications. Later the proposed methods are applied to an empirical
example: West German real GNP.

The performance of the function estimators is assessed by the averaged inte-
grated squared error (AISE). Denoting the estimator of αls in the i-th replication
as α̂i,ls, and {xm}ngrid

m=1 the grid points where the functions are evaluated, we take

ISE(α̂i,ls) =
1

ngrid

ngrid∑

m=1

{α̂i,ls(xm) − αls(xm)}2

and

AISE(α̂ls) =
1

100

100∑

i=1

ISE(α̂i,ls).

4.1. Simulated Example 1

The data are generated from the model

Y = {c1 + α11 (X1) + α12 (X2)}T1 + {c2 + α21 (X1) + α22 (X2)} T2 + ε,
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with c1 = 2, c2 = 1, α11 (x) = sin {2(4x − 2)}+2 exp
{
−2(x − 0.5)2

}
, α12 (x) = x,

α21 (x) = sin (x), and α22 (x) = 0. The vector X = (X1, X2)
T is uniformly dis-

tributed on [−π, π]2 independent of the standard bivariate normal T = (T1, T2)
T .

The error ε is a standard normal variable independent of (X,T).

The functions are estimated by using linear splines (p = 1), cubic splines (p =

3) and the marginal integration method of Xue and Yang (2006). For s = 1, 2, let

xi
s,min, xi

s,max denote the smallest and largest observation of the variable xs in the

i-th replication. Knots are placed evenly on the intervals [xi
s,min, x

i
s,max], with the

number of interior knots Nn selected by AIC as in Subsection 3.2. The functions

{αls}2,2
l=1,s=1 are estimated on a grid of equally-spaced points xm,m = 1, . . . , ngrid

with x1 = −0.975π, xngrid
= 0.975π, ngrid = 62.

Table 1 reports the means and standard errors (in the parentheses) of

{ĉl}l=1,2 and the AISEs of {α̂ls}s=1,2
l=1,2 for all the three fits. The spline fits are

generally comparable, with the cubic fit better than the linear fit for larger sample

sizes (n = 250, 500), the standard errors of the constant estimators. The AISEs of

the function estimators decrease as samples size increases, confirming Theorem 1.

The polynomial spline methods also perform better than the marginal integration

method. Figure 1 gives the plots of the 100 cubic spline fits for all sample sizes,

clearly illustrating the estimation improvements as sample size increases. Plots

d1−d4 of the typical estimated curves (whose ISE is the median of the 100 ISEs

from the replications) seem satisfactory for sample sizes as small as 100.

Table 1. Simulated Example 1: the means and standard errors (in parenthe-

ses) of ĉ1, ĉ2 and the AISEs of α̂11, α̂12, α̂21, α̂22 by two methods: marginal

integration and polynomial spline.

Integration fit c1 = 2 c2 = 1 α11 α12 α21 α22

n = 100 2.0029(0.0180) 0.9805(0.0134) 0.8339 0.4699 0.7948 0.4665

n = 250 2.0143(0.0081) 1.0056(0.0089) 0.4545 0.1324 0.3219 0.3741

n = 500 1.9994(0.0047) 0.9961(0.0042) 0.0657 0.0378 0.0629 0.0375

Spline fit p = 1

n = 100 2.0102(0.0122) 0.9896(0.0123) 0.1279 0.0629 0.0690 0.0558

n = 250 1.9997(0.0046) 0.9795(0.0044) 0.0648 0.0291 0.0328 0.0261

n = 500 1.9992(0.0023) 0.9988(0.0022) 0.0438 0.0165 0.0164 0.0152

Spline fit p = 3

n = 100 2.0026(0.0126) 0.9858(0.0124) 0.1699 0.0700 0.0659 0.0634

n = 250 1.9988(0.0046) 0.9810(0.0043) 0.0594 0.0320 0.0313 0.0285

n = 500 2.0003(0.0023) 0.9982(0.0022) 0.0387 0.0162 0.0156 0.0149

As mentioned earlier, the polynomial spline method enjoys great computa-

tional efficiency: it takes less than 20 seconds to run 100 simulations on a Pentium
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4 PC, regardless of sample sizes. In contrast, it takes marginal integration about

2 hours to run 100 simulations with n = 100; and about 20 hours with n = 500.
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Figure 1. Plots of the estimated coefficient functions in Example 1. (a1-

a4) are plots of the 100 estimated curves for α11(x) = sin(2(4x − 2)) +

2 exp(−2(x − 0.5)2), α12(x) = x, α21(x) = sin(x), and α22(x) = 0, for

n = 100. (b1−b4) and (c1−c4) are the same as (a1-a4), but for n = 250 and

n = 500 respectively. (d1−d4) are plots of the typical estimators; the solid

curve represents the true curve, the dotted curve is the typical estimated

curve for n = 100, the dot-dashed and dashed curves are for n = 250, 500

respectively.

For each replication, model selection is also conducted according to the cri-

teria proposed in Subsection 3.3 for polynomial splines with p = 1, 2, 3. The

model selection results are presented in Table 2, indexed as ‘Example 1’. The

BIC is rather accurate: more than 86% correct selection when the sample size is

as small as 100, and absolute correct selection when sample size increases to 250
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and 500, corroborating Theorem 2 on the consistency of BIC. AIC clearly tends
to over-fit and never under-fits.

Table 2. Simulation results of model selection using polynomial spline fits
with BIC and AIC. For each setup, the first, second and third columns give
the number of underfits, correct fits and overfits in 100 simulations.

n BIC AIC

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Example 1 100 3 94 3 0 86 14 4 95 1 0 89 11 4 95 1 0 88 12

250 0 100 0 0 100 0 0 100 0 0 90 10 0 89 11 0 90 10

500 0 100 0 0 100 0 0 100 0 0 91 9 0 93 7 0 92 8

Example 2 100 11 88 1 0 69 31 5 94 5 8 80 12 14 46 40 0 82 18

250 0 100 0 0 100 0 0 100 0 0 94 6 0 96 4 0 84 16

500 0 100 0 0 100 0 0 100 0 0 98 2 0 100 0 0 98 2

4.2. Simulated Example 2

The data is generated from a nonlinear AR model

Yt ={c1+α11(Yt−1)+α12(Yt−2)}Yt−3+{c2 + α21(Yt−1)+α22(Yt−2)}Yt−4+0.1εt,

with i.i.d. standard normal noise εt, c1 = 0.2, c2 = −0.3 and

α11 (u) = (0.3 + u) exp(−4u2), α12 (u) =
0.3

{1 + (u − 1)4} ,

a21 (u) = 0, α22 (u) = −(0.6 + 1.2u) exp(−4u2).

In each replication, a total of 1, 000 + n observations are generated, and
only the last n observations are used to ensure approximate stationarity. In
this example, we have used linear splines on the quantile knot sequences. The
coefficient functions {αls}2,2

l=1,s=1 are estimated on a grid of equally-spaced points
on the interval [−1, 1], with the number of grid points ngrid = 41. Table 3
contains the means and standard errors of {ĉl}l=1,2 and the AISEs of {α̂ls}s=1,2

l=1,2 .
The results are also graphically presented in Figure 2. Similar to Example 1,
estimation improves as sample size increases, supporting our asymptotic result
(Theorem 1). The model selection results are presented in Table 2, indexed as
‘Example 2’. As in Example 1, AIC tends to overfit compared with BIC, and for
n = 250, 500, the model selection result is satisfactory.

Table 3. Results of Example 2: the means and standard errors (in paren-
theses) of ĉ1 and ĉ2, and the AISEs of α̂11, α̂12, α̂21, α̂22 of linear splines.

Spline fit p = 1 c1 = 0.2 c2 = −0.3 α11 α12 α21 α22

n = 100 0.2504(0.0481) −0.2701(0.0374) 0.0113 0.0050 0.0042 0.0195

n = 250 0.1983(0.0271) −0.2936(0.0279) 0.0030 0.0021 0.0025 0.0039

n = 500 0.1989(0.0202) −0.2975(0.0209) 0.0015 0.0011 0.0016 0.0019
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Figure 2. Plots of the estimated coefficient functions in Example 2. (a1−a4)

are plots of the 100 estimated curves for α11(u) = (0.3 + u) exp(−4u2),

α12(u) = 0.3/{1+(u−1)4}, α21(u)=0 and α22(u) = −(0.6+1.2u) exp(−4u2)

when n = 100. (b1−b4) and (c1−c4) are the same as (a1-a4), but when

n = 250, 500 respectively. (d1−d4) are plots of the typical estimators: the

solid curve represents the true curve, the dotted curve is the typical estimated

curve for n = 100, the dot-dashed and dashed curves are for n = 250, 500

respectively.

4.3. West German real GNP

Now we compare the estimation and prediction performances of the polyno-

mial spline and marginal integration methods using West German real GNP. For

other empirical examples, see Xue and Yang (2005). The data consists of the

quarterly West German real GNP from January 1960 to December 1990, denote

as {Gt}124
t=1, where Gt is the real GNP in the t-th quarter (the first quarter being

from January 1, 1960 to April 1, 1960). From its time plot (Figure 3), {Gt}124
t=1

appears to have both trend and seasonality. After removing the seasonal means

from {log (Gt+4/Gt+3)}120
t=1, we obtain a more stationary time series, denoted as
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{Yt}120
t=1, whose time plot is given in Figure 4. As the nonparametric alternative

to the linear autoregressive model selected by BIC,

Yt = a1Yt−2 + a2Yt−4 + σεt, (4.1)

Xue and Yang (2006). proposed the additive coefficient model

Yt = {c1+α11 (Yt−1)+α12 (Yt−8)} Yt−2+{c2+α21 (Yt−1)+α22 (Yt−8)}Yt−4+σεt,

(4.2)

which is fitted by linear and cubic splines. Following Xue and Yang (2006), we

use the first 110 observations for estimation and the last 10 observations for

one-step prediction. Table 4 gives the averaged squared estimation errors (ASE)

and averaged squared prediction errors (ASPE) of different fittings. Polynomial

splines are better than the marginal integration method overall, while (4.2) signif-

icantly improves over (4.1) in both estimation and prediction. For visualization,

plots of the function estimates are given in Figure 5.

Table 4. German real GNP: the ASE’s and ASPE’s of five fits.

ASE ASPE

Integration fit, p = 1 0.000201 0.000085

Integration fit, p = 3 0.000205 0.000077

Spline fit p = 1 0.000183 0.000095

Spline fit p = 3 0.000176 0.000082

Linear AR fit 0.000253 0.000112
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Appendix

A.1. Assumptions and notations

The following assumptions are needed for our theoretical results.

(C1) The tuning variables X = (X1, . . . , Xd2
) are compactly supported and, with-

out lose of generality, we assume that the support is χ = [0, 1]d2 . The

joint density of X, denoted by f(x), is absolutely continuous and 0 < c1 ≤
minx∈χ f(x) ≤ maxx∈χ f(x) ≤ c2 < ∞, for positive constants c1 and c2.

(C2) (i) There exist positive constants c3 and c4 such that c3Id1
≤ E(TTT |X =

x) ≤c4Id1
for all x ∈ χ, with Id1

being the d1 × d1 identity matrix. There

exist positive constants c5 and c6 such that c5 ≤ E{(TlTl′ )
2+δ0 |X = x} ≤ c6

a.s. for some δ0 > 0, l, l
′

= 1, . . . , d1.

(ii) For some sufficient large m > 0, E |Tl|m < +∞, for l = 1, . . . , d1.

(C3) For the d2 sets of knots ks,n ={0=xs,0 ≤ xs,1 ≤ · · · ≤ xs,Nn ≤ xs,Nn+1 =1},
s = 1, . . . , d2, there exists c7 > 0 such that

max
s=1,...,d2

max (xs,j+1 − xs,j, j = 0, . . . , Nn)

min(xs,j+1 − xs,j, j = 0, . . . , Nn)
≤ c7.

The number of interior knots Nn � n(2p+3)−1

, where p is the degree of

the spline and ‘�’ means both sides have the same order. In particular,

h � n−(2p+3)−1

.

(C4) The vector process {ςt}∞t=−∞ = {(Yt,Xt,Tt)}∞t=−∞ is strictly stationary and

geometrically strongly mixing, that is, its α -mixing coefficient α(k) ≤ cρk,

for constants c > 0 and 0 < ρ < 1, where α(k) = supA∈σ(ςt,t≤0),B∈σ(ςt,t≥k)

|P (A)P (B) − P (AB)| .

(C5) The conditional variance function σ2 (x, t) is measurable and bounded.

Assumptions (C1)−(C5) are common in the nonparametric regression liter-

ature. Assumption (C1) is the same as Condition 1 on p.693 of Stone (1985),

and Assumption (c), p.468 of Huang and Yang (2004). Assumption (C2) (i) is a

direct extension of condition (ii), p.531 of Huang and Shen (2004). Assumption

(C2) (ii) is a direct extension of condition (v), p.531 of Huang and Shen (2004),

and of the moment condition A.2 (c) p.952 of Cai, Fan and Yao (2000). Assump-

tion (C3) is the same as in (6), p.249 of Huang (1998a), and also p.59, Huang

(1998b). Assumption (C4) is similar to condition (iv), p.531 of Huang and Shen

(2004). Assumption (C5) is the same as one on p.242 of Huang (1998a), and

p.465 of Huang and Yang (2004).
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In this Appendix, whenever proofs are brief, see Xue and Yang (2005) for

details.

A.2. Technical lemmas

For 1 ≤ l ≤ d1, 1 ≤ s ≤ d2, let

α̃l0 = ĉl0 +

d2∑

s=1

Eα∗
ls, α̃ls(xs) = α∗

ls(xs) − Eα∗
ls. (A.1)

Then one can rewrite m̂ (3.1) as m̂ =
∑d1

l=1

{
α̃l0 +

∑d2

s=1 α̃ls(xs)
}

tl, with

{α̃ls(xs)}1≤l≤d1
∈ ϕ0

s. The terms in (A.1) are not directly observable and serve

only as intermediaries in the proof of Theorem 1. By observing that, for 1 ≤ l ≤
d1, 1 ≤ s ≤ d2,

α̂l0 = α̃l0 −
d2∑

s=1

Enα̃ls, α̂ls(xs) = α̃ls(xs) − Enα̃ls, (A.2)

the terms {α̃l0}d1

l=1 , {α̃ls(xs)}d1,d2

l=1,s=1 and {α̂l0}d1

l=1 , {α̂ls(xs)}d1,d2

l=1,s=1 differ only

by a constant. In section A.3, we first prove the consistency of {α̃l0}d1

l=1, and

{α̃ls(xs)}d1 ,d2

l=1,s=1 in Theorem 3. Then Theorem 1 follows by showing {Enα̃ls}d1,d2

s=1,l=1

are negligible.

A B-spline basis is used in the proofs. This is equivalent to the truncated

power basis used in implementation, but has nice local properties (de Boor

(2001)). With Jn = Nn + p, we denote the B-spline basis of ϕs by bs =

{bs,0, . . . , bs,Jn}. For 1 ≤ s ≤ d2, let Bs = {Bs,1, . . . , Bs,Jn} with

Bs,j =
√

Nn

(
bs,j −

E (bs,j)

E (bs,0)
bs,0

)
, j = 1, . . . , Jn. (A.3)

Note that (C1) ensures that all Bs,j’s are well defined.

Now, let B = (1, B1,1, . . . , B1,Jn , . . . , Bd2 ,1, . . . , Bd2 ,Jn
)T with 1 being the

identity function defined on χ. Define G = (Bt1, . . . ,Btd1
)T = (G1, . . . , GRn)T ,

with Rn = d1 (d2Jn + 1). Then G is a set of basis of Mn. By (3.1), one has

m̂ (x, t) =
∑d1

l=1{ĉ∗l0 +
∑d2

s=1

∑Jn

j=1 ĉ∗ls,jBs,j(xs)}tl, in which {ĉ∗l0, ĉ∗ls,j, 1≤ l≤d1,

1≤s≤d2, 1 ≤ j ≤ Jn} minimize the sum of squares as in (3.3), with ws,j replaced

by Bs,j. Then Lemma 1 leads to α̃l0 = ĉ∗l0, α̃ls =
∑Jn

j=1 ĉ∗ls,jBs,j (xs), 1 ≤ l ≤ d1,

1 ≤ s ≤ d2.

Theorem 3. Under (C1)−(C5), if αls ∈ Cp+1 ([0, 1]) for 1 ≤ l ≤ d1 and

1 ≤ s ≤ d2, one has

‖m̂ − m‖2 = Op

(
hp+1 + (nh)−

1
2

)
,
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max
1≤l≤d1

|α̃l0 − αl0| + max
1≤l≤d1,1≤s≤d2

‖α̃ls − αls‖2 = Op

(
hp+1 + (nh)−

1
2

)
.

To prove Theorem 3, we first present the properties of the basis G in Lemmas

A.1−A.3.

Lemma A.1. For any 1 ≤ s ≤ d2, and the spline basis Bs,j of (A.3), one has

(i) E (Bs,j) = 0, E |Bs,j|k � N
k/2−1
n , for k > 1, j = 1, . . . , Jn.

(ii) There exists a constant C > 0 such that for any vector a = (a1, . . . , aJn)T ,

as n → ∞, ‖∑Jn

j=1 ajBs,j‖2
2 ≥ C

∑Jn

j=1 a2
j .

Proof. (i) follows from Theorem 5.4.2 of Devore and Lorentz (1993), (C1) and

(C3). To prove (ii), we introduce the auxiliary knots xs,−p = · · · = xs,−1 = xs,0 =

0, and xs,Nn+p+1 = · · · = xs,Nn+2 = xs,Nn+1 = 1 for the knots ks. Then

∥∥∥
Jn∑

j=1

ajBs,j

∥∥∥
2

2
≥ c1

∥∥∥
Jn∑

j=1

ajBs,j

∥∥∥
∗2

2

= c1

∥∥∥
Jn∑

j=1

aj

√
Nnbs,j −

Jn∑

j=1

aj

√
NnE (bs,j)

E (bs,0)
bs,0

∥∥∥
∗2

2
,

where ‖·‖∗2 is defined as ‖f‖∗2 =
√∫

f2 (x) dx, for any square integrable

function f . Let ds,j = (xs,j+1 − xs,j−p) / (p + 1). Then Theorem 5.4.2 of

Devore and Lorentz (1993) ensures that for a C > 0, the last term is at least

c1C
[ Jn∑

j=1

a2
jNnds,j +

{ Jn∑

j=1

aj

√
NnE (bs,j)

E (bs,0)

}2
ds,0

]
≥ c1C

Jn∑

j=1

a2
jNnds,j

≥ c1C (p + 1)

c7
∑Jn

j=1 a2
j

.

Lemma A.2. There exists a constant C > 0, such that as n → ∞, for any sets

of coefficients {cl0, cls,j, l = 1, . . . , d1; s = 1, . . . , d2; j = 1, . . . , Jn} ,

∥∥∥
d1∑

l=1

(
cl0 +

d2∑

s=1

Jn∑

j=1

cls,jBs,j

)
tl

∥∥∥
2

2
≥ C

d1∑

l=1

(
c2
l0 +

d2∑

s=1

Jn∑

j=1

c2
ls,j

)
.

Proof. The result follows immediately from Lemmas 1 and A.1.

Lemma A.3. Let 〈G,G〉 be the Rn×Rn matrix given by 〈G,G〉=(〈Gi,Gj〉)Rn

i,j=1.

Take 〈G,G〉n as 〈G,G〉 , but replace the theoretical inner product with the em-

pirical inner product. Let D = diag(〈G,G〉). Define Qn = sup |D−1/2(〈G,G〉n−



1440 LAN XUE AND LIJIAN YANG

〈G,G〉)D−1/2|, where the sup is taken oven all the elements in the random ma-

trix. Then as n → ∞, Qn = Op(
√

n−1h−1 log2(n)).

Proof. For simplicity, we consider the diagonal terms. For any 1 ≤ l ≤ d2, 1 ≤
s ≤ d1, 1 ≤ j ≤ Jn fixed, let ξ = (En − E)

{
B2

s,j (Xs)T 2
l

}
= (1/n)

∑n
i=1 ξi, in

which ξi = B2
s,j (Xis) T 2

il−E
{
B2

s,j (Xis)T 2
il

}
. Define T̃il = TilI{|Til|≤nδ}, for some

0 < δ < 1, and define ξ̃, ξ̃i similarly as ξ and ξi, but replace Tl with T̃l′ . Then

for any ε > 0, one has

P
(
|ξ| ≥ ε

√
log2(n)

nh

)
≤ P

( ∣∣∣ξ̃
∣∣∣ ≥ ε

√
log2(n)

nh

)
+ P (ξ 6= ξ̃), (A.4)

in which P (ξ 6= ξ̃) ≤ P (Til 6= T̃il, for some i = 1, . . . , n) ≤ ∑n
i=1 P

(
|Til| ≥ nδ

)

≤ E |Tl|m /nmδ−1. Also note that sup0≤xs≤1 |Bs,j (xs)| = sup0≤xs≤1 |
√

Nn{bs,j−
E(bs,j)bs,0/E(bs,0)}| ≤ c

√
Nn, for some c > 0. Then by Minkowski’s inequality,

for any positive integer k ≥ 3,

E
∣∣∣ξ̃i

∣∣∣
k
≤ 2k−1

[
E
∣∣∣B2

s,j (Xs) T̃ 2
l

∣∣∣
k

+
{

E
∣∣∣B2

s,j (Xs) T̃ 2
l

∣∣∣
}k
]

≤ 2k−1
[
n2δkckNk

n + (cNn)k
]
≤ n2δkckNk

n .

On the other hand

E
∣∣∣ξ̃i

∣∣∣
2
≥

E
∣∣∣B2

s,j (Xs)T 2
l

∣∣∣
2

2
− E2

{
B2

s,j (Xs)T 2
l

}
−

E
∣∣∣B2

s,j (Xs) T 2
l I{|Tl|>nδ}

∣∣∣
2

2
,

in which, under (C2),

E
∣∣∣B2

s,j (Xs)T 2
l I{|Tl|>nδ}

∣∣∣
2
≤ E

∣∣∣∣∣B
4
s,j (Xs) E

(
T 4+δ0

l

nδδ0
|X
)∣∣∣∣∣

≤ c6

E
∣∣∣B4

s,j (Xs)
∣∣∣

nδδ0
≤ cNn

nδδ0
,

where δ0 is as in (C2). Furthermore

E2
{
B2

s,j (Xs)T 2
l

}
≤ c2

4E
2
{
B2

s,j (Xs)
}
≤ c,

E
∣∣B2

s,j (Xs)T 2
l

∣∣2 ≥ c5E |Bs,j (Xs)|4 ≥ c1c5

∫
|Bs,j (xs)|4 dxs ≥ cc1c5Nn.

Thus E|ξ̃i|2 ≥ cNn − c − (cNn/nδδ0) ≥ cNn. So there exists a constant c > 0,
such that for all k ≥ 3,

E
∣∣∣ξ̃i

∣∣∣
k
≤ n2δkckNk

n ≤
(
cn6δN2

n

)k−2
k!E

∣∣∣ξ̃i

∣∣∣
2
.
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Then one can apply Theorem 1.4 of Bosq (1998) to
∑n

i=1 ξ̃i, with the Cramer

constant cr = cn6δN2
n. That is, for any ε > 0, q ∈ [1, n/2], and k ≥ 3, one has

P


 1

n

∣∣∣∣∣

n∑

i=1

ξ̃i

∣∣∣∣∣ ≥ ε

√
log2(n)

nh




≤ a1 exp


− qε2 log2(n)

nh

25m2
2 + 5εcr

√
log2(n)

nh


+ a2(k)α

([
n

q + 1

]) 2k
2k+1

,

where

a1 = 2
n

q
+ 2


1 +

ε2 log2(n)
nh

25m2
2 + 5εcr

√
log2(n)

nh


 ,

a2(k) = 11n


1 +

5m
k

2k+1
p

ε

√
log2(n)

nh


 , m2

2 = Eξ̃2
i , mp =

∥∥∥ξ̃i

∥∥∥
p
.

Observe that 5εcr

√
log2(n)/(nh) = 5εcn6δN2

n

√
log2(n)/(nh) = o(1), by taking

δ < 2p/[12(2p + 3)]. Then, by taking q = n/ {c0 log(n)} , one has a1 = O (n/q) =

O {log(n)} and a2(k) = O(n[N
k/(2k+1)
n /

√
log2(n)/(nh)) = o

(
n3/2

)
. Thus, for n

large enough,

P
( 1

n

∣∣∣
n∑

i=1

ξ̃i

∣∣∣ ≥ ε

√
log2(n)

nh

)

≤ c log(n) exp
{
− ε2 log(n)

50c0m2
2

}
+ cn

3
2 exp {− log(ρ)c0 log (n)} .

By (A.4), taking c0, ε, m large enough and using (C4), one has that

∞∑

n=1

P


sup |〈G,G〉n − 〈G,G〉| ≥ ε

√
log2(n)

nh




≤
∞∑

n=1

{d1d2(Nn + 2)}2
{

c log(n) exp
{
− ε2 log(n)

25c0

}

+cn
3
2 exp {− log(ρ)c0 log (n)} +

E |Tl|m
nmδ−1

}

<

∞∑

n=1

{d1d2(Nn + 2)}2 n−3 < +∞,
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in which Nn � n(2p+3)−1

. Then the lemma follows from Borel-Cantelli Lemma

and Lemma A.1.

Lemma A.4. As n → ∞, one has

sup
φ1∈Mn,φ2∈Mn

∣∣∣∣
〈φ1, φ2〉n − 〈φ1, φ2〉

‖φ1‖2 ‖φ2‖2

∣∣∣∣ = Op

(
√

log2(n)

nh

)
.

In particular, there exist constants 0 < c < 1 < C such that, except on an event

whose probability tends to zero as n → ∞, c ‖m‖2 ≤ ‖m‖2,n ≤ C ‖m‖2 ,∀m ∈
Mn.

Proof. With vector notation, one can write φ1 = aT
1 G, φ2 = aT

2 G, for Rn × 1

vectors a1,a2. Then

|〈φ1, φ2〉n − 〈φ1, φ2〉| =

Rn∑

i,j=1

|a1ia2j |
∣∣〈Gi, Gj〉n − 〈Gi, Gj〉

∣∣

≤ Qn

Rn∑

i,j=1

|a1ia2j | ‖Gi‖2 ‖Gj‖2 ≤ QnC

Rn∑

i,j=1

|a1ia2j | ≤ QnC
√

aT
1 a1a

T
2 a2.

On the other hand by Lemma A.2, ‖φ1‖2
2 ‖φ2‖2

2 =
(
aT

1 〈G,G〉 a1

) (
aT

2 〈G,G〉 a2

)

≥ C2aT
1 a1a

T
2 a2. Then

∣∣∣∣
〈φ1, φ2〉n − 〈φ1, φ2〉

‖φ1‖2 ‖φ2‖2

∣∣∣∣ ≤

∣∣∣∣∣∣

QnC
√

aT
1 a

√
aT

2 a2

C
√

aT
1 a1

√
aT

2 a2

∣∣∣∣∣∣
= Op (Qn) = Op

(
√

log2(n)

nh

)
.

Lemma A.4 shows that the empirical and theoretical inner products are

uniformly close over the approximation space Mn. This lemma plays a role

analogous to that of Lemma 10 in Huang (1998a). Our result is new, in that (i)

the spline basis of Huang (1998a) must be bounded, whereas the term t in basis

G makes it possibly bounded; (ii) Huang (1998a)’s setting is i.i.d. with uniform

approximation rate of op (1), while our setting is α-mixing, broadly applicable

to time series data, with approximation rate the sharper Op(
√

log2(n)/nh). The

next lemma follows immediately from Lemmas A.2 and A.4.

Lemma A.5. There exists constant C > 0 such that, except on an event whose

probability tends to zero, as n → ∞,

∥∥∥∥∥

d1∑

l=1

(
cl0 +

d2∑

s=1

Jn∑

j=1

cls,jBs,j

)
tl

∥∥∥∥∥

2

2,n

≥ C

d1∑

l=1

(
c2
l0 +

d2∑

s=1

Jn∑

j=1

c2
ls,j

)
.
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A.3. Proof of mean square consistency

Proof of Theorem 3. Let

Y = (Y1, . . . , Yn)T , m = {m(X1,T1), . . . ,m(Xn,Tn)}T ,

E = {σ(X1,T1)ε1, . . . , σ(Xn,Tn)εn}T .

Note that Y = m + E and, projecting it onto Mn, one has m̂ = m + e, where
m̂ is defined in (3.1), and m, e are the solution to (3.1) with Yi replaced by
m(Xi,Ti) and σ(Xi,Ti)εi respectively. Also one can uniquely represent m as

m =
∑d1

l=1

(
αl0 +

∑d2

s=1 αls

)
tl, αls ∈ ϕ0

s. With these notations, one has the error

decomposition m̂ − m = m − m + e, where m − m is the bias term, and e is the
variance term. Since for 1 ≤ l ≤ d1, 1 ≤ s ≤ d2, αls ∈ Cp+1 ([0, 1]) , by Lemma 2
there exist C > 0 and spline functions gls ∈ ϕ0

s, such that ‖αls − gls‖∞ ≤ Chp+1.

Let mn (x, t) =
∑d1

l=1

{
αl0 +

∑d2

s=1 gls (xs)
}

tl ∈ Mn. One has

‖m − mn‖2 ≤
d1∑

l=1

d2∑

s=1

‖{αls − gls} tl‖2 ≤ c4

d1∑

l=1

d2∑

s=1

‖αls − gls‖∞ ≤ c4Chp+1.

(A.5)
Also ‖m − mn‖2,n ≤ Chp+1 a.s. Then by the projection property, one has
‖m − m‖2,n ≤ ‖m − mn‖2,n ≤ Chp+1, which also implies ‖m − mn‖2,n ≤
‖m − m‖2,n+‖m − mn‖2,n ≤ Chp+1. By Lemma A.4 ‖m − mn‖2 ≤ ‖m − mn‖2,n

× (1 − Qn)1/2 = Op

(
hp+1

)
. Together with (A.5), one has

‖m − m‖2 = Op

(
hp+1

)
. (A.6)

Next we consider the variance ] term e, which is written as e (x, t) =∑Rn

j=1 âjGj (x, t) , with â = (â1, . . . , âRn)T . Let N = [N (G1) , . . . , N (GRn)]T ,
with N (Gj) = (1/n)

∑n
i=1 Gj (Xi,Ti) σ (Xi,Ti) εi. By the projection property,

one has
(
〈Gj , Gj〉n

)Rn

j,j′=1
â = N. Multiplying both sides by the same vector, one

gets âT
(
〈Gj , Gj〉n

)Rn

j,j′=1
â = âTN. Now, by Lemmas A.2 and A.4, the LHS is

∥∥∥
∑Rn

j=1 âjGj

∥∥∥
2

2,n
≥ C (1 − Qn)

∑Rn

j=1 â2
j , while the RHS is

≤
( Rn∑

j=1

â2
j

) 1
2

{
Rn∑

j=1

( 1

n

n∑

i=1

Gj (Xi,Ti)σ (Xi,Ti) εi

)2
} 1

2

.

Hence C (1 − Qn)
∑Rn

j=1 â2
j ≤

(∑Rn

j=1 â2
j

)1/2 { ∑Rn

j=1

(
(1/n)

∑n
i=1 Gj(Xi,Ti)

×σ(Xi,Ti)εi

)2}1/2
, entailing

( Rn∑

j=1

â2
j

) 1
2 ≤ C−1 (1 − Qn)−1

{
Rn∑

j=1

( 1

n

n∑

i=1

Gj (Xi,Ti)σ (Xi,Ti) εi

)2
} 1

2

.
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As a result, ‖e‖2
2 ≤ C (1 − Qn)−2

{∑Rn

j=1 ((1/n)
∑n

i=1 Gj (Xi,Ti)σ (Xi,Ti) εi)
2
}

.

Since the εi are independent of {(Xj,Tj) , j ≤ i} for i = 1, . . . , n, one has

Rn∑

j=1

E
( 1

n

n∑

i=1

Gj (Xi,Ti)σ (Xi,Ti) εi

)2
=

Rn∑

j=1

1

n
E {Gj (Xi,Ti) σ (Xi,Ti) εi}2

≤ CJn

n
= O

(
1

nh

)
,

by (C2), (C5) and Lemma A.1(i). Therefore ‖ẽ‖2
2 = Op

(
n−1h−1

)
. This, to-

gether with (A.6), prove ‖m̂ − m‖2 = Op

(
hp+1 +

√
1/nh

)
. The second part of

Theorem 3 follows from Lemma 1, which entails that for C > 0, ‖m̂ − m‖2
2 ≥

C
[∑d1

l=1

{
(α̃l0 − αl0)

2 +
∑d2

s=1 ‖α̃ls − αls‖2
2

}]
.

Proof of Theorem 1. By (A.2), one only needs to show |Enα̃ls| = Op(h
p+1

+
√

1/nh), for 1 ≤ l ≤ d1, 1 ≤ s ≤ d2. Note that |Enα̃ls| ≤ |En {α̃ls − αls}| +
|Enαls| , where

|En {α̃ls − αls}| ≤ ‖α̃ls − αls‖2,n ≤ ‖αls − αls‖2,n + ‖α̃ls − αls‖2,n

≤ ‖αls − gls‖2,n + ‖αls − gls‖2,n + ‖α̃ls − αls‖2,n ,

with ‖αls − gls‖2,n ≤ ‖αls − gls‖∞ ≤ Chp+1. Applying Lemmas 1 and A.3, one

has

‖αls − gls‖2,n ≤ (1 + Qn) ‖αls − gls‖2 ≤ (1 + Qn) ‖m − mn‖2 = Op

(
hp+1

)
,

‖α̃ls − αls‖2,n ≤ (1 + Qn) ‖α̃ls − αls‖2,n ≤ (1 + Qn) ‖ẽ‖2 = Op

(√
1

nh

)
.

Thus |En {α̃ls − αls}| = Op

(
hp+1 +

√
1/nh

)
. Since |Enαls| = Op (1/

√
n), one

now has |Enα̃ls| = Op

(
hp+1 + (nh)−

1
2

)
. Theorem 1 follows from the triangle

inequality.

A.4. Proof of BIC consistency

We denote the model space MS and the approximation space Mn,S of mS

separately as

MS =

{
m (x, t) =

d1∑

l=1

αl (x) tl; αl (x) = αl0 +
∑

s∈Sl

αls(xs);αls ∈ H0
s

}
,

Mn,S =

{
mn (x, t) =

d1∑

l=1

gl (x) tl; gl (x) = αl0 +
∑

s∈Sl

gls(xs); gls ∈ ϕ0
s

}
.
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If S ⊂ Sf , MS ⊂ MSf
and Mn,S ⊂ Mn,Sf

. Let ProjS (Projn,S) be the orthog-

onal least square projector onto MS (Mn,S) with respect to the empirical inner

product. Then m̂S at (3.7) can be viewed as: m̂S = Projn,S (Y). As a special

case of Theorem 1, one has the following result.

Lemma A.6. Under the conditions of Theorem 1, ‖m̂S − mS‖2 = Op(1/N
p+1
S

+
√

NS/n).

Now let c (S,m) = ‖ProjSm−m‖2. One has that if m ∈ MS0
, ProjS0

m = m,

and c (S0,m) = 0; if S overfits, since m ∈ MS0
⊂ MS , c (S,m) = 0; if S

underfits, c (S,m) > 0.

Proof of Theorem 2. Notice that

BICS − BICS0
=

MSES − MSES0

MSES0

{1 + op (1)} +
qS − qS0

n
log (n)

=
MSES − MSES0

E{σ2 (X,T)}(1 + op(1))
{1 + op (1)} + n

− 2p+2

2p+3 log (n) ,

since qS − qS0
� n1/(2p+3), and

MSEs0
≤ 1

n

n∑

i=1

{Yi − m (Xi,Ti)}2 +
1

n

n∑

i=1

{m̂S0
(Xi,Ti) − m (Xi,Ti)}2

= E{σ2 (X,T)}(1 + op(1)).

Case 1 (Overfitting): Suppose that S0 ⊂ S and S0 6= S. One has

MSEs − MSEs0
= ‖m̂s − m̂s,0‖2

2,n = ‖m̂s − m̂s,0‖2
2 {1 + op (1)}

≤
(
‖m̂s − m‖2

2 + ‖m̂s,0 − m‖2
2

)
{1 + op (1)} = Op

(
n− 2p+2

2p+3

)
.

Thus limn→+∞ {P (BICs − BICs0
> 0)} = 1. To see why the assumption qS −

qS0
� n1/(2p+3) is necessary, suppose qS0

� nr, with r > 1/(2p+3) instead. Then

it can be shown that

MSEs − MSEs0
= − nr−1

E{σ2 (X,T)} {1 + op (1)} − nr−1 log(n) {1 + op(1)} ,

which leads to limn→+∞ {P (BICs − BICs0
< 0)} = 1.

Case 2 (Underfitting): Similarly as in Huang and Yang (2004), we can show

that if S underfits, MSES − MSES0
≥ c2 (S,m) + op (1) . Then

BICS − BICS0
≥ c2 (S,m) + op (1)

E{σ2 (X,T)}(1 + op(1))
+ op (1) ,

which implies that limn→+∞ {P (BICs − BICs0
> 0)} = 1.
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