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Abstract: In this work we consider the problem faced by astrophysicists where

high energy signal neutrinos must be separated from overwhelming background

events. We propose a modification to the usual penalized likelihood approach, to

take account of the usage of importance sampling techniques in the generation

of the simulated training data. Each simulated multivariate data point has two

associated weights, which define its contribution to the signal or background count.

We wish to find the most powerful decision boundary at a certain significance

level to optimally separate signal from background neutrinos. In this modified

penalized likelihood method, the estimation of the logit function involves two major

optimization steps and the use of KL (Kullback-Leibler) distance criterion for model

tuning. We compare this approach with a non-standard SVM (support vector

machine) approach. Results on simulated multivariate normal data and simulated

neutrino data are presented. For the neutrino data, since the truth is unknown, we

show a way to check whether the proposed method is working properly.

Key words and phrases: Kullback-Leiber distance, logit function, neutrino signal,

nonstandard support vector machine, penalized likelihood method, simplex method.

1. Introduction

A neutrino is a particle that has no charge and almost no mass. Neutrinos

may be produced in the center of active galaxies or from highly energetic objects

like γ-ray bursts or black holes. Physicists are trying to use the giant device

called AMANDA (Antarctic Muon and Neutrino Detector Array) buried deep

in the Antarctic ice cap to detect certain neutrino signals within comparatively

overwhelming background noise (Andrés et al. (2001) and Ahrens et al. (2003)).

In computer experiments simulating neutrinos passing through AMANDA, dis-

tributions of signal and background are generated by an importance sampling

procedure which generates events described by multiple feature variables. Each

simulated neutrino can represent both signal and background by assignment of

an importance sampling weight. The task is to find the most powerful decision

boundary at a certain significance level to distinguish signal neutrino from back-

ground neutrino. For a detailed description of the problem and data, see Hill,

Lu, Desiati and Wabha (2003). Because of the curse of dimensionality, usual
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Monte Carlo methods are not practical. We propose a modified penalized log-

likelihood approach to solve the usual multivariate problem with this weighted

simulated data. Though this study is motivated by the simulated neutrino data,

the proposed method can be applied to other multivariate weighted data.

2. Modified Penalized Likelihood Estimation

2.1. Penalized likelihood method for labeled data

Let x be a possibly multidimensional vector of event observables derived from

a reconstructed event. Let hs(x) be the probability density function for signal

vectors and hb(x) be the probability density function for background vectors,

and let πs and πb be prior probabilities of a signal and background observation,

respectively. Then the posterior probability that x is a signal vector is p(x) =

πshs(x)/(πbhb(x) + πshs(x)). The logit f(x) is defined as log[p(x)/(1 − p(x))] ≡

θ + log[hs(x)/hb(x)], where θ = log(πs/πb). We will estimate the logit f(x) for a

particular (implicit) value of θ, but since the end result is to obtain level curves

of f , the particular value of θ is not important for the calculations. A modified

form of the penalized likelihood estimate (Wahba (1990), Wahba, Wang, Gu,

Klein and Klein (1995) and Wahba (2002)) will be used.

Let yi be a random variable that is 1 (signal) with probability p(xi) and 0

(background) with probability 1− p(xi). So the observed data are actually class

labels. Then the likelihood of a single observation yi is L = p(xi)
yi(1−p(xi))

1−yi .

The negative log likelihood of (independent) data y1, . . . , yn is then, in terms of

the logit, given by

Q(y, f) =
n

∑

i=1

[

log
(

1 + ef(xi)
)

− yif(xi)
]

. (1)

We want to find f ∼=
∑

ckBk ∈ HK (a reproducing kernel Hilbert space (RKHS),

see Aronszajn (1950), Wahba (1990) and Wahba (2002)) which minimizes the

penalized log-likelihood:

Iλ(c) = Q(y, f) + λ ‖ f ‖2
HK

, (2)

where Bk’s are basis functions in HK and ‖ · ‖HK
is the function norm in HK .

This is essentially the penalized log likelihood estimate of f proposed in

O’Sullivan, Yandell and Raynor (1986), and in common use in some fields. Un-

der rather general conditions, which include a proper choice of λ, penalized log

likelihood estimates are known to converge to the ‘true’ f as the sample size be-

comes large. Cox and Osullivan (1990) RKHS are discussed in Aronszajn (1950)

and their use in statistical model building in Wahba (1990) and elsewhere. A

wide variety of these spaces is available. An RKHS is characterized by a unique
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positive definite function K(·, ·), and once K is chosen, the exact minimizer of

Iλ(c) is known to be in the span of a certain set of basis functions determined

from K (Kimeldorf and Wahba (1971)). In Section 3 below we select a particular

K, known to be a good general-purpose choice, and use an approximating subset

of this set of basis functions. Estimating f rather than p directly gives a strictly

convex optimization problem whose gradient and Hessian are simple to compute.

This makes the numerical analysis easier and thus is suitable for very large data

sets. It is possible to estimate p directly, but this estimate is harder to compute

in large data sets and is believed to be not as accurate.

2.2. Penalized likelihood method for weighted data

The form of the negative log likelihood in (1) applies when simulated training

data is distributed as hb(x) and hs(x) through sampling directly from the gen-

erating distributions Φs(Ẽ) and Φb(Ẽ). The generating distributions Φs(Ẽ) and

Φb(Ẽ) are constant multiples of distributions based on track generating parame-

ters, e.g., neutrino energy, position and arrival direction. Then, Φs(Ẽ) and Φb(Ẽ)

can in principle be processed through a simulation chain which mimics the tracks

seen by the AMANDA detector array and the process which extracts variables x

from the simulated tracks. However, results are expected to have extremely long

tails, the region of interest, so an importance sampling scheme was developed.

Observable x vectors were generated according to a convenient sampling distribu-

tion g(Ẽ), and pushed through the detector geometry and x variable extraction.

For each xi so obtained, two weights were assigned, ws(xi) = Φs(Ẽi)/g(Ẽi) for

signal, and wb(xi) = Φb(Ẽi)/g(Ẽi) for background. This ws(xi) + wb(xi) plays

the role of an estimate of relative frequency of xi in signal + background while

ws(xi)/(ws(xi) + wb(xi)) plays the same role for the probability of signal given

xi, similarly for the background. The weights satisfy
∑n

i=1 ws(xi) = Ns and
∑n

i=1 wb(xi) = Nb, where Ns and Nb are the predicted numbers of events from

the weighted simulation.

If we had multiple unbiased observations at some xi as yij, j = 1, . . . ,m(i),

the likelihood of these observations would be L=p(xi)
∑m(i)

j=1 yij (1−p(xi))
∑m(i)

j=1 (1−yij ).

If the samplings at xi are biased, then the exponent sums are weighted by ws(xi)

and wb(xi) respectively, leading to a modified likelihood

Q(w, f) =

n
∑

i=1

1
∑

yi=0

{wyi
[log(1 + ef(xi)) − yif(xi)]}, (3)

where wyi
= ws(xi) for yi = 1 and wyi

= wb(xi) for yi = 0. Note that every

xi comes with a pair of weights instead of a class label. The incorporation

of weighted events is thus simply accounted for by weighting the terms in the
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logarithmic likelihood sum. Further, we can substitute ws(xi) and wb(xi) to

obtain an alternative form of the likelihood

Q(w, f) =

n
∑

i=1

{wt(xi)[log(1 + ef(xi)) − p̃(xi)f(xi)]}, (4)

where wt(xi) = ws(xi) + wb(xi) and p̃(xi) = ws(xi)/wt(xi).

Notice that our extension of the penalized likelihood method to weighted

data, by defining Q(w, f) in (2) as in (4), is a natural generalization of the

original formulation since (4) reduces to (1) in the case of labeled data, which

we consider as a special case of weighted data with (ws = 1, wb = 0) representing

the ‘1’ class and (ws = 0, wb = 1) representing the ‘0’ class.

3. Implementation of The Modified Penalized Likelihood Method

With the modified penalized likelihood formulation, we can move on to look

for a ‘good’ estimate of f(x) whose level curves can be obtained. In our im-

plementation, we use radial basis functions plus constant and linear terms. So,

f(x) = β0 + βT x +

N
∑

k=1

ckKσ(x, xik), (5)

where Kσ(·, ·) is the Gaussian kernel with isotropic variance σ2, N is the total

number of basis functions, and the xik , k = 1, . . . , N , are chosen as a subset

of the xi, i = 1, . . . , n, as described below. Thus, f will be specified as long

as, β0, β and the ck’s are determined (note that β is a vector). By letting

λ ‖ f ‖2
HK

= λ
∑N

k,l=1 ckclKσ(xik , xil), we put a penalty only on the ck’s, leaving

constant and linear terms unpenalized.

We used a sequence of data-driven procedures to fit the model in the sense

that we let the data choose the ‘best’ combination of smoothing parameter λ,

scale parameter σ and number of basis functions N . For a given weighted multi-

dimensional data set, we can first transform each variable to make them of com-

parable scale. Though these preprocessing procedures are not always necessary,

they often improve the performance of our algorithm. Then, the entire data set

is randomly divided into three subsets of some preset sizes: a training set, a

tuning set and a testing set. After that, we randomly, but according to weights

(large-weighted simulated data points have higher chance to be selected), choose

a modest sized set of N xik ’s which determines basis functions as a subset of the

training set. We solve the minimization problem on a coarse 2-D parameter grid

of λ (usually on a log scale) and σ2 using the training set. For each parameter

pair (each point on the log λ, σ grid), an iterative Newton-Raphson algorithm is
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used to solve this convex minimization problem, see Wahba (1990). After the al-

gorithm converges, we calculate the Kullback-Leibler (KL) distance between the

tuning set and the fitted model. The KL distance is essentially just the first term

of Iλ(c) for tuning simulated data with f replaced by the estimate f̂λ,σ2 , that is,
∑

i

∑1
yi=0{wyi

[log(1+ ef̂
λ,σ2(xi))− yif̂λ,σ2(xi)]}, where the first sum is taken over

xi in the tuning set. We then find the best parameter combination based on the

calculated KL distance over the coarse grid. Starting from there, a direct-search

simplex method (Lagarias, Reeds, Wright and Wright (1998)) is used to search

for a locally best parameter combination according to the KL distance criterion,

see Ferris, Voelker and Zhang (2004). The whole procedure described above is

repeated using 2N bases, then 4N bases and so on, until the improvement on

the KL distance is smaller than some preset threshold. We use the coefficients

corresponding to the then-best combination of parameters to construct our final

estimate of the logit function. Next, the testing set is used to check the goodness

of fit of this final model. Finally, the level curves of p(x) are determined and

plotted. These level curves are appropriate for use in conjunction with the ap-

proaches in Hill and Rawlins (2003), and Feldman and Cousins (1998). Finally,

the real data can be analyzed by applying the thresholds given by the level curves

of p(x), see Ahrens et al. (2003).

4. Results on Simulated Multivariate Normal Data

Instead of using the neutrino data, for which we don’t know the truth, we first

test our algorithm on simulated multivariate data. For plotting convenience we

only show a two dimensional example. Our algorithm has been tested extensively

on higher dimensional simulated data (in particular 5-D, which is the expected

dimension of the neutrino data), with success. We generate a random sample of

x’s from a 2-D uniform distribution (which plays the role of g) over a square. We

then associate with each xi two distinct 2-D Gaussian density values (ws(xi) for

signal, wb(xi) for background), giving a simulated data set consisting of the xi’s

and their associated wb’s and ws’s. The sum of the two 2-D Gaussian distributions

is shown in Figure 2(a).

For a particular run with sample size 1, 000 (among which we randomly

pick 400 for training and another 400 for tuning), the result for the level curve

corresponding to p = 0.9 is shown in Figure 1. Since we know the truth here, the

data points are colored green if the true p is less than or equal to 0.9 and black

otherwise. The red line is the level curve found by our algorithm, which is visually

almost identical to the true level curve (see Figure 2(c)). We also implemented

a nonstandard support vector machine (SVM), see Lin, Lee and Wahba (2002),

(the parameters are tuned in a similar way to our modified penalized likelihood

method) here for comparison. To use a nonstandard SVM to find the level surface



464 FAN LU, GARY C. HILL, GRACE WAHBA AND PAOLO DESIATI

corresponding to ef(x) = p(x)/(1 − p(x)) = r, it is not hard to extend the usual

SVM formulation to the following weighted regularization problem:

1

n

n
∑

i=1

∑

y=−1,1

wiycy[(1 − yf(xi))+] + λ ‖ f ‖2
Hk

,

where

wiy =

{

wb(xi) if y = −1;

ws(xi) if y = 1,

cy =

{

r if y = −1;

1 if y = 1,

and (τ)+ = τ if τ > 0 and 0 otherwise. We minimize this nonstandard SVM

criterion while tuning the smoothing parameter and scale parameter through

iteratively calling the well-known SVM software SV M light (version 4.0), which

gives the blue line in Figure 1 as the estimated decision boundary.
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Figure 1. A 2-D EXAMPLE: The red line is the level curve estimated by

our penalized likelihood method; the blue line is the level curve estimated by

nonstandard SVM; the black points are data points with the true p ≥ 0.9;

the green points are data points with the true p < 0.9.

It is worth mentioning that our proposed penalized likelihood method esti-

mates the logit function over the domain of the observed x’s, hence it is able to

give all level curves of the logit (and thus p) simultaneously, while SVM classifiers

are targeted at one level curve at a time, i.e., they are meaningful only for the

classification boundary. This point may be understood via Figure 1 of Lee, Lin
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and Wahba (2004). SVM classifiers come into their own when the classes are

(nearly) separable, but in our application that is not the case. In Figure 2, we

show further results from our 2-D example. The color bar beside plot(b) codes

the relative importance ws + wb (in log scale) for each data point, and the esti-

mated p for the 200 data points in the test set is plotted against the true p. (The

200 points from the test set are particularly dense near 0 and 1.) We can see that

the estimated probabilities (obtained from the estimated logit) match the true

probability very well except for several points of very small importance that are

colored in blue. Furthermore, by comparing the true and estimated level curve

plots in (c) and (d), we conclude that we are estimating the true logit function

very well over the domain of the data.
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Figure 2. Results from the modified penalized likelihood method for a 2-D

EXAMPLE: (a) sum of the two Gaussians used for weights; (b) p-p plot

with the color bar coding the sum of the signal and background weights in

log scale; (c) true level curves of p=0.05, 0.1, 0.5, 0.9 and 0.95; (d) estimated

level curves of p=0.05, 0.1, 0.5, 0.9 and 0.95.
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5. Results on Simulated Neutrino Data

5.1. Logit function estimation

The simulated neutrino data consists of five variables together with weights

(Ahrens et al. (2004)). The variables are based on parameters derived from a

maximum likelihood reconstruction of the particle track in the detector. For

detailed information on the detector, reconstruction, variables and analysis pro-

cedure, see Ahrens et al. (2004). We had 10,000 simulated neutrino events, and

divided them into 40% training, 40% tuning and 20% test sets. The five variables

are first rescaled using their own sample weighted standard deviation after a log

transformation. Then, we ran our algorithm with the transformed data. We

transformed them back when plotting the results. The estimated logit function

enables us to estimate the probability of an event being a signal neutrino at any

point (within the domain of the data) in the 5-D observational space. We show

a level curve plot of a 2-D cross section of that 5-D space in Figure 3, where the

other three variables have been fixed at their sample medians.
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Figure 3. Level curves: p = 0.1, 0.5, 0.9, 0.95 and 0.99 on a 2-D cross section

in the 5-D observational space of the neutrino data. N = 500 basis functions

were used.

5.2. Checking the goodness of the estimate

Astrophysicists use very complex computer programs to simulate the obser-

vations of neutrinos passing through the AMANDA detector. Even though the

parameters related to the simulation are known, the probability of an event being

a signal neutrino in the 5-D space is only estimated at the data points where the

simulation took place. We can’t construct a plot as in Figure 2(b) since we don’t
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know the truth. We can only check whether the estimates reasonably reflect the

simulated information.

We try to evaluate the estimated probability surface using a method in com-

mon practice among physicists. We take all the x’s whose estimated probability

of signal falls into one of ten equally spaced bins from 0 to 1. Then, for each bin,

we calculate the ratio of the sum of all the signal weights of the x’s to the sum

of all the signal + background weights of those x’s. Call this the level-binned

observed p. We plot the result for the jth bin against the midpoint of the bin,

i.e., for the bin [0.4, 0.5], we plot the level-binned observed p against 0.45, and

similarly for the other bins. If we estimate the probability reasonably well, based

on the simulated, weighted data, we should have these ten points falling close

to the 45-degree line, which is what we observe in Figure 4 for our neutrino

data. The color coding of the points represents the relative signal + background

weights of the x’s in each bin, on a log scale.
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Figure 4. x-axis: Midpoints of 10 probability bins. y-axis: ratio of the sum

of signal weights to the sum of signal + background weights for data points

in each bin.

6. Conclusions

We have developed a feasible and effective computational method to obtain

modified penalized likelihood estimates for signal detection probability in the

context of five dimensional data, as might be extracted from tracks observed

by the AMANDA neutrino detector, where the data simulator employs impor-

tance sampling. We implemented the proposed method on a simulated neutrino

data set before describing a way to check the goodness of our estimation. We

have also compared the penalized likelihood method to the nonstandard support
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vector machine, similarly tuned, on a simulated multi-dimensional problems sim-

ilar to the AMANDA problem, which can be characterized as having a certain

amount of overlap between the signal and background distributions. In examples

of that nature, with significant overlap of the signal and background, the penal-

ized likelihood method is competitive to the comparable nonstandard SVM for

classification purposes.
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