
Statistica Sinica 16(2006), 441-457

OPTIMIZING ψ-LEARNING VIA MIXED INTEGER

PROGRAMMING

Yufeng Liu and Yichao Wu

University of North Carolina at Chapel Hill

Abstract: As a new margin-based classifier, ψ-learning shows great potential for

high accuracy. However, the optimization of ψ-learning involves non-convex min-

imization and is very challenging to implement. In this article, we convert the

optimization of ψ-learning into a mixed integer programming (MIP) problem. This

enables us to utilize the state-of-art algorithm of MIP to solve ψ-learning. More-

over, the new algorithm can solve ψ-learning with a general piecewise linear ψ loss

and does not require continuity of the loss function. We also examine the variable

selection property of 1-norm ψ-learning and make comparisons with the SVM.

Key words and phrases: Classification, norm, regularization, SVM, variable selec-

tion.

1. Introduction

With the ultimate goal of maximizing classification prediction accuracy, clas-

sification techniques with good generalization ability are desirable. The Support

Vector Machine (SVM), originally invented in the machine learning literature,

has attracted tremendous interest in both the machine learning and statistics

communities. It has been widely applied to various disciplines, including engi-

neering, biology, and medicine.

The SVM paradigm was first introduced by V. Vapnik and colleagues with

the idea of searching for the optimal separating hyperplane, see Boser, Guyon,

and Vapnik (1992) and Vapnik (1998). It is now known that SVM can be put

in the regularization framework. Specifically, the objective cost function in reg-

ularization includes a data fit component as well as a penalty term. The data fit

component ensures that the model has a good fit to the training data, while the

penalty term avoids overfitting of the resulting model (Wahba (1998)). The most

natural measure of the data fit is the classification error based on 0-1 loss on the

training data. However, optimization of the 0-1 loss is very difficult. Therefore,

most classification methods use convex losses as surrogates of the 0-1 loss, among

which the hinge loss used by SVM is the closest convex surrogate.

Recently, Shen et al. (2003) proposed a new learning method called ψ-

learning. In contrast to the SVM, ψ-learning uses a group of piecewise linear

442 Y. LIU AND Y. WU

nonconvex losses which are closer to the 0-1 loss than the hinge loss. They

showed that although the optimization is more difficult, ψ-learning has the po-

tential of better generalization than the SVM. In their paper, they used a direct

complex algorithm for numerical comparisons. However, it is a local algorithm

and may only work well for low-dimensional problems. Liu, Shen and Doss (2005)

considered a special continuous ψ loss which can be decomposed as a sum of a

convex function and a concave function. With this decomposition, the optimiza-

tion can then be carried out using the so called d.c. algorithm. Although this

algorithm can handle large-scale problems, it only deals with a special ψ loss

that is continuous, and it may also have a problem with local minima. More

discussions on the d.c. algorithm can be found in Liu, Shen and Wong (2005).

In this paper, we consider a group of piecewise linear ψ loss functions that

convert the nonconvex optimization problem of ψ-learning into a mixed integer

programming (MIP) problem. We compare the performance of different ψ losses

and give recommendations on the choice of ψ. In addition to the standard 2-norm

ψ-learning, we also explore the variable selection property of 1-norm ψ-learning

and make comparisons with the SVM. A simplified algorithm utilizing a close

relationship between ψ-learning and the SVM is proposed.

The rest of this paper is organized as follows. In Section 2, we briefly review

the framework of the SVM and ψ-learning. We then present some basics of

MIP and formulate the optimization problem of ψ-learning as a MIP problem in

Section 3. In Section 4, we discuss the variable selection property of 1-norm ψ-

learning. Numerical examples are given in Section 5, followed by some discussions

in Section 6.

2. SVM and ψ-Learning

For simplicity, we only discuss binary classification problems with class label

Y ∈ {±1} and input vector X ∈ S ⊂ Rd. In supervised learning, a training

sample of n input/output pairs {(xi, yi)}
n
i=1, i.i.d. realizations from P (x, y), is

given. Then a function f , mapping from S to R, can be constructed using the

training set such that sign(f(x)) is the classification rule.

Under the regulation framework, we consider classifiers solving the optimiza-

tion problem

argmin
f

J(f) + C

n∑

i=1

l(yif(xi)), (2.1)

where J(f) serves as a regularization term and C > 0 is a tuning parameter that

controls the balance between the data fit measured by a loss l and the complexity

of f .

OPTIMIZING ψ-LEARNING VIA MIXED INTEGER PROGRAMMING 443

For linear learning problems, f(x) = w
′

x+ b is a hyperplane in Rd. In this

case, J(f) is some functional of a certain norm of w. The most commonly used

norm is the 2-norm (or squared norm) with J(f) = ‖w‖2
2/2 = w

′

w/2. Another

interesting one is the LASSO-type penalty, based on the 1-norm, with J(f) =

‖w‖1 =
∑d

i=1 |wi| (Tibshirani (1996)). Nonlinear learning can be achieved by

either basis expansion or kernel mapping (Cristianini and Shawe-Taylor (1999)).

Basis expansion increases the number of basis functions to achieve nonlinear

learning. For kernel learning, a kernel K(·, ·) that maps S ×S to R is employed.

Then f(x) =
∑n

i=1 αiK(x,xi) + b, by the theory of reproducing kernel Hilbert

spaces (RKHS), see Wahba (1990). In this case, the 2-norm of f(x) − b in the

RKHS with K(·, ·) is typically used as J(f). Using the representer theorem

(Kimeldorf and Wahba (1971)), J(f) can be represented as α
′

Kα/2, where K

is the n× n dimensional kernel matrix with K(i, j) = K(xi,xj).

A desirable classifier is one with good generalization ability, measured by the

generalization error (GE). The GE, defined as the probability of misclassification,

can be written as Err(f) = P (Y f(X) < 0) = E(1− sign(Y f(X))/2. A classifier

with a loss function l(u) tries to minimize the GE through l. Hence l plays a

similar rule as the 0−1 loss, i.e., (1−sign)/2. In the case of the SVM, one uses the

hinge loss function with l(u) = [1−u]+, a piecewise linear convex function. Shen

et al. (2003) considered using the 0 − 1 loss directly, with l(u) = 1 − sign(u).

However, since the sign function is scale invariant, the solution of (2.1) with

l(u) = 1 − sign(u) is then approximately equal to f = 0. To overcome this

problem, they proposed a group of ψ loss functions satisfying

U ≥ ψ(u) > 0 if u ∈ [0, τ];

ψ(u) = 1 − sign(u) otherwise, (2.2)

where 0 < U ≤ 2 and τ > 0 are constants. Note that the positive values of ψ(u)

when u ∈ [0, τ] eliminate the scaling problem of the sign function and avoid too

many points piling around the decision boundary.

The choice of ψ function is an interesting problem. Different ψ functions

may deliver different classification performances. So far, two different choices

have been used. In Shen et al. (2003), ψ(u) is defined to be 0 if u ≥ 1, 1 − u if

0 ≤ u ≤ 1, and 2 otherwise. In order to utilize the so called d.c. algorithm, Liu,

Shen and Doss (2005) employed a continuous ψ function with ψ(u) = 2(1 − u)

for 0 ≤ u ≤ 1. It is not obvious, however, how the performance of different losses

varies. In this paper, we consider piecewise linear ψ functions with ψ(u) = a−au

for u ∈ [0, 1], and 1 − sign(u) otherwise, a a constant in [0, 2]. This covers the

previously mentioned two choices with a = 1 and a = 2, respectively. Figure 1

displays a general piecewise linear ψ loss function. As a remark, we note that

τ = 1 in (2.2) covers a general situation since an equivalent loss ψ/τ belongs

444 Y. LIU AND Y. WU

to the group of loss functions we consider. Therefore, our ψ loss functions are

governed only by a. From previous studies, it is not clear how to select a.

In Section 3, we show that ψ-learning with a general piecewise linear ψ loss

can be converted into a MIP problem. Under the framework of MIP, we examine

the performance of ψ-learning with different a’s, and make recommendations

based on the numerical results.

Figure 1. Plot of a piecewise linear ψ loss function.

3. Optimization of ψ-Learning

3.1. MIP

A MIP problem is the minimization of a linear or quadratic function sub-
ject to linear constraints with some of the variables being integers. When the
objective function is quadratic, it becomes a mixed integer quadratic program-
ming (MIQP) problem. Similarly, a mixed integer linear programming (MILP)
problem has a linear objective function. For the purpose of illustration, a MILP
problem with n variables z = (z1, . . . , zn) and m constraints has the following
form:

min
z

gT z, (3.1)

subject to

A1z = b1, (3.2)

A2z ≤ b2, (3.3)

l ≤ z ≤ u, (3.4)

zj is an integer for ∀j ∈ D, (3.5)

where D is a subset of {1, . . . , n}, A1 is an m1 × n matrix, A2 is an m2 × n
matrix, g, l,u are vectors of length n, b1 and b2 are vectors of lengths m1 and
m2 respectively, with m1 +m2 = m. When D is empty, (3.1) becomes a linear
programming (LP) problem which can be solved in polynomial time.

MIP is an important optimization problem in the field of operations research
and has been studied for many years. One common approach to solve a MIP is
the so called branch and bound algorithm. The essence of the algorithm is to
solve the linear relaxation of the original problem without the integer require-
ment. If the solution satisfies the integer constraints, then the optimal solution

OPTIMIZING ψ-LEARNING VIA MIXED INTEGER PROGRAMMING 445

is found. Otherwise one can create two new subproblems by branching on a
fractional variable which is required to be an integer. Then one needs to keep

solving subproblems created by branching and improving the lower bound of the
objective by pruning out certain parts of the solution space. The algorithm stops
when the optimal solution attaining the lower bound is obtained. Another popu-

lar approach is the cutting plane technique. The idea behind this approach is to
add constraints to a LP problem until the optimal basic feasible solution satisfies
the integer requirement. There are many other algorithms developed to solve a

MIP. Garfinkel and Nemhauser (1972) and Wolsey and Nemhauser (1999) are
excellent books on this topic.

The complexity of MIP varies, depending on the size of the problem, the
numerical characteristics of the data, the algorithm used, and the computation
hardware. Some MIP problems with hundreds of thousands of variables and con-

straints can be solved in a few minutes. On the other hand, there exist small MIP
problems with a few hundred variables that are not yet solved. When it is imprac-
tical to compute an optimal solution, one can settle for a good solution that is not

optimal. There are many optimization solvers available. A detailed software list
can be found at http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/index.

html. All the examples presented in this paper were computed via the commercial
optimization software CPLEX with the AMPL interface (Fourer et al. (2002)).
As a remark, we note MILP is typically easier than MIQP.

3.2. Converting ψ-learning into MIP

The linear ψ-learning with a general piecewise ψ loss solves the optimization
problem

argmin
f

J(f) + C

n∑

i=1

ψ(yif(xi)), (3.6)

where ψ(u) = a−au for u ∈ [0, 1], and 1−sign(u) otherwise. Since the ψ function
is non-convex, the main challenge of (3.6) is how to deal with ψ(u). Let M be a

large positive constant so that yf(x) ∈ [−M,M] ∀(y,x). The value of M needs
to be determined prior to training, M = 103 is usually sufficient. Then ψ(u)

can be split into three regions, namely Region 1: ψ(u) = 2 with u ∈ [−M, 0),
Region 2: ψ(u) = a− au with u ∈ [0, 1], and Region 3: ψ(u) = 0 with u ∈ [1,M]
(see Figure 1). Note that ψ is a linear function within each of the three regions.

Thus, ψ(yif(xi)) can be represented as a linear function if the specific region
where yif(xi) falls is known. To this end, we introduce binary (dyadic) variables
δi2 and δi3; i = 1, . . . , n, which specify the assignments of the n training pairs

among the three regions. Specifically, (δi2, δ
i
3) = (0, 0), (1, 0), (1, 1) correspond to

regions 1, 2, 3 respectively. In addition, new variables (Z i
1, Z

i
2, Z

i
3) are introduced

to determine the values of yif(xi); i = 1, . . . , n. Then we express yif(xi) as

446 Y. LIU AND Y. WU

Zi1 + Zi2 + Zi3 where Z i1 ∈ [−M, 0], Z i2 ∈ [0, 1], and Z i3 ∈ [0,M − 1]. Through
imposing certain linear constraints, we aim to have Z i

2 = Zi3 = 0 when (δi2, δ
i
3) =

(0, 0), i.e., yif(xi) belongs to Region 1; Z i1 = Zi3 = 0 when (δi2, δ
i
3) = (1, 0); and

Zi1 = 0, Z i2 = 1 when (δi2, δ
i
3) = (1, 1). Therefore, (Z i1, Z

i
2, Z

i
3) give the exact

location of yif(xi) in [−M,M]. Although there are 3n of the (Z i1, Z
i
2, Z

i
3), their

true dimension in optimization is only n. We are now ready to express ψ(yif(xi))
as

ψ(yif(xi)) = 2 − aZ i2 − (2 − a)δi2, (3.7)

subject to the constraints

yif(xi) = Z i1 + Zi2 + Zi3, (3.8)

δi3 ≤ δi2 ∈ {0, 1}, (3.9)

δi3 ≤ Zi2 ≤ δi2, (3.10)

Zi3 ≤ (M − 1)δi3, (3.11)

−Zi1 ≤ 2M(1 − δi2), (3.12)

Zi1 ∈ [−M, 0], Z i2 ∈ [0, 1], Z i3 ∈ [0,M − 1]. (3.13)

To show (3.7), we can consider the three cases under (3.9).

Case 1. (δi2 = δi3 = 0): By (3.10) and (3.11), Z i2 = Zi3 = 0. Then Z i1 ≥ −2M by
(3.12) and thus Z i1 ∈ [−M, 0] by (3.13). Consequently, we have yif(xi) ∈ [−M, 0]
with ψ(yif(xi)) = 2 by (3.7) and (3.8).

Case 2. (δi2 = 1, δi3 = 0): Z i1 = Zi3 = 0 follows immediately from (3.11) and (3.12).
From (3.7), (3.8), and (3.10), we have yif(xi) = Z i2 ∈ [0, 1] with ψ(yif(xi)) =
a− ayif(xi).

Case 3. (δi2 = δi3 = 1): Z i1 = 0 and Z i2 = 1 by (3.10) and (3.12). From (3.11), we
have Z i3 ≤ M − 1. Thus, ψ(yif(xi)) = 0 and yif(xi) = Z i3 + 1 ∈ [1,M] by (3.7)
and (3.8).

Therefore, ψ(yif(xi)) is reformulated as a linear function subject to linear con-
straints with respect to f , binary variables (δi2, δ

i
3), as well as bounded continuous

variables (Z i1, Z
i
2, Z

i
3). This is a critical step in the derivation of our MIP formu-

lation for ψ-learning. Note that yif(xi) = 0 is included in both cases 1 and 2,
but ψ(0) = a will be selected in the minimization.

After plugging (3.7) into (3.6), (3.6) can be converted into the MIP problem

argmin
{f,δi

2
,δi

3
,Zi

1
,Zi

2
,Zi

3
}n

i=1

J(f) + C

n∑

i=1

(2 − aZ i2 − (2 − a)δi2), (3.14)

subject to constraints (3.8)−(3.13) for i = 1, . . . , n. When the 2-norm is em-
ployed, J(f) = w

′

w/2 and (3.14) becomes a MIQP problem. Similarly, (3.14)
turns into a MILP problem if J(f) = ‖w‖1.

OPTIMIZING ψ-LEARNING VIA MIXED INTEGER PROGRAMMING 447

As a general remark, the MIP formulation (3.14) is equivalent to the opti-
mization problem of ψ-learning with any a. This allows us to make use of the
existing MIP tools to tackle ψ-learning. Although some MIP problems may not
be solved in polynomial time, many MIP solvers like CPLEX can report the best
possible solution obtained within a specified time.

3.3. Improved algorithm

The dimension of problem (3.14) is 5n + d + 1. Among these variables,
2n binary variables (δi2, δ

i
3) correspond to the assignments of (xi, yi) among the

three regions, 3n continuous variables (Z i
1, Z

i
2, Z

i
3) specify the exact locations of

yif(xi); i = 1, . . . , n. The remaining d + 1 variables (w, b) yield the solution
f(x). By (3.9)−(3.13), only n of 3n variables (Z i1, Z

i
2, Z

i
3) need to be searched.

Because of the 2n binary variables {δi2, δ
i
3}, the algorithm can be slow as n gets

large. Therefore, improvement is needed in order to deal with real applications.
The main difference between the SVM and ψ-learning comes from their loss

functions on Regions 1 and 2, i.e, when yif(xi) ≤ 1. Specifically, the SVM
assigns a loss for point (xi, yi) linearly in the value of yif(xi) once it is less than
1. Consequently, the resulting classifiers could be sensitive to outliers. ψ-learning,
by contrast, gives the same losses for points on the “wrong” side of the boundary,
namely yif(xi) < 0. Thus, the decision boundaries yielded by ψ-learning differ
from the ones by the SVM in the sense that ψ-learning tries to reassign points
in a more robust way, especially points not assigned to Region 3 by the SVM. In
the SVM context, those points satisfying yif(xi) ≤ 1 are the “support vectors”
(SVs) and the SVM classifiers only depend on those SVs. See Cristianini and
Shawe-Taylor (1999) for more details. Once a SVM boundary is given, ψ-learning
tries to reassign those SVs. The non-SVs of the SVM are more likely to stay in
Region 3 although their exact locations in that region, determined by the value
of yif(xi), may vary. Therefore, we can reduce the complexity of the MIP of
ψ-learning by restricting non-SVs in Region 3 of a SVM classifier. Specifically,
those points satisfy δi2 = δi3 = 1. In this way, the number of binary variables in
the MIP can be reduced substantially if the SVM solution only involves a small
number of SVs.

Our improved algorithm for ψ-learning can be summarized in the following
two steps.

Step 1. Compute the SVM classifier for the training data and obtain the set of
non-SVs L = {(xi, yi) : yifSVM (x) > 1}.

Step 2. Solve the MIP problem (3.14) with constraints δi2 = δi3 = 1 for all points
in L.

One issue in Step 1 is the choice of C for the SVM. There are two natural
selections for C, one is the same C used by ψ in Step 2, and the other one is

448 Y. LIU AND Y. WU

the tuned C best for the SVM. In fact, the tuning parameter C for the SVM
is not directly comparable to that of ψ-learning because of their different loss
functions. Therefore, we use the best tuned SVM solution for Step 1 in this
paper. In particular, we compute the SVM solutions for a number of candidate
C’s and select the one with the smallest tuning error. For presentation, we
refer to the MIP problem of (3.14) as unrestricted ψ-learning and the improved
algorithm as restricted ψ-learning. To further justify our improved algorithm,
we compare the results of unrestricted and restricted ψ-learning in a simulated
example. More details are given in Section 3.3.

3.4. Choice of a

In this section, we study the performance of ψ-learning with different choices
of a using the simulated example in Shen et al. (2003). Specifically, a random

training set is obtained as follows. First, two dimensional vectors {(Xi1, Xi2)}
n
i=1

are generated uniformly over the unit disk {(x1, x2) : x2
1 + x2

2 ≤ 1}, and then
Yi is assigned to be 1 if Xi1 ≥ 0 and −1 otherwise. After that, some randomly
selected class labels {Yi} are changed to the other class in order to examine the
robustness of ψ-learning to outliers.

We computed classifiers of 1-norm and 2-norm ψ-learning with four differ-
ent flipping numbers (0, 1, 2, 5), four different values of tuning parameter C
(1, 10, 103, 107), and eight choices of a (0.1, 0.2, 0.5, 1, 1.5, 1.8, 1.9, 2). In this
example, M is set to be 103 and seems to work well. To compare the perfor-
mance of ψ-learning with restriction to that without restriction, we computed
the solutions for both cases. The results of averaging 100 replications of 2-norm
ψ-learning with n = 50 are summarized in Table 1. For comparison, the results
of the 2-norm SVM are reported as well.

In each case, the best error rates with respect to different C’s are highlighted
in bold face. The smallest errors across different a’s are underlined. From these
results, we make the following observations. The errors indicate that the choice of
a may slightly affect the classification performance of ψ-learning. Our numerical
experience suggests that small or large amay be suboptimal for ψ-learning. Small
values of a, for example 0.1 and 0.2 which are close to 0, can be numerically
unstable and consequently are not good for implementation. On the other hand,
large values of a, for example 1.8, 1.9, and 2, sometimes do not deliver the best
performance for ψ-learning. One plausible explanation is that a ψ loss with large
a does not distinguish points with −ε < yf(x) < 0 (wrongly classified points)
and 0 < yf(x) < ε (correctly classified points) well because of their similar losses
for these points. In contrast, a relatively smaller a can avoid such a problem.
Based on numerical results, we recommend selecting a ∈ [0.5, 1.5] although a ψ
loss with a = 2 still outperforms the SVM in this example. For other numerical

examples in the paper, we use a = 0.5.

OPTIMIZING ψ-LEARNING VIA MIXED INTEGER PROGRAMMING 449

Table 1. Error rates of the 2-norm SVM, unrestricted and restricted 2-norm

ψ-learning for the example in Section 3.3 with n = 50. Entries marked by

“—” are unavailable because of numerical difficulty.

2-norm SVM

n flip c = 1 c = 10 c = 1, 000 c = 107

0 0.0486 0.0344 0.0228 0.0222

1 0.0546 0.0418 0.0350 0.0360
2 0.0571 0.0425 0.0413 0.0413

5 0.0675 0.0583 0.0573 0.0573

2-norm ψ

n flip a c = 1 c = 10 c = 1, 000 c = 107

0.1 0.0322 0.0275 0.0209 0.0222
0.2 0.0314 0.0260 0.0215 0.0222

0.5 0.0293 0.0258 0.0219 0.0222

1.0 0.0313 0.0276 0.0227 0.0222

1.5 0.0461 0.0361 0.0234 0.0222

1.8 0.0576 0.0398 0.0237 0.0222

1.9 0.0614 0.0411 0.0238 0.0222

0

2.0 0.0633 0.0419 0.0238 0.0222

0.1 — 0.0322 0.0288 0.0279

0.2 0.0349 0.0344 0.0283 0.0279

0.5 0.0331 0.0311 0.0279 0.0276

1.0 0.0370 0.0325 0.0274 0.0281

1.5 0.0535 0.0382 0.0269 0.0276

1.8 0.0643 0.0437 0.0270 0.0286

1.9 0.0679 0.0436 0.0270 0.0286

1

2.0 0.0691 0.0447 0.0272 0.0286

0.1 — — 0.0270 0.0275
0.2 — 0.0316 0.0263 0.0277

0.5 0.0339 0.0309 0.0271 0.0277

1.0 0.0427 0.0322 0.0287 0.0273

1.5 0.0563 0.0383 0.0295 0.0291

1.8 0.0672 0.0452 0.0300 0.0294

1.9 0.0693 0.0456 0.0298 0.0289

2

2.0 0.0725 0.0455 0.0298 0.0285

0.1 — — — —

0.2 — — — —

0.5 0.0484 0.0407 0.0389 0.0390
1.0 0.0498 0.0442 0.0354 0.0396

1.5 0.0601 0.0511 0.0354 0.0399

1.8 0.0709 0.0559 0.0351 0.0408

1.9 0.0721 0.0560 0.0351 0.0394

5

2.0 0.0742 0.0561 0.0362 0.0415

restricted 2-norm ψ

c = 1 c = 10 c = 1, 000 c = 107

0.0291 0.0253 0.0203 0.0222
0.0292 0.0262 0.0215 0.0222

0.0291 0.0254 0.0219 0.0222

0.0287 0.0274 0.0227 0.0222

0.0303 0.0292 0.0233 0.0222

0.0310 0.0302 0.0237 0.0222

0.0316 0.0303 0.0238 0.0222

0.0319 0.0307 0.0238 0.0222

0.0379 0.0309 0.0289 0.0289

0.0381 0.0332 0.0282 0.0289

0.0367 0.0317 0.0278 0.0286
0.0367 0.0335 0.0274 0.0286

0.0396 0.0386 0.0269 0.0279

0.0440 0.0437 0.0270 0.0284

0.0451 0.0433 0.0270 0.0284
0.0465 0.0437 0.0272 0.0289

0.0382 0.0292 0.0271 0.0303
0.0379 0.0306 0.0263 0.0303

0.0372 0.0305 0.0271 0.0303

0.0387 0.0312 0.0287 0.0303

0.0446 0.0386 0.0295 0.0305
0.0521 0.0444 0.0300 0.0305

0.0543 0.0448 0.0298 0.0305

0.0553 0.0448 0.0298 0.0305

0.0470 0.0456 0.0396 0.0413

0.0465 0.0439 0.0392 0.0413

0.0462 0.0408 0.0382 0.0415
0.0472 0.0437 0.0346 0.0422

0.0562 0.0504 0.0345 0.0413

0.0640 0.0559 0.0343 0.0421

0.0666 0.0560 0.0343 0.0421

0.0677 0.0561 0.0354 0.0421

450 Y. LIU AND Y. WU

As a remark, we note that a may be treated as an additional tuning pa-

rameter and determined in a data-driven fashion. This appears to be appealing

theoretically. However, it will greatly increase the computational demand. More-

over, numerical problems with small a’s can be a concern in practice. For this

reason, we treat a as a fixed constant throughout the paper.

A comparison between restricted and unrestricted ψ-learning shows that

restricted ψ-learning gives similar performance as that of unrestricted one. This

justifies the use of our improved algorithm which can reduce the computation

significantly. In fact, there are cases in Table 1 in which restricted ψ-learning

even outperforms unrestricted ψ-learning. This is caused by the use of the best

tuned SVM for restriction, which helps to improve the restricted ψ-learning with

respect to a specific C.

Although restricting regions of training points can help to speed up the al-

gorithm, it has the potential risk of casting (3.14) into a different optimization

problem, and may weaken the performance of ψ-learning. Therefore, it is advis-

able to make as few restrictions on training points as possible if the computational

cost is to be acceptable.

4. Variable Selection

Variable selection is important in statistical modeling, especially when the

dimension of input variables is large. In classification, we quite often have a

relatively large number of candidate covariates available for building accurate

classifiers. However, it is not desirable to have a classifier that includes too many

noise variables. On one hand, the accuracy of the resulting classifier may not be

very satisfactory with many uninformative covariates in the model. On the other

hand, a classifier with sparsity on input variables has good interpretability and

makes it possible to further investigate the effects of those important covariates.

To achieve variable selection, one may carry out prescreening on covariates

and construct classifiers using only those selected. However, it is preferable to

build a classifier with a “built-in” variable selection ability. Then classification

and variable selection can be achieved simultaneously. In the SVM case, it is

known that the 1-norm SVM has variable selection ability (Bradley and Man-

gasarian (1998) and Zhu et al. (2003)). As discussed earlier, ψ-learning has a

very close relationship with the SVM. Therefore, it is natural to study the prop-

erty of 1-norm ψ-learning in terms of classification accuracy as well as sparsity

of the resulting classifiers. The difference between the effects of 1-norm and 2-

norm penalties comes from their different treatments of values of the resulting

w. The 1-norm puts a relatively large penalty on small coefficients and conse-

quently sparsity of the solution can be achieved. Figure 2 depicts the two norms

OPTIMIZING ψ-LEARNING VIA MIXED INTEGER PROGRAMMING 451

for the one-dimensional case. As a result, the obtained solution has more zero

coefficients if the 1-norm is employed.

PSfrag replacements

-2 -1.5 -1 -0.5

0

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

3

3.5

4

1-norm penalty

2-norm penalty

w

J
(w

)

Figure 2. A comparison plot of the 1-norm and 2-norm penalties

In terms of computation, 1-norm ψ-learning requires MILP which is easier

to compute than MIQP, as needed for 2-norm ψ-learning. Numerical results on

the performance of the 1-norm/2-norm SVM and ψ-learning in classification, as

well as variable selection, are reported in Section 5.

5. Numerical Examples

5.1. Simulation

We generate 100 random samples of size 100 with input x = (x1, x2, x3, x4).

Each component xi is distributed as Uniform[−2, 2]. Let f(x) = x2
1 + x2

2 − 2.8.

With x = (x1, x2, x3, x4) given, the label y is set to be sign(f(x)) with probability

0.95 and −sign(f(x)) with probability 0.05. Independent tuning data sets with

the same size as the training set and a testing set of size 20,000 are generated in

the same manner.

From the data generation mechanism, it is easy to see that only two vari-

ables, x2
1 and x2

2, are important. To examine the variable selection ability and

classification accuracy of each method, we apply the 1-norm SVM, 2-norm SVM,

1-norm ψ-learning, and 2-norm ψ-learning on four different sets of inputs as

follows.

452 Y. LIU AND Y. WU

Case 1. Two variables x2
1 and x2

2.

Case 2. Four variables x2
1, x

2
2, x

2
3, and x2

4.

Case 3. Eight variables x2
1, x

2
2, x

2
3, x

2
4, x1, x2, x3, and x4.

Case 4. Fourteen variables x2
1, x

2
2, x

2
3, x

2
4, x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3,

x2x4, and x3x4.

The results are summarized in Table 2. From the table, we can make a

general observation that 1-norm and 2-norm ψ-learning outperform the corre-

sponding SVMs in terms of classification accuracy. Case 1 has no noise variables

in the input. In this situation, the 2-norm ψ (SVM) appears to do slightly better

than the 1-norm ψ (SVM). However, as more and more noise variables are added,

classification accuracy gets worse and worse for all methods. As expected, the

1-norm ψ (SVM) can perform variable selection with some zero coefficients. In

contrast, the 2-norm penalty has no ability in variable selection, although it is

still feasible to interpret the results by examining the magnitudes of the esti-

mated coefficients. As a result, the 1-norm ψ (SVM) has smaller testing errors.

In this example, the 1-norm SVM has slightly more zero coefficients, yet larger

testing errors, than that of 1-norm ψ-learning. The better accuracy of ψ-learning

is realized through its robust ψ loss.

Table 2. Results of the simulation example in Section 5.1 for four different

cases. Input vectors for the four cases have 2, 4, 8, and 14 input variables

respectively, with 2 important ones.

Error Avg. # of

Case Method Training Tuning Testing zero coef.

1-norm SVM 0.0688(0.0306) 0.0676(0.0324) 0.0770(0.0202) 0.00

1-norm ψ 0.0537(0.0258) 0.0537(0.0261) 0.0620(0.0094) 0.00

2-norm SVM 0.0682(0.0307) 0.0654(0.0320) 0.0761(0.0203) 0.001

2-norm ψ 0.0549(0.0254) 0.0534(0.0268) 0.0617(0.0098) 0.00

1-norm SVM 0.0697(0.0302) 0.0706(0.0324) 0.0828(0.0208) 1.07

1-norm ψ 0.0562(0.0255) 0.0571(0.0269) 0.0702(0.0144) 0.88

2-norm SVM 0.0746(0.0299) 0.0721(0.0310) 0.0902(0.0194) 0.002

2-norm ψ 0.0589(0.0270) 0.0589(0.0270) 0.0753(0.0177) 0.00

1-norm SVM 0.0686(0.0301) 0.0778(0.0369) 0.0895(0.0251) 3.48

1-norm ψ 0.0576(0.0262) 0.0685(0.0330) 0.0807(0.0203) 3.03
2-norm SVM 0.0750(0.0279) 0.0899(0.0364) 0.1079(0.0238) 0.003

2-norm ψ 0.0559(0.0254) 0.0787(0.0330) 0.0965(0.0207) 0.00

1-norm SVM 0.0699(0.0304) 0.0828(0.0362) 0.1015(0.0282) 7.40

1-norm ψ 0.0554(0.0258) 0.0710(0.0332) 0.0882(0.0246) 7.01

2-norm SVM 0.0738(0.0297) 0.1069(0.0379) 0.1330(0.0263) 0.004

2-norm ψ 0.0550(0.0259) 0.1010(0.0376) 0.1242(0.0266) 0.00

OPTIMIZING ψ-LEARNING VIA MIXED INTEGER PROGRAMMING 453

To illustrate the restricted points of our improved algorithm visually, we plot

one specific example in Figure 3. From this plot, we can see that our improved

algorithm aims to find those points on the correct sides as well as far away

from the decision boundaries. Then the algorithm restricts those points in the

region of yf(x) ∈ (1,M] to reduce the number of integer variables. Notice that

those points are the non-SVs for the SVM solution and they do not contribute

to the resulting decision boundaries. Since the difference between the ψ loss

and the hinge loss only occurs for the points in the region of yf(x) ∈ [−M, 1],

the restriction procedure does not affect the solution of ψ-learning much. It

is interesting to point out that the SVM boundary is somewhat off from the

Bayes boundary because of several points on the wrong side. ψ-learning, on the

other hand, corrects the SVM’s solution by reassigning losses for the unrestricted

points, including those close to the boundary as well as the ones on the wrong

side. Since the SVM only has a small number of SVs, the improved algorithm

can greatly simplify the computation of the MIP for ψ-learning. In fact, one can

further simplify the algorithm by restricting the points with yf(x) ∈ (ε, 1) for

the SVM solution to be on the correct sides, i.e., δi2 = 1.

PSfrag replacements

-2
-2

-1.5

-1.5

-1

-1

-0.5

-0.5

0

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

3

3.5

4

1-norm penalty

2-norm penalty

w
J(w)

Bayes

2-norm SVM

2-norm ψ

x1

x
2

Figure 3. Boundaries of 2-norm SVM and ψ-learning for one selected sample
of Case 1 in the simulation example in Section 5.1. The points for the
corresponding two classes are in circles and pluses. The solid blue curve,
red dotted curve, and cyan slashed curve represent boundaries of the Bayes
rule, 2-norm SVM, and 2-norm ψ-learning respectively. The points marked
by red crosses represent those restricted by the improved algorithm.

454 Y. LIU AND Y. WU

PSfrag replacements

-2-2

-1.5

-1

-0.5

0
0

0

0

0

0

0

0

0

0

0

0.5

1

1.5

22

2.5

3

3.5

44

1-norm penalty

2-norm penalty

w
J(w)

Bayes

2-norm SVM

2-norm ψ

x1

x2

-10-10

-5

-5

-5

-5

-5

-5

5

5

5

5

5

5

10

10

10

10

10

10

10

10

15

15

15

15

15

15

20

20

20

20

20

20

20

20

3030

0.1 0.2

0.2

0.4

0.6

0.80.25

0.15

0.05

log(c)

log(c)

log(c)

log(c)

log(c)

log(c)

T
es

ti
n
g

E
rr

o
r

T
es

ti
n
g

E
rr

o
r 1-norm SVM2-norm SVM

1-norm ψ2-norm ψ

co
effi

ci
en

ts

co
effi

ci
en

ts

1
-n

o
rm

ψ

2
-n

o
rm

ψ

1
-n

o
rm

S
V

M
co

effi
ci

en
ts

2
-n

o
rm

S
V

M
co

effi
ci

en
ts

Figure 4. Results of SVM and ψ-learning for one selected sample of Case 3

in the simulation example in Section 5.1. The top four panels display the

coefficients of the solutions of 1-norm and 2-norm SVM and ψ-learning. The

solid lines represent coefficients of important variables while the dotted lines

represent the noise variables. The bottom two panels illustrate the change

of testing errors with different tuning parameters C. The solid lines are for

the SVM and the dotted lines are for ψ-learning.

Figure 4 displays the solution paths of the 1-norm and 2-norm SVMs/ψ-

learning as well as the corresponding testing errors for one specific sample with

eight input variables, as in Case 3. The solution paths are generated by con-

necting the coefficients at the corresponding C values. The solid lines on the top

four panels represent the coefficients of the two important variables, while dashed

lines are for the remaining six noise variables. As discussed earlier, the 2-norm

penalty does not have ability in variable selection. Therefore, the solutions for

the 2-norm penalties have small coefficients for those noise variables even when

the tuning parameter is close to 0. But the 1-norm penalty can effectively select

the two important variables as C is small. The noise variables do not appear

until the parameter gets relatively large. For C large, the solutions stay the

OPTIMIZING ψ-LEARNING VIA MIXED INTEGER PROGRAMMING 455

same as C increases since C balances the two components in (2.1). A large C

forces the solution to have a good fit on the training data. However, once C is

sufficiently large, the solution cannot further improve the second component of

(2.1) and thus it is fixed for even larger C. This observation helps us to select

a reasonable range of the tuning parameter. The bottom two panels of Figure

4 plot the testing errors of two methods. It appears here that ψ-learning is less

sensitive to the choice of C in terms of classification performance than the SVM.

One plausible explanation of the flat testing error curve of ψ-learning is the effect

of restriction of the improved algorithm using a best tuned solution of the SVM.

This may help us to develop an effective tuning procedure, and deserves further

investigation.

5.2 Breast cancer data

We examine the performance of ψ-learning and the SVM on the Wisconsin

Diagnostic Breast Cancer (WDBC) data. This dataset contains 569 observations,

and each has a 30-dimensional real-valued input vector and a binary response

(malignant or benign). More details can be found in Street et al. (1993) and at

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/breast-cancer-wisconsin/.

To examine performance of different methods, we randomly select 100 ob-

servations as a training dataset, another 100 observations for tuning, and the

remaining 369 for testing. In particular, we compute classifiers using the train-

ing set with respect to a set of C in [10−3, 103], then find the one with the

smallest tuning error to get the corresponding testing error via the testing set.

Methods, including the 1-norm and 2-norm SVMs/ψ-learning, are implemented

using all input variables. To carry out the ψ optimization, we apply the improved

algorithm in Section 3.2. Specifically, we run the 1-norm and 2-norm SVMs on

each training dataset, choose the best tuned solutions, and then restrict those

observations with yf > 1.1 for the corresponding 1-norm and 2-norm ψ-learning.

Here yf > 1.1 instead of yf > 1 is used for fewer restrictions and numerical ac-

curacy. The average training/tuning/testing errors and average number of zero

coefficients over 10 replications are reported in Table 3.

Table 3. Results of the WDBC example in Section 5.2.

Error Avg. # of

Method Training Tuning Testing zero coef.

1-norm SVM 2.50% 1.90% 4.74% 22.2

2-norm SVM 1.90% 1.60% 3.74% 0

1-norm ψ 1.20% 1.70% 4.20% 22.2

2-norm ψ 1.20% 2.70% 3.33% 0

456 Y. LIU AND Y. WU

The results indicate that the 2-norm SVM/ψ-learning have smaller testing

errors than the corresponding methods with the 1-norm penalty. The 1-norm

methods, on the other hand, can perform variable selections with only around

8 out of 30 variables selected. In this example, ψ-learning appears to perform

better than the SVM.

6. Conclusion

In this paper, we convert the non-convex optimization problem of ψ-learning

into a MIP problem. This algorithm is applicable for any general piecewise

linear ψ losses. Through this framework, we study the properties of 1-norm and

2-norm ψ-learning in terms of classification accuracy as well as variable selection.

In addition, we examine the effects of different a’s on ψ-learning and make our

recommendation on the choice of a. The close relationship between the hinge

loss of the SVM and the ψ loss helps us to further improve the algorithm by

restricting points unimportant in determining the solutions.

Although an improved version is offered to simplify the algorithm, it maybe

problematic in situations where the dimension of the input variables is high. In

that case, almost all training points may turn out to be SVs and the improved

algorithm cannot provide any simplification. We may then have to reply on some

heuristics of MIP to get reasonably good, but non-optimal, solutions.

The current paper focuses on binary ψ-learning. However, the same idea can

be extended to the multicategory case. Then multicategory ψ-learning (Liu and

Shen (2004)) can also be implemented via MIP. Development of the multicategory

situation will be reported in a future paper.

Acknowledgement

The first author is grateful to Professor Xiaotong Shen for his guidance

and encouragement. He would also like to thank Professors Gabor Pataki and

Scott Proven for their helpful discussions on MIP. The authors are indebted to

two referees, whose helpful comments and suggestions led to a much improved

presentation.

References

Boser, B., Guyon, I. and Vapnik, V. N. (1992). A training algorithm for optimal margin

classifiers. The Fifth Annual Conference on Computational Learning Theory, 142-152.

ACM, Pittsburgh.

Bradley, P. and Mangasarian, O. (1998). Feature selection via concave minimization and support

vector machines, In ICML’98 (Edited by J. Shavlik). Morgan Kaufmann.

Cristianini, N. and Shawe-Taylor, J. (1999). An Introduction to Support Vector Machines and

other Kernel-Based Learning Methods. Cambridge University Press.

OPTIMIZING ψ-LEARNING VIA MIXED INTEGER PROGRAMMING 457

Fourer, R., Gay, D. M. and Kernighan, B. W. (2002). AMPL: A Modeling Language for Math-

ematical Programming. Duxbury Press.

Garfinkel, R. S and Nemhauser, G. L. (1972). Integer Programming. Wiley, New York.

Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. J. Math.

Anal. Appl. 33, 82-95.

Liu, S., Shen, X. and Wong, W. (2005). Computational developments of ψ-learning. Proceeding

of The Fifth SIAM-ASA International Conference on Data Mining, 1-12. Newport, CA.

Liu, Y. and Shen, X. (2004). Multicategory ψ-learning. J. Amer. Statist. Assoc. To appear.

Liu, Y., Shen, X. and Doss, H. (2005). Multicategory ψ-learning and support vector machine:

computational tools. J. Comput. Graph. Statist. 14, 219-236.

Shen, X., Tseng, G. C., Zhang, X. and Wong, W. H. (2003). On ψ-learning. J. Amer. Statist.

Assoc. 98, 724-734.

Street, W. N., Wolberg, W. H. and Mangasarian, O. L. (1993). Nuclear feature extraction

for breast tumor diagnosis. IS &T/SPIE 1993 International Symposium on Electronic

Imaging: Science and Technology, 861-870. San Jose, CA.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc.

Ser. B 58, 267-288.

Vapnik, V. (1998). Statistical Learning Theory. Wiley, Chichester.

Wahba, G. (1990). Spline models for observational data. SIAM CBMS-NSF Regional Confer-

ence Series in Applied Mathematics, 59.

Wahba, G. (1998). Support vector machines, reproducing kernel Hilbert spaces, and randomized

GACV. In Advances in Kernel Methods: Support Vector Learning (Edited by B. Schölkopf,

C. J. C. Burges and A. J. Smola), 125-143. MIT Press.

Wolsey, L. A. and Nemhauser, G. L. (1999). Integer and Combinatorial Optimization. John

Wiley, New York.

Zhu, J., Rosset, S., Hastie, T. and Tibshirani, R. (2003). 1-norm support vector machines.

Neural Inf. Process. Systems 16.

Department of Statistics and Operations Research, Carolina Center for Genome Sciences, Uni-

versity of North Carolina, CB 3260, Chapel Hill, NC 27599, U.S.A.

E-mail: yfliu@email.unc.edu

Department of Statistics and Operations Research, University of North Carolina, CB 3260,

Chapel Hill, NC 27599, U.S.A.

E-mail: wuy@email.unc.edu

(Received April 2005; accepted August 2005)

	1. Introduction
	2. SVM and psi-Learning
	3. Optimization of psi-Learning
	3.1. MIP
	3.2. Converting psi-learning into MIP
	3.3. Improved algorithm
	3.4. Choice of a

	4. Variable Selection
	5. Numerical Examples
	5.2 Breast cancer data

	6. Conclusion

