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Abstract: Competing risk failure time data occur frequently in medical studies, and

a number of methods have been proposed for the analysis of these data. To assess

covariate effects, a standard approach is to model the cause-specific hazard func-

tions of different failure types. Recently, Fine and Gray (1999) proposed directly

modeling the subdistribution of a competing risk with a Cox type model. In this

paper, we consider a more flexible and general hazard model for the subdistribu-

tion. It is a combination of the additive model and the Cox model and allows

one to perform a more detailed study of covariate effects. Inference procedures are

developed for estimation of both parametric and nonparametric components of the

model, and the asymptotic properties of the proposed estimators are established.

Robust variance estimates along with some goodness-of-fit test procedures are also

presented, and the prediction of the cumulative incidence function is discussed.

The proposed methodology is applied to a set of competing risk data from a bone

marrow transplant study.
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1. Introduction

This paper discusses regression analysis of competing-risk failure time data

that are inherent to medical research in which responses to treatments can be

classified in terms of failure from disease processes or non-disease-related causes.

To assess covariates effects, the standard approach for the analysis is to model the

cause-specific hazard functions of different failure types using either parametric

or semiparametric models (Cheng, Fine and Wei (1998), Shen and Cheng (1999)

and Scheike and Zhang (2003)). However, these methods do not allow the analyst

to directly assess the effect of a covariate on the cause-specific subdistribution

(Fine and Gray (1999)). In the following, a flexible additive multiplicative hazard

model is investigated for modeling the cause-specific subdistribution.

The proportional hazards model is perhaps the most commonly used re-

gression model in survival analysis (Andersen, Borgan, Gill and Keiding (1993)).
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However, for some situations, the model may only provide a rough summary of

the effect of some covariates. An alternative is the additive hazards model (Aalen

(1980), McKeague and Sasieni (1994) and Lin and Ying (1994)) that postulates

a different relationship for the hazard and covariates than does the Cox model.

In general, the subject matter seldom indicates clearly which of the models is to

be preferred, and they may need to be used together to complement each other.

If the aim is to give a detailed description of covariate effects and to

predict some survival probabilities, more flexible models are needed. To this

end, for right-censored non-competing risk failure time data, several more

general and flexible models have been proposed that combine the Cox and

additive models. For example, Lin and Ying (1995) considered an additive-

multiplicative hazard model, that is closely related to the proportional excess

model (Andersen and Væth (1989) and Sasieni (1996)). Scheike and Zhang (2002)

proposed an additive-multiplicative Cox-Aalen regression model in which

some covariate effects work additively on the risk and other covariates

have multiplicative effects. Martinussen and Scheike (2002) presented a flexi-

ble additive-multiplicative hazard model that allows both fixed and time-varying

covariate effects.

For right-censored competing risk data, a lot of research has been focused on

cause-specific hazard functions. In contrast, only limited work exists concerning

the direct modeling of the cumulative incidence function. Fine and Gray (1999)

studied the Cox model and developed some estimating equation-based inference

procedures. In the following, we consider the modeling of the subdistribution

using the flexible model given in Martinussen and Scheike (2002). In addition to

developing some estimation procedures, robust variance estimates are presented

and used for the prediction of cumulative incidence functions along with some

goodness-of-fit test procedures. Note that the martingale formulas of variance

estimators given in Martinussen and Scheike (2002) cannot be easily used for the

prediction. More comments on this are given below.

The remainder of the paper is organized as follows. Section 2 introduces some

notation and the regression model. Section 3 discusses inference about both the

nonparametric and parametric components of the model. By using inverse proba-

bility of censoring weighting (IPCW) techniques (Robins and Rotnitzky (1992)),

weighted score estimating equations are derived for estimation of the model and

the asymptotic properties of the resulting estimators are established. Further-

more, some robust estimators of the standard errors are presented. In Section

4, an approach is proposed for predicting the cumulative incidence function, and

some goodness-of-fit test procedures are discussed in Section 5 for model and
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covariate selection. Section 6 applies the proposed methodology to a set of com-

peting risk data arising from a bone marrow transplant study, and Section 7

concludes with some remarks.

2. Notation and Model

Consider a competing risk study with K different types of failures. Let T 0

and C denote the failure and censoring times, ε ∈ {1, . . . ,K} be the cause of

failure, and X and Z be vectors of covariates of dimensions q and p, respec-

tively. Assume that right-censored failure time data are observed and given by

{T, δ, δε,X ,Z}, where T = min(T 0, C), δ = I(T 0 ≤ C) and I(·) is the indica-

tor function. In the following, we focus on modeling the cumulative incidence

function for failure from Cause 1 F1(t;X ,Z) = P{T 0 ≤ t, ε = 1|X ,Z} given

the covariates X and Z. The inference about the cumulative incidence func-

tions for other failure types can be performed similarly. Also, for simplicity of

presentation, only time independent covariates will be considered, the inference

procedures can be easily generalized to time-dependent covariate situations.

To estimate F1, following Gray (1988) and Fine and Gray (1999), we consider

the modeling of the hazard function of F1 instead of the cause-specific hazard

function. A major advantage of this is that one can directly estimate F1 without

simultaneously estimating subdistributions corresponding to other failure types.

Specifically, define

λ1(t;X ,Z) = lim
∆t→0

1

∆t
P{t≤T 0≤ t + ∆t, ε=1|T 0≥ t ∪ (T 0 ≤ t ∩ ε 6= 1),X ,Z}

= −
d

dt
log{1 − F1(t;X ,Z)}.

Then F1(t;X ,Z)=1−exp{−Λ1(t;X ,Z)}, where Λ1(t;X ,Z)=
∫ t
0λ1(u;X ,Z)du.

One can think of λ1 as the hazard function for the improper random variable

T ∗ = I(ε = 1) × T + {1 − I(ε = 1)} ×∞.

In the following, it is assumed that λ1 has the form

λ1(t;X,Z) = αT (t)X + λ10(t) exp(βT
0 Z) , (1)

where α(t) is an unknown q-vector of time-varying components representing the

effects of covariates X on λ1, β0 is a p-vector of unknown regression parameters

denoting the effects of covariates Z on λ1, and λ10(t) is an unspecified baseline

hazard function. The above model assumes that covariates affect λ1 in two

ways: additive covariate effects described by an additive model; multiplicative

covariate effects characterized by the Cox model. The additive model allows for

time-varying covariate effects, while the Cox model allows only a common time-

dependence through the baseline. Martinussen and Scheike (2002) considered
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the above model for non-competing risk situations and, in this case, the model

may be thought of as an excess hazards model where the background mortality

is unknown and modeled by the additive model through the X’s. The excess risk

due to the covariates Z is described by the Cox model. Note that the additive

model and the Cox model are two submodels of the flexible model above.

An alternative to (1) is to replace the second part by βT
0 Z. This is the model

discussed in McKeague and Sasieni (1994). A potential problem with this model

is that it can be sensitive to long follow-up time since the cumulative hazard

function involves the function βT
0 Z t. In contrast, under (1), the corresponding

form is exp(βT
0 Z)

∫ t
0 λ10(s)ds. More comments on this alternative model are

given below.

In the next section, for inference about (1), using IPCW techniques, we de-

rive weighted score functions for both nonparametric and parametric components

of the model. In the following, for simplicity, assume that C is independent of

T 0, ε,X and Z. The methods developed can be generalized to allow for depen-

dence between C and (X,Z) (e.g., Fine and Gray (1999)).

3. Estimation Procedures

Let {T 0
i , Ci, εi,Xi,Zi} (i = 1, . . . , n) be n independent replicates of {T 0, C,

ε,X,Z}. Then the observed data are {Ti, δi, δiεi,X i,Zi}. Define Ni(t) = I(T 0
i ≤

t, ε = 1) and Yi(t) = 1−Ni(t−). Note that for the complete data (no censoring),

individuals observed to fail remain in the risk set indefinitely as long as they have

not failed from Cause 1. Define ri(t) = I(Ci ≥ T 0 ∧ t). If ri(t) = 1, Ni(t) and

Yi(t) are computable up to time t; if ri(t) = 0, individuals are observed up to

time Ci and Ni(t) and Yi(t) are not observable. However, ri(t)Ni(t) and ri(t)Yi(t)

are computable for ri(t) = 0 or 1.

Let G(t) = P{C ≥ t} and Ĝ(t) denote the Kaplan-Meier estimator of G

based on the data {Ti, 1 − δi, i = 1, . . . , n}. The quantity ri(t)/G(Ti ∧ t) has

expectation 1 conditional on T 0
i , εi,Xi and Z i. Consider a time-dependent weight

function of Ri(t) = ri(t)Ĝ(t)/Ĝ(Ti∧t). Define dN ∗
i (t) = Ri(t)dNi(t) and Y ∗

i (t) =

Ri(t)Yi(t), and let N ∗ = (N∗
1 , . . . , N ∗

n)T , X∗ = (Y ∗
1 X1, . . . , Y

∗
n Xn)T , Z∗ =

(Z1, . . . ,Zn)T , φi = φi(β) = Y ∗
i exp(βT Zi), φ = φ(β) = (φ1, . . . , φn)T , Φ =

Φ(β) = diag(φi), W = diag(wi), and V = diag(vi), where w = (w1, . . . , wn)T

and v = (v1, . . . , vn)T are known weight functions. Note that here and in the

following, we suppress dependence on time unless we wish to emphasize it.

To estimate the unknown parameters β0, A(t) =
∫ t
0 α(u)du and Λ10(t) =∫ t

0 λ10(u)du, following Martinussen and Scheike (2002) and using IPCW tech-



MODELING THE SUBDISTRIBUTION OF A COMPETING RISK 1371

niques, we propose to employ the following score functions

∫ τ

0
Z∗T

ΦV
{
dN ∗ − X∗dA − φdΛ10

}
= 0,

X∗T

W
{
dN ∗ − X∗dA − φdΛ10

}
= 0,

φT W
{
dN ∗ − X∗dA − φdΛ10

}
= 0,

where τ is a prespecified constant such that P{T ≥ τ} > 0. For a given β, solving

the second and third score equations gives a weighted Aalen estimator

Â(t;β) =

∫ t

0

(
X∗T WQX∗

)−1
X∗T WQdN ∗(u) (2)

for A, and a Breslow estimator

Λ̂10(t;β) =

∫ t

0
(φT Wφ)−1φT WHdN ∗(u) (3)

for Λ10, where H = I−X∗(X∗T

WQX∗)−1X∗T

WQ and Q = I−φ(φT Wφ)−1

φT W . By inserting (2) and (3) in the first score equation for β0, we obtain

U(β; τ) =

∫ τ

0
Z∗T

ΦV QHdN ∗(t). (4)

By letting wi = hvi for some function h, U(β; τ) reduces to the Cox-like score

equation

U(β; τ) =

n∑

i=1

∫ τ

0

{
Zi −

∑n
j=1 wjφjZjY

∗
j exp(βT Zj)∑n

j=1 wjφjY
∗
j exp(βT Zj)

}
viφidÑ i(t) = 0,

where dÑ = HdN ∗. Let β̂ denote the solution to (4). Once β̂ is obtained,

one can estimate the cumulative baseline hazard function Λ10 and the additive

components A(t) by the Breslow estimator Λ̂10(t) = Λ̂10(t; β̂) and the weighted

Aalen estimator Â(t) = Â(t; β̂), respectively. If there is only a single cause of

failure, (2)−(4) reduce to the score equations of Martinussen and Scheike (2002).

To investigate asymptotic properties of β̂, Λ̂10(t) and Â(t), let φ̂, Φ̂, Q̂ and

Ĥ be defined as φ, Φ, Q and H with β replaced by β̂. In the Appendix, it is

shown that n−1/2U(β0; τ) has an asymptotic normal distribution with mean zero

and a covariance matrix that can be consistently estimated by

Σ̂U = n−1
n∑

i=1

Ψ̂1i(τ)Ψ̂T
1i(τ), (5)
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where

Ψ1i(τ) =

∫ τ

0
D1i(t; β̂)Ri(t)dM̂i(t) +

∫ τ

0

q̂1(t)

π̂(t)
dM̂ c

i (t),

D1(t;β) =
(
D11(t;β), . . . ,D1n(t;β)

)
= Z∗T

Φ̂V Q̂Ĥ ,

q̂1(t) = −n−1
n∑

i=1

∫ t

0
D1i(u; β̂)Ri(u)I(u ≥ t > Ti)dM̂i(u),

π̂(t) = n−1
n∑

i=1

I(Ti ≥ t),

M̂i(t) = Ni(t) −

∫ t

0
Yi(u)

[
XT

i (u)dÂ(u) + exp
(
β̂

T
Zi(u)

)
dΛ̂10(u)

]
,

M̂ c
i (t) = I(Ti ≤ t, δi = 0) −

∫ t

0
I(Ti ≥ u)dΛ̂c(u),

Λ̂c(t) =

∫ t

0

∑n
j=1 dI(Tj ≤ u, δj = 0)∑n

j=1 I(Tj ≥ u)
.

It thus follows that n1/2(β̂ − β0) has an asymptotic normal distribution with
mean zero and covariance matrix that can be consistently estimated by

Σ̂β = n−1I−1(β̂)
n∑

i=1

Ψ̂1i(τ)Ψ̂T
1i(τ)I−1(β̂)T , (6)

where

I(β) = −
1

n

∂U(β; τ)

∂β
= −

1

n

[ ∫ τ

0
Z∗T

(∂Φ/∂β)
{
{V QHdN ∗(t)} ⊗ Ip

}

+

∫ τ

0
Z∗T

ΦHT V (∂Q/∂β)
{
HdN ∗(t) ⊗ Ip

}]
.

Furthermore, we show in Appendix that n1/2{Â(t)−A(t)} converges weakly
to a zero-mean Gaussian process whose covariance function at (t1, t2) can be
consistently estimated by

σ̂A(t1, t2) = n−1
n∑

i=1

Ψ̂2i(t1)Ψ̂
T
2i(t2),

(7)

where

Ψ̂2i(t) = Ĉ1(t)I
−1(β̂)Ψ̂1i(t)+

∫ t

0
D2i(u; β̂)Ri(u)dM̂i(u)+

∫ t

0

q̂2(u, t)

π̂(u)
dM̂ c

i (u),

Ĉ1(t) = −

∫ t

0

(
X∗T

WQ̂X∗
)−1

X∗T

WQ̂Φ̂Z∗dΛ̂10(u),
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D2(t;β) =
(
D21(t;β), . . . ,D2n(t;β)

)
= n

(
X∗T

WQ̂X∗
)−1

X∗T

WQ̂,

q̂2(u, t) = −n−1
n∑

i=1

∫ t

0
D2i(s; β̂)Ri(s)I(s ≥ u > Ti)dM̂i(s).

Similarly, n1/2{Λ̂10(t)−Λ10(t)} converges weakly to a zero-mean Gaussian process

whose covariance function at (t1, t2) can be consistently estimated by

σ̂Λ0
(t1, t2) = n−1

n∑

i=1

Ψ̂3i(t1)Ψ̂3i(t2), (8)

where

Ψ̂3i(t) = Ĉ2(t)I
−1(β̂)Ψ̂1i(t)+

∫ t

0
D3i(u; β̂)Ri(u)dM̂i(u)+

∫ t

0

q̂3(u, t)

π̂(u)
dM̂ c

i (u),

Ĉ2(t) = −

∫ t

0
(φ̂

T
Wφ̂)−1φ̂

T
WĤΦ̂Z∗dΛ̂10(u),

D3(t;β) = (D31(t;β), . . . ,D3n(t;β)) = n(φ̂
T
Wφ̂)−1φ̂

T
WĤ ,

q̂3(u, t) = −n−1
n∑

i=1

∫ t

0
D3i(s; β̂)Ri(s)I(s ≥ u > Ti)dM̂i(s).

Note that the variance-covariance estimators given above are robust esti-

mates and different from those given in Martinusseen and Scheike (2002). It

would be difficult to use the latter estimators for the prediction of the cumula-

tive incidence function and the model checking discussed in next sections.

4. Prediction of Cumulative Incidence Functions

One of the main goals in survival analysis is to predict certain survival proba-

bilities for future subjects. To predict F1 under (1) for a patient with a particular

set of covariates X = x and Z = z, one can first estimate the cumulative sub-

distribution hazard Λ1(t;x, z) by

Λ̂1(t;x, z) =

∫ t

0
xT (u)dÂ(u) +

∫ t

0
exp(β̂

T
z(u))dΛ̂10(u) . (9)

The predicted cumulative incidence is then given by F̂1(t;x, z) = 1− exp{−Λ̂1(t;

x, z)}.

Furthermore, an estimate t̂p for the 100pth percentile tp of F1(t|x, z) can be

obtained by solving the equation F̂1(t;x, z) = 1−p, where 0 < p < 1 is such that

tp < τ . Using the functional δ-method, one can show that for a known, mono-

tone, absolutely continuous transformation g, n1/2{g(F̂1(t;x, z))−g(F1(t;x, z))}
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converges weakly to a zero-mean Gaussian process whose covariance function at

(t1, t2) can be consistently estimated by

σ̂F (t1, t2) = n−1ġ
(
F̂1(t1;x, z)

)
ġ
(
F̂1(t2;x, z)

)(
1 − F̂1(t1;x, z)

)

×
(
1 − F̂1(t2;x, z)

) n∑

i=1

Ψ̂4i(t1)Ψ̂4i(t2), (10)

where ġ(t) = dg(t)/dt and

Ψ̂4i(t) =

∫ t

0
xT (u)dΨ̂2i(u) +

∫ t

0
exp(β̂

T
z(u))dΨ̂3i(u)

+

∫ t

0
exp(β̂

T
z(u))zT (u)dΛ̂10(u)I−1(β̂)Ψ̂1i(τ).

The above transformation g is usually chosen to stabilize the variance and to

ensure that pointwise and simultaneous confidence intervals for the probability

F1(t;x, z) are bounded between 0 and 1. One commonly used choice is g =

log(− log).

Sometimes one is interested in constructing confidence bands for A(t), Λ10(t),

F1(t;x, z) or tp. This may be analytically difficult since the limiting Gaussian

processes for n1/2{Â(t) − A(t)}, n1/2{Λ̂10(t) − Λ10(t)} and n1/2{g
(
F̂1(t;x, z)

)
−

g
(
F1(t;x, z)

)
} do not have independent increments. To this end, we propose

to use the following simulation approach to approximate these limiting distri-

butions as in Lin, Fleming and Wei (1994) and Scheike and Zhang (2003). Let

{Gi; i = 1, ..., n} be a simple random sample of size n from the standard nor-

mal distribution and independent of the observed data. Then one can construct

the simultaneous confidence bands for A(t), Λ10(t), F1(t;x, z) or tp by replacing

M̂i(t) and M̂ c
i (t) with GiM̂i(t) and GiM̂

c
i (t), respectively, and repeatedly gener-

ating normal random samples {Gi; i = 1, . . . , n} given the observed data. Note

that since Λ10(t) is nonnegative, one may want to use the log transformation for

the construction of its confidence bands.

5. Model Selection

This section considers the goodness of fit test of the model and the assessment

of time-varying covariates. For these, we develop some asymptotically sound test

procedures.

To evaluate the goodness of fit of the covariates included in the multiplica-

tive part of the model, following Lin, Wei and Ying (1993) and Wei (1984),

consider the cumulative score processes. The observed score process is given
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by n−1/2U(β̂; t), and its asymptotic distribution is equivalent to the asymptotic

distribution of

n− 1
2

n∑

i=1

{
Ψ̂1i(t) − I(β̂, t)I−1(β̂, τ)Ψ̂1i(τ)

}
,

where I(β, t) is the minus of the derivative of n−1U(β; t). Note that if the mul-

tiplicative part of the model is appropriate, the components of the score process

should behave as under the null. This suggests that we can use the following test

statistics

F1 = sup
0≤t≤τ

∣∣∣n− 1
2 Uj(β̂; t)

∣∣∣ , (j = 1, . . . , p),

where Uj(β; t) denotes the jth component of U(β; t). The percentiles of this test

statistic can be estimated empirically using a number of simulated processes as

discussed in the previous section, or in Lin, Wei and Ying (1993).

Now consider testing if covariate j, included in the additive part of the model,

is significant. For this, we suggest the test statistic

F2 = sup
0≤t≤τ

∣∣∣∣∣
Âj(t)

σ̂2
A,j(t)

∣∣∣∣∣ ,

where Âj is the jth component of Â and σ̂2
A,j(t) is the estimate of the variance

of Âj(t).

Sometimes one may also be interested in testing if an additive component

has indeed a time-varying effect. To this end, we propose the test statistic

F3 = sup
0≤t≤τ

∣∣∣∣∣Âj(t) −
Âj(τ)

τ
t

∣∣∣∣∣ .

Note that F2 evaluates the departure of Âj(t) from the null, while F3 measures

the departure between Âj(t)/t and the estimate of the constant effect under

the null, Âj(τ)/τ. Also note that the asymptotic distribution of n1/2{Â(t) −

A(t)} is equivalent to the asymptotic distribution of n−1/2
∑n

i=1 Ψ̂2i(t), where

Ψ̂2i(t) is defined in (7). Then the percentiles of the above two test statistics

can be simulated as before. The proposed tests are simple to implement and are

omnibus. Additionally, one can plot the estimated cumulative regression function

and use the plots to visually examine whether a covariate has a time-varying effect

on the cumulative incidence function.

To fit (1), one needs to choose which covariates have time-varying effects and

which covariates have constant effects on the hazard function. There are different

ways to do this. One method is to begin by assuming that all covariates have
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time-varying effects and to fit (1) with Z = 0. Then by using the F3 test given

above, we can assign significant covariates to X and non-significant time-varying

covariates to Z. More details on this are given in the next section through the

example. McKeague and Sasieni (1994) described some other approaches.

6. An Application

This section applies the proposed methodology to a set of cancer data from

the International Bone Marrow Transplant Registry (IBMTR). IBMTR is a vol-

untary working group of over 300 transplant centers worldwide that contribute

data on their allogeneic bone marrow transplants to the Statistical Center at

the Medical College of Wisconsin. For this study, we analyzed the data aris-

ing from 408 myelodysplasia (MDS) patients treated with HLA-identical sibling

bone marrow transplantation (BMT) from 1989 to 1997 and who had complete

information of platelets at their transplantation (Sierra, Perez, Rozman, Car-

reras, Klein, Rizzo, Davies, Lazarus, Bredeson, Marks, Boogaerts, Goldman,

Champlin, Keating, Weisdorf, de Witte and Horowitz (2002)). In the study two

competing failure types − treatment related mortality (TRM), defined as death

in complete remission, and relapse, were considered, with the focus on TRM and

the three risk factors that have been suggested to be significantly associated with

TRM. These are patient age (continuous, centered at a mean of 35, and ranging

from 2 to 64), platelets before transplantation (binary variable, ≥ 100 × 109/L

or < 100 × 109/L) and graft-versus-host disease (GVHD) prophylaxis (binary

variable, T-cell depletion BMT or no T-cell depletion BMT).

In the analysis, to visually examine which risk factors had a time-varying

effect, we first fitted the data to (1) with covariates X including age, platelet

and GVHD prophylaxis and Z = 0 for all cases. Note that this submodel of (1)

is additive. Figure 1 gives the estimated additive function A(t) corresponding

to each risk factor and the baseline, along with their confidence intervals and

simultaneous confidence bands. It seems from Figure 1 that platelets and age

had time-varying effects and GVHD prophylaxis had a constant effect on the

cumulative incidence function of TRM. To verify these time-varying effects, we

performed the F3 test given in the previous section by fitting an additive model

first. The test gave p-values of 0.042, 0.002, 0.155 for risk factors of platelets,

age and GVHD prophylaxis, respectively, confirming what was seen in Figure 1.

Note that if we use the cause-specific hazards approach, only platelets would have

a time-varying effect for TRM (Sierra et al. (2002)). Also in this case, since the

cumulative incidence probability is a function of both the cause-specific hazards

of TRM and relapse, unlike the proposed approach, it is hard to identify which

covariates having time-varying effects on the cumulative incidence function.
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To fit (1) given the above results, let X include platelet and age and Z be

GVHD prophylaxis. That is, assume that platelet and age affected the hazard

of TRM time-dependently and GVHD prophylaxis affected the hazard of TRM

constantly. For the goodness-of-fit assessment of the proposed model, we first

considered the F1 test for GVHD prophylaxis and obtained p = 0.64, indicating

that GVHD prophylaxis could be included in the multiplicative part of the model.

Second, we performed F2 and F3 tests for platelet and age. The F3 test gave p-

values similar to those obtained before and confirmed that platelets and age had

time-varying effects. The F2 test gave p-values of 0.003 and < 0.001 for platelets

and age, respectively, which indicates that both risk factors had significant effect

on the cumulative incidence probability of TRM. The above results suggest that

(1) is an appropriate model for this data set. Fitting (1) yielded β̂ = −0.54

with the estimated standard error of σ̂ = 0.26, resulting in a p-value of 0.04 for

testing β = 0. This indicates that GVHD prophylaxis had a significant effect

on the cumulative incidence probability of TRM, and the patients who received

T-cell depleted BMT had less chance of developing acute and chronic GVHD.

Complication of acute and chronic GVHD is a main cause of death after BMT.

Therefore, T-cell depleted BMT reduces the probability of TRM.
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Figure 1. Regression function estimation for treatment related mortality (TRM).
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To further examine the appropriateness of the model, we performed a sub-

group analysis. Specifically, we considered four subgroups: patients with platelets

< 100×109/L and who received a no T-cell depleted BMT; patients with platelets

≥ 100 × 109/L and who received a no T-cell depleted BMT; old patients (age

> 35) with platelets < 100× 109/L and who received a no T-cell depleted BMT;

younger patients (age ≤ 35) with platelets < 100× 109/L and who received a no

T-cell depleted BMT. The number of patients and mean patient ages for the four

subgroups are (N1 = 254, µ1 = 36), (N2 = 100, µ2 = 32), (N3 = 141, µ3 = 47)

and (N4 = 113, µ4 = 23), respectively. For each subgroup, we obtained the non-

parametric estimate of the cumulative incidence function (CIF) of TRM given

by
∫ t
0 Ŝ(u−)dΛ̂1(u), and its 95% confidence bands, by using the approach given

in Lin (1997). Here Ŝ(u) is the Kaplan-Meier estimator of leukemia-free survival

function and Λ̂1(u) is Nelson-Aalen’s estimator for the cumulative cause-specific

hazard function of TRM. They are displayed in Figure 2 together with the pre-

dicted CIF based on (1). It can be seen that all predicted CIF curves are almost

identical to the nonparametric estimates and this suggests that (1) fits the data

reasonably well.
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Figure 2. Esitmated cumulative incidence function for TRM.
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To give an idea about the robust variance estimate given in this paper,

we compared the estimated standard errors of CIF by using the nonparametric

approach based on the subgroup cases given in Lin (1997) and under (1) (for for-

mulas, see Section 4). The estimates indicated that the two variance estimations

are in a similar range, and the model-based method gives smaller variances as

expected.

7. Concluding Remarks

This paper presented a flexible model for regression analysis of competing

risk failure time data, and inference procedures were proposed for estimating its

parametric and nonparametric components. The model includes the commonly

used Cox model as a special case, it allows time-varying covariate effects, and pro-

vides a way to perform a more detailed analysis of covariate effects. In addition

to the establishment of the asymptotic properties of the proposed estimates, ro-

bust variance estimation and some goodness-of-fit test procedures were provided

that allow for prediction of survival probabilities and model checking.

Our model and proposed estimators are generalizations of those discussed in

Martinusseen and Scheike (2002) for non-competing risk situations, though there

are some differences between methods. One is that Martinusseen and Scheike

(2002) derived the large-sample properties of their approach by using martingale

central limit theory, and their variance estimators are martingale-based, which

makes their use for prediction difficult. In contrast, the empirical process theory

used here for the asymptotic properties and the development of robust variance

estimates can be easily used for the prediction, as shown in Section 4.

To model the hazard function of the cumulative incidence functions, one

could consider an alternative that replaces the Cox model in the second part

of (1) by, for example, the proportional odds model. Inference procedures sim-

ilar to those given above could be developed. Another alternative, mentioned

before and suggested by a referee, is the partly parametric additive risk model

proposed by McKeague and Sasieni (1994), which assumes that all covariates

have additive effects. The model allows a different type of covariate effects com-

pared to (1) for covariates with constant effects and is useful in many situations

(Lin and Ying (1994) and McKeague and Sasieni (1994)). McKeague and Sasieni

proposed some efficient estimators for the non-competing risks survival data and

it would be useful to generalize their method to the situation considered here.

However, this is beyond the scope of this paper.
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Appendix

In the following, for a given matrix Bn, E{Bn} denotes the limit of Bn, and

≈ means asymptotically equivalent. Let φ̃i be φi with Ri replaced by R̃i, where

R̃i(t) = ri(t)G(t)/G(Ti ∧ t). Define dMi = dNi − Yi[X
T
i dA + exp(βT

0 Zi)dΛ10],

dM∗
i = RidMi, M∗ = (M∗

1 , . . . ,M ∗
n)T and D̃1 = (D̃11, . . . , D̃1n), where

D̃1i = Ziφ̃ivi − E{Z∗T

ΦV φ(φT Wφ)−1}φ̃iwi

−E{Z∗T

ΦV QX∗(X∗T

WQX∗)−1}R̃iYiX iwi

+E{Z∗T

ΦV QX∗(X∗T

WQX∗)−1X∗T

Wφ(φT Wφ)−1}φ̃iwi.

Note that Qφ = 0,Hφ = φ and HX∗ = 0. Then we have

n− 1
2 U(β0; τ) = n− 1

2

∫ τ

0
Z∗T

ΦV QHdM ∗(t)

≈ n− 1
2

n∑

i=1

∫ τ

0
D̃1i(t)Ri(t)dMi(t)

= n− 1
2

n∑

i=1

∫ τ

0
D̃1i(t)R̃i(t)dMi(t)

+n− 1
2

n∑

i=1

∫ τ

0
D̃1i(t)

{ Ĝ(t)

Ĝ(Ti ∧ t)
−

G(t)

G(Ti ∧ t)

}
ri(t)dMi(t). (A.1)

Let Λc(t) be the cumulative hazard function of the censoring distribution, and

M c
i (t) = I(Ti ≤ t, δi = 0) −

∫ t

0
I(Ti ≥ u)dΛc(u).

Then we have

Ĝ(t)

Ĝ(Ti ∧ t)
−

G(t)

G(Ti ∧ t)
≈ −

G(t)I(Ti < t)

G(Ti ∧ t)

n∑

j=1

∫ t

Ti

dM c
j (u)∑n

k=1 I(Tk ≥ u)
(A.2)

(e.g., Gill (1980)). The second term in (A.1) can be approximated by

n− 1
2

n∑

i=1

∫ τ

0

q1(t)

π(t)
dM c

i (t),
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where q1(t) = − limn→∞ n−1
∑n

i=1

∫ τ
0 D̃1i(u)R̃i(u)I(u ≥ t > Ti)dMi(u), and

π(t) = limn→∞ n−1
∑n

i=1 I(Ti ≥ t). Thus, we have n−1/2U(β0; τ) ≈ n−1/2
∑n

i=1

ξ1i(τ), which is a sum of i.i.d. zero-mean terms, where

ξ1i(τ) =

∫ τ

0
D̃1i(t)R̃i(t)dMi(t) +

∫ τ

0

q1(t)

π(t)
dM c

i (t).

Utilizing the Multivariate Central Limit Theorem, n−1/2U(β0; τ) converges in
distribution to a normal random variable with mean zero and variance matrix
ΣU = E{ξ1i(τ)ξT

1i(τ)}, which can be estimated by (5). Now a Taylor series
expansion yields (6).

For Â, note that φ(β0) = φ(β̂) + Φ∗Z∗(β0 − β̂) and Q̂φ̂ = 0, where Φ∗ =
diag(φ(β∗)) and β∗ is on the line segment between β̂ and β0. It can be checked
that

n
1
2 (Â(t) − A(t))

= n
1
2

∫ t

0

(
X∗T

WQ̂X∗
)−1

X∗T

WQ̂
{
X∗dA(u)+φ(β0)dΛ10(u)+dM ∗(u)

}
−A(t)

= n
1
2

∫ t

0

(
X∗T

WQ̂X∗
)−1

X∗T

WQ̂Φ∗Z∗(β0 − β̂)dΛ10(u)

+n
1
2

∫ t

0

(
X∗T

WQ̂X∗
)−1

X∗T

WQ̂dM ∗(u)

= C∗
1(t)n

1
2 (β̂ − β0) + n

1
2

∫ t

0

(
X∗T

WQ̂X∗
)−1

X∗T

WQ̂dM∗(u), (A.3)

where C∗
1(t) = −

∫ t
0

(
X∗T

WQ̂X∗
)−1

X∗T

WQ̂Φ∗Z∗dΛ10(u). The first term in
(A.3) can be approximated by

n− 1
2

n∑

i=1

C1(t)Ĩ
−1(β0)Ψ1i(τ),

where C1(t) and Ĩ(β0) are the limits of C∗
1(t) and I(β0), respectively. Let

D̃2 = (D̃21, . . . , D̃2n), where

D̃2i =

∫ t

0
E
{
n
(
X∗T

WQ̂X∗
)−1}

R̃iYiXiwi

−E
{
n
(
X∗T

WQ̂X∗
)−1

X∗T

Wφ̂
(
φ̂

T
Wφ̂

)−1}
φ̃iwi.

Then the second term in (A.3) can be approximated by

n− 1
2

n∑

i=1

∫ t

0
D̃2i(u)R̃i(u)dMi(u)

+n− 1
2

n∑

i=1

∫ t

0
D̃2i(u)

{
Ĝ(u)

Ĝ(Ti ∧ u)
−

G(u)

G(Ti ∧ u)

}
ri(u)dMi(u). (A.4)
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Using (A.2), the second term in (A.4) can be approximated by

n−
1
2

n∑

i=1

∫ t

0

q2(u, t)

π(u)
dM c

i (u),

where q2(u, t) = − limn→∞ n−1
∑n

i=1

∫ t
0 D2i(s)R̃i(s)I(s ≥ u > Ti)dMi(s). There-

fore,

n
1
2 (Â(t) − A(t)) ≈ n− 1

2

n∑

i=1

ξ2i(t), (A.5)

which is a sum of i.i.d. zero-mean terms for fixed t, where

ξ2i(t) = C1(t)Ĩ
−1(β0)Ψ1i(τ) +

∫ t

0
D̃2i(u)R̃i(u)dMi(u) +

∫ t

0

q2(u, t)

π(u)
dM c

i (u).

By the Multivariate Central Limit Theorem, n1/2
(
Â(t)−A(t)

)
converges in finite

dimensional distributions to a zero-mean Gaussian process. Using empirical the-
ory as in Lin, Wei, Yang and Ying (2000), we can show that n−1/2

∑n
i=1 ξ2i(t) is

tight. Thus, n1/2
(
Â(t)−A(t)

)
converges weakly to a zero-mean Gaussian process

whose covariance function at (t1, t2) can be consistently estimated by (7).
For Λ10, let D̃3 = (D̃31, . . . , D̃3n), where

D̃3i

= E
{
n
(
φ̂

T
Wφ̂

)−1}
φ̃iwi − E

{
n
(
φ̂

T
Wφ̂

)−1
φ̂

T
WX∗

(
X∗T

WQ̂X∗
)−1

R̃iYiX iwi

+E
{
n
(
φ̂

T
Wφ̂

)−1
φ̂

T
WX∗

(
X∗T

WQ̂X∗
)−1

X∗T

Wφ̂
(
φ̂

T
Wφ̂

)−1}
φ̃iwi.

Define C∗
2(t) = −

∫ t
0 (φ̂

T
Wφ̂)−1φ̂

T
WĤΦ∗Z∗dΛ10(u), and C2(t) as the limit of

C∗
2(t). Similar as before, it follows from ĤX∗ = 0 and Ĥφ̂ = φ̂ that

n
1
2 (Λ̂10(t) − Λ10(t))

= n
1
2

∫ t

0
(φ̂

T
Wφ̂)−1φ̂

T
WĤ

{
X∗dA(u) + φ(β0)dΛ10(u) + dM ∗(u)

}
− Λ10(t)

≈ C2(t)n
1
2 (β̂ − β0) + n−

1
2

n∑

i=1

∫ t

0
D̃3i(u)Ri(u)dMi(u)

≈ n− 1
2

n∑

i=1

C2(t)Ĩ
−1(β0)ξ1i(τ) + n− 1

2

n∑

i=1

∫ t

0
D̃3i(u)R̃i(u)dMi(u)

+n− 1
2

n∑

i=1

∫ t

0
D̃3i(u)

{
Ĝ(u)

Ĝ(Ti ∧ u)
−

G(u)

G(Ti ∧ u)

}
ri(u)dMi(u)

≈ n− 1
2

n∑

i=1

ξ3i(t), (A.6)
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which is a sum of i.i.d. zero-mean terms for fixed t, where

ξ3i(t) = C2(t)Ĩ
−1(β0)ξ1i(τ) +

∫ t

0
D̃3i(u)R̃i(u)dMi(u) +

∫ t

0

q3(u, t)

π(u)
dM c

i (u),

and q3(u, t) = − limn→∞ n−1
∑n

i=1

∫ t
0 D̃3i(s)R̃i(s)I(s ≥ u > Ti)dMi(s). By the

Multivariate Central Limit Theorem, n1/2
(
Λ̂10(t)−Λ10(t)

)
converges in finite di-

mensional distributions to a zero-mean Gaussian process. Using empirical theory

as in Lin, Wei, Yang and Ying (2000), we can also show that n−1/2
∑n

i=1 ξ3i(t)

is tight. Thus, n1/2
(
Λ̂10(t) − Λ(t)

)
converges weakly to a zero-mean Gaussian

process whose covariance function at (t1, t2) can be consistently estimated by (8).

For F̂1(t;x.z), it follows from (A.5) and (A.6) that

n
1
2

(
Λ̂1(t;x, z) − Λ1(t;x, z)

)

= n
1
2

∫ t

0
xT (u)d{Â(u) − A(u)} +

∫ t

0
exp

(
βT

0 z(u)
)
d{Λ̂10(u) − Λ10(u)}

+n
1
2

∫ t

0

{
exp

(
β̂

T
z(u)

)
− exp

(
βT

0 z(u)
)}

dΛ̂10(u)

≈ n− 1
2

n∑

i=1

ξ4i(t),

which is a sum of i.i.d. zero-mean terms for fixed t, where

ξ4i(t) =

∫ t

0
xT (u)dξ2i(u) +

∫ t

0
exp(βT

0 z(u))dξ3i(u)

+

∫ t

0
exp

(
βT

0 z(u))zT (u)dΛ10(u)Ĩ−1(β0)ξ1i(τ).

As before, it can be checked that n−1/2
∑n

i=1 ξ4i(t) is tight. With an application

of the functional δ-method, n1/2{g
(
F̂1(t;x, z))−g(F1(t;x, z)

)
} converges weakly

to a zero-mean Gaussian process whose covariance function at (t1, t2) can be

consistently estimated by (10).
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