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Abstract: It is well-known that the support vector machine paradigm is equiva-

lent to solving a regularization problem in a reproducing kernel Hilbert space. The
squared norm penalty in the standard support vector machine controls the smooth-

ness of the classification function. We propose, under the framework of smoothing
spline ANOVA models, a new type of regularization to conduct simultaneous clas-

sification and variable selection in the SVM. The penalty functional used is the

sum of functional component norms, which automatically applies soft-thresholding
operations to functional components, hence yields sparse solutions. We suggest an

efficient algorithm to solve the proposed optimization problem by iteratively solving
quadratic and linear programming problems. Numerical studies, on both simulated

data and real datasets, show that the modified support vector machine gives very

competitive performances compared to other popular classification algorithms, in
terms of both classification accuracy and variable selection.

Key words and phrases: Classification, L1 penalty, smoothing spline ANOVA, spar-

sity, support vector machine.

1. Introduction

In classification problems, we are given a training data set of n examples

from two or more populations. For each example i, i = 1, . . . , n, in the train-

ing set, we observe an input vector xi ∈ R
d, and a label yi indicating one of

the classes to which the example belongs. The binary classification problem is

considered in this paper, and two classes are the positive class (labeled as +1)

and the negative class (labeled as −1). Support vector machine (SVM) classifiers

developed by Boser, Guyon, and Vapnik (1992) and Vapnik (1995) have gained

popularity due to promising performance in real-world applications such as text

categorization, image recognition, gene expression array data analysis, etc. How-

ever, the standard SVM decision rule utilizes all the input variables, which is not

desirable when some variables are not relevant or have too much noise. Hastie,

Tibshirani, and Friedman (2001) demonstrated that the standard SVM can suf-

fer from the presence of irrelevant variables. Appropriate variable selection is

therefore needed to obtain a compact classifier with improved accuracy.

Several methods have been proposed for conducting variable selection in the

SVM. In the linear SVM setting, Bradley and Mangasarian (1998) suggested the
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1-norm SVM which imposes an absolute value penalty on the coefficients, hence

produces a sparse directional vector for the separating plane. Recently Zhu,

Rosset, Hastie and Tibshirani (2003) studied the solution property of the 1-norm

SVM and suggested an algorithm to find the whole solution path over a range

of tuning parameters. Fung and Mangasarian (2004) developed a fast Newton

algorithm to solve the dual problem of the 1-norm SVM. Another class of meth-

ods are the kernel scaling methods proposed by Weston, Mukherjee, Chapelle,

Pontil, Poggio and Vapnik (2000) and Grandvalet and Canu (2002). A special

issue on variable and feature selection, published by Journal of Machine Learn-

ing Research in 2003, introduced other approaches like Bi, Bennett, Embrechts,

Breneman and Song (2003) and Rakotomamonjy (2003). Recently Bach, Lanck-

riet and Jordan (2004) considered the block 1-norm regularization for learning

a sparse conic combination of kernels. Their formulation can also be used for

variable selection in nonparametric setting.

Apart from the methods above, we formulate the SVM as a regularization

problem in the reproducing kernel Hilbert space (RKHS), with a novel form of

the penalty functional. The optimization problem consists of two parts: the data

fit is represented by the hinge loss function functional; the regularization penalty

is defined as the sum of function component norms. In the Gaussian regression

context, this penalty was proposed and studied by Lin and Zhang (2002), and

named the component smoothing and selection operator (COSSO). Following

their terminology, we refer to our method as the COSSO SVM. We show that the

COSSO SVM inherits the desired properties of the SVM and, more importantly,

it conducts variable selection and classification simultaneously. For the linear

classification, the COSSO SVM reduces to the 1-norm SVM.

This paper is organized as follows. Section 2 gives an overview of the SVM

regularization problem and the smoothing spline ANOVA framework for multi-

variate function estimation. Section 3 proposes the COSSO SVM method and

studies the existence and finite representation of the optimal classifier. In Section

4, we give an iterative algorithm to solve the COSSO SVM, and show that only

quadratic and linear programming problems are needed for implementation. We

also discuss the issue of parameter tuning in this section. Simulation results and

examples are presented in Section 5. The final discussion is given in Section 6.

The proofs of the theorems are in the Appendix.

2. SVM and Smoothing Functional ANOVA

2.1. Regularization problem

In supervised learning problems, our task is to learn a classification rule

f : R
d → {+1,−1} from the training set, so that we can assign a class label

to any new subject observed in the future. In the statistical framework, the
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training data (xi, yi), i = 1, . . . , n, are generally assumed to be independent
realizations of the random pair (X, Y ) that has a joint distribution P (X, Y ).
Define p(x) = Prob(Y = +1|X = x). When the 0-1 loss is used, the optimal rule
minimizing the expected loss is sign[p(x)−1/2]. This is known as the Bayes rule.

The linear SVM is a large margin classifier which separates two classes by
maximizing the margin between them. When a linear separation is not plausible,
the nonlinear SVM maps the data into a high dimensional feature space and then
implements the linear classification. It is well-known that the nonlinear SVM can
be cast as a regularization problem in a reproducing kernel Hilbert space (RKHS).
Let H be the RKHS associated with some reproducing kernel, and || · || be the
functional norm of any element in H. The standard SVM amounts to solving the
regularization problem

min
f∈H

1

n

n
∑

i=1

[1 − yif(xi)]+ + λ||f ||2. (2.1)

Here [τ ]+ = τ , for τ > 0; = 0, otherwise. The hinge loss function [1 − yf ]+ is a
convex upper bound on the misclassification rate and λ is the tuning parameter
that can be adaptively chosen by the data. Once the solution f̂ is obtained,
the classification rule is sign[f̂(x)]. See Wahba (1999) and Evgeniou, Pontil, and
Poggio (1999) for more details. Lin (2002) showed that, if the reproducing kernel
Hilbert space is rich enough (for example, associated with the Gaussian kernel or
the spline kernel), the solution to (2.1) approaches the Bayes rule sign[p(x)−1/2]
when n → ∞. This result provides a theoretical justification for the superior
performances of the nonlinear SVM.

2.2. Smoothing spline ANOVA

The smoothing spline analysis of variance (SS-ANOVA) models provide a
general framework for high dimensional function estimation, as shown in Wahba
(1990) and Gu (2002). In the SS-ANOVA, any function f(x) = f(x(1), . . . , x(d))
on a product domain X has a functional ANOVA decomposition

f(x) = b +

d
∑

j=1

fj(x
(j)) +

∑

j<k

fjk(x
(j), x(k)) + all higher-order interactions, (2.2)

where b is constant, fj’s are the main effects, and fjk’s are the two-factor inter-
actions. Each main effect fj , j = 1, · · · , d, is estimated in a reproducing kernel
Hilbert space, denoted by Hj = [1] ⊕ H̄j. The entire model space H is then the
tensor product space ⊗d

j=1Hj which admits the following tensor sum decompo-
sition

⊗d
j=1Hj = [1] ⊕

d
∑

j=1

H̄j ⊕
∑

j<k

[H̄j ⊗ H̄k] ⊕ · · · . (2.3)
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The space ⊗d
j=1Hj is also a RKHS, and its reproducing kernel is the sum of the

reproducing kernels of those component spaces. Each functional component in

(2.2) lies in a subspace in the orthogonal decomposition (2.3) of ⊗d
j=1Hj. The

identifiability of the components is assured by side conditions through averaging

operators. Without loss of generality, we assume X = [0, 1]d. A typical choice

of Hj is the `-th order Sobolev Hilbert space: W`[0, 1] = {g : g, g′, . . . , g(`−1)

are absolutely continuous, g(`) ∈ L2[0, 1]}. In particular, the space W2[0, 1] is an

RKHS when equipped with the norm

‖g‖2 =
[

∫ 1

0
g(t)dt

]2
+

[

∫ 1

0
g′(t)dt

]2
+

∫ 1

0
[g′′(t)]2dt, ∀g ∈ W2[0, 1].

The reproducing kernel is 1 + R(s, t), where

R(s, t) = k1(s)k1(t) + k2(s)k2(t) − k4(|s − t|), (2.4)

k1(t) = t−1/2, k2(t) = {k2
1(t)−1/12}/2, and k4(t) = {k4

1(t)−k2
1(t)/2+7/240}/24.

In the applications, usually only low order interaction terms in the decom-

position (2.2) are retained for easy computation and interpretation. Correspond-

ingly, the space ⊗d
j=1Hj represented in (2.3) is truncated to some proper subspace

F . We write F as

F = {1} ⊕q
α=1 F

α, (2.5)

where F1, . . . ,Fq are q orthogonal subspaces of ⊗d
j=1Hj. The space F is an

RKHS with the induced norm ‖ · ‖.

3. The COSSO SVM

3.1. Formulation

We propose a new type of regularization for the SVM, in the framework of

smoothing spline ANOVA, by solving

min
f∈F

1

n

n
∑

i=1

[1 − yif(xi)]+ + τ2
q

∑

α=1

‖P αf‖, (3.1)

where P αf is the projection of f onto the subspace Fα. The parameter τ is a

tuning parameter which should be properly chosen, and we will discuss the tuning

issue in Section 4. The penalty
∑q

α=1 ‖P
αf‖ is a sum of RKHS component

norms, different from the squared RKHS norm penalty used in the standard

SVM. Lin and Zhang (2002) proposed and studied this type of regularization

in the penalized likelihood regression setting. Two special cases of (3.1) will be
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considered in this paper. Assume F = {1} ⊕d
j=1 H̄j, then we have the additive

model:

min
f∈F

1

n

n
∑

i=1

[1 − yif(xi)]+ + τ2
d

∑

j=1

‖fj‖, where f(x) = b +

d
∑

j=1

fj(x
(j)).

Each H̄j is the Sobolev space W2[0, 1] associated with the reproducing kernel R

given in (2.4). In this case, the selection of main effect components is equivalent

to variable selection. The other important case is the two-way interaction model

which includes all the main effects and the second-order interaction effects:

min
f∈F

1

n

n
∑

i=1

[1 − yif(xi)]+ + τ2
[

d
∑

j=1

‖fj‖ +
∑

j<k

‖fjk‖
]

,

where f(x) = b +
∑d

j=1 fj(x
(j)) +

∑

j<k fjk(x
(j), x(k)). We have q = d(d + 1)/2.

The choice of the additive or two-way interaction form mainly depends on the

nature of data. When additive models are not adequate, two-way or higher order

interaction models should be considered.

In the context of linear classification, the COSSO SVM actually reduces to

the 1-norm SVM suggested by Bradley and Mangasarian (1998). The argument

is as follows. For the input space X = [0, 1]d, the linear SVM has the separating

hyperplane f(x) = b +
∑d

j=1 wjx
(j). Consider the linear function space F =

{1} ⊕ {x(1) − 1/2} ⊕ · · · ⊕ {x(d) − 1/2} with the usual L2 inner product on F :

(f, g) =
∫

X
fg. For each fj, its RKHS norm penalty becomes ‖fj‖ = (12)−1/2|wj |,

which is equivalent to the absolute value penalty used in the 1-norm SVM.

Define the penalty functional J(f) =
∑q

α=1 ‖P
αf‖. It is straightforward to

show that J(f) is convex in f and defines a pseudo-norm in the space F . The

following theorem guarantees the existence of the solution to (3.1).

Theorem 3.1. Let F be a reproducing kernel Hilbert space of functions over an

input space X . Assume that F can be decomposed as in (2.5). Then there exists

a minimizer of (3.1) in F .

Though the model space F is infinite dimensional, the solution to (3.1) can

be shown to lie in a finite dimensional subspace of F . This is an important

property also satisfied by the standard smoothing spline. We demonstrate later

that the finite representation of the solution makes it feasible to implement the

COSSO SVM in practice. Here is the representer theorem, its proof is similar to

that of the smoothing spline (Kimeldorf and Wahba (1971)).

Theorem 3.2. Let f̂ = b̂ +
∑q

α=1 f̂α be the minimizer of (3.1) with f̂α ∈ Fα.

Then f̂α ∈ span{Rα(xi, ·), i = 1, . . . , n}, where Rα(·, ·) is the reproducing kernel

of Fα.
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3.2. Equivalent optimization problem

In this section we derive an equivalent formulation of (3.1) which naturally

leads to an iterative algorithm. We introduce a new vector θ = (θ1, . . . , θq)
T and

consider the optimization problem

min
f∈F ,θ

1

n

n
∑

i=1

[1 − yif(xi)]+ + λ0

q
∑

α=1

θ−1
α ‖P αf‖2 + λ

q
∑

α=1

θα,

subject to θα ≥ 0, α = 1, . . . , q. (3.2)

Note there is only one tuning parameter τ in (3.1) while there are two parameters

(λ0, λ) in (3.2). In fact, λ > 0 is the real tuning parameter while λ0 > 0 is a

constant that can be fixed at any positive value. In Section 4, we will explain

that the redundancy of λ0 is intentional for computational convenience. We have

the following theorem.

Theorem 3.3. Set λ = τ 4/(4λ0). (i) If f̂ minimizes (3.1), setting θ̂α =

λ
1/2
0 λ−1/2‖P αf̂‖ for α = 1, . . . , q, then the pair (θ̂, f̂) minimizes (3.2). (ii) On

the other hand, if a pair (θ̂, f̂) minimizes (3.2), then f̂ minimizes (3.1).

Theorem 3.3 states that, with proper choice of parameters, solving (3.1) and

solving (3.2) always give the same optimal classifier f̂ . In practice, we choose

to solve (3.2) since its objective function can be easily handled by standard

quadratic programming and linear programming techniques.

The non-negative θα’s can be regarded as scaling parameters and they are

interpretable for the purpose of variable selection. Using the standard smoothing

spline results, we can show that the solution to (3.2) has the following form

f̂(x) = b +

q
∑

α=1

θ̂α

n
∑

i=1

ĉiRα(xi,x) = b +

q
∑

α=1

θ̂αf̂α(x). (3.3)

The expression in (3.3) suggests that whether θ̂α = 0 or not directly determines

the appearance of the αth component of the classification function. For the

additive model, if θ̂j = 0, the minimizer is then taken to satisfy ‖f̂j‖ = 0,

implying that the variable Xj is not selected. In this paper we use the convention

0/0=0.

4. Algorithm

Given any θ, we note that solving (3.2) is equivalent to solving the standard

SVM problem (2.1) with the reproducing kernel Rθ =
∑q

α=1 θαRα, where Rα is

the reproducing kernel of Fα. Lin, Wahba, Zhang and Lee (2002) showed that
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the solution f is given by

f(x) = b +
n

∑

i=1

ciRθ(xi,x).

Define c = (c1, . . . , cn)T, f = (f(x1), . . . , f(xn))T, y = (y1, . . . , yn)T, and the

diagonal matrix Y = diag[y1, . . . , yn]. Let 1n and 0n be the column vector of

ones and zeros with length n, and In be the identity matrix of dimension n.

With some abuse of notations, we also use Rα for the n×n matrix {Rα(xi,xj)},

i = 1, . . . , n, j = 1, . . . , n, and use Rθ for the matrix
∑q

α=1 θαRα. Then we have

f = Rθc + b1n, and (3.2) becomes

min
θ>0,b,c

1

n

n
∑

i=1

[1 − yif(xi)]+ + λ0

q
∑

α=1

θαc
TRαc + λ

q
∑

α=1

θα. (4.1)

4.1. Quadratic and linear programming

It is possible to minimize the objective function in (4.1) with respect to θ

and (b, c) simultaneously. We propose alternatively solving (b, c) with θ fixed

and solving θ with (b, c) fixed, since both problems can be easily solved using

standard software.

When θ is fixed, we need to solve the SVM associated with the kernel Rθ:

min
b,c

1

n

n
∑

i=1

[1 − yif(xi)]+ + λ0c
TRθc. (4.2)

Typically the dual problem of (4.2) is solved using the quadratic programming

problem (QP). Introducing the dual variables a = (a1, . . . , an)T and the matrix

H = (2nλ0)
−1Y RθY , the dual problem is

max L = −
1

2
a

THa, subject to yT
a = 0, 0n ≤ a ≤ 1n.

From the dual solution, we compute c=(2nλ0)
−1Y a. Define A=diag[a1, . . . , an].

The constant b is derived using the Karash-Kuhn-Tucker optimality condition as

b = [1T

nA(In − A)(y − Rθc)]/[a
T(1n − a)],

When (b, c) is fixed, we need to solve the linear programming (LP) under

linear inequality constraints. Let gα = Rαc and G be the matrix with αth

column gα, α = 1, . . . , q. The objective function in (4.1) becomes n−1
∑n

i=1

[

1−

yif(xi)
]

+
+ λ0c

TGθ + λθ
T1q. Using slack variables z = (z1, . . . , zn)T, the hinge

loss function can be replaced by zT1n plus the constraints z ≥ 0n and z ≥

1−Y (Gθ+b1n). In addition, the term λθ
T1q can be changed into the constraint
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θ
T1q ≤ M . The parameter M is a tuning parameter which replaces λ, and there

is one-to-one corresponding relationship between them. The final optimization

problem is

minz,θ
1

n
zT1n + λ0c

TGθ (4.3)

subject to z + θ
T(Y G) ≥ (I − Y b)1n, z ≥ 0n, θ

T1q ≤ M, θ ≥ 0q.

This is a linear optimization problem with polyhedral constraints. Popular al-

gorithms for solving the LP include the simplex method and the interior-point

method. Many optimization packages are in wide use as well, such as CPLEX,

MATLAB, GAMS, and MINOS. In our implementations, we used the MATLAB

optimization toolbox. The following algorithm is proposed to solve the COSSO

SVM.

1. Initialization: θ = 1q.

2. With θ fixed at current values, solve the dual problem of (4.2) for (b, c).

3. With (b, c) fixed at current values, solve (4.3) for θ.

4. With the new θ, go to Step 2 until convergence.

When Rθ is strictly positive definite, this algorithm is guaranteed to converge be-

cause the objective function in (4.1) is bounded below by zero, and each iteration

between Step 2 and Step 3 results in improved updates. It is well-known that

the LP is solvable in polynomial time, the algorithm given by Anstreicher (1999)

has the computational complexity O(n3/ log(n)L) where L is the bit length of

input variables for example. Since the complexity of the QP is O(n3), the overall

computation for one iteration is cubic in time. Numerical studies showed that

one-step update was often sufficient to give good approximate solutions.

4.2. Parameter tuning

Smoothing parameters balance the tradeoff between the hinge loss fit and

the penalty on the functional components. The choice of parameters is typ-

ically done by minimizing either an estimate of generalization error, or other

related performance measure. We consider minimizing the generalized compar-

ative Kullback-Liebler (GCKL) distance proposed in Wahba (1999). Given a

fitted classifier fλ, the GCKL is defined as:

GCKL(λ) = Ep

[ 1

n

n
∑

i=1

(1 − Yifλi)+
]

=
1

n

n
∑

i=1

[

pi(1 − fλi)+ + (1 − pi)(1 + fλi)+
]

. (4.4)
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Here fλ is fixed and the expectation is taken over the true conditional probability

p(x) = P (Y = +1|x = x). The GCKL can be seen as an upper bound on the

misclassification rate. Since the GCKL depends on the underlying distribution

P (X, Y ), it is only computable in simulations. For real data with unknown p(x),

the leave-out-one cross validation proxy of GCKL, 1/n
∑n

i=1[1 − yif
[−i]
λ (xi)]+,

can be used as a tuning criterion. Here f
[−i]
λ is the solution with the ith data

point deleted. In practice, we suggest using the five-fold cross validation (CV)

estimate of the GCKL. The training set is randomly split into five subsets of

approximately equal sizes. Then one subset is left out, and the COSSO SVM is

fitted using the other four subsets and the hinge loss is evaluated on the left-out

subset. This procedure is repeated five times in this fashion with each subset

being left out once. For the COSSO SVM, we need to tune λ, or equivalently

M in (4.3). The parameter λ0 seems redundant in addition to M , however the

proper choice of λ0 in (4.2) helps to solve the SVM in Step 2 more stably. In

practice, we suggest tuning λ0 once when Step 2 is executed for the first time,

and fixing it thereafter.

5. Numerical Examples

In this section we study the empirical performances of the COSSO SVM

through simulated examples and some data sets. The fitted classifier is evalu-

ated in its classification and variable selection performances. We simulate the

examples for both the additive model and two-way interaction model. In each

experimental setting, we generated 100 data sets for fitting and tuning, and an

extra test set of 10, 000 points to compute the expected misclassification rate

(EMR) of the classifier. We summarized the average EMR, model size, the fre-

quency of each variable appearing in the COSSO SVM classifier over the 100

runs.

5.1. Example 1: additive model

Consider an additive model with X = [0, 1]10. We generated X uniformly,

and the binary response Y with the conditional logit function

f(x) = 3x(1) + π sin(πx(2)) + 8(x(3))5 +
2

e − 1
ex(4)

− 6.

Therefore X(5), . . . , X(10) are uninformative in this example. The tuning param-

eter M was tuned by the GCKL. The Bayes misclassification rate was 0.216,

which is the optimal rate based on the true p. Consider the two settings n = 250

and n = 500. In Table 1 we report the average EMR and model size of the

additive COSSO SVM in 100 runs. The values in the parentheses are the stan-

dard errors of the corresponding mean values. Table 2 shows the appearance
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frequency of each variable in the final model. When n = 250, the COSSO SVM

always selected X (1), X(2), X(3), and selected X (4) in 98 runs. Sometimes some

of uninformative variables were selected as well. When the sample size increased

to 500, the COSSO SVM never missed any important variable, and it selected

unimportant variables with a much lower frequency. The left plot in Figure 5.1

shows that the COSSO SVM gave the correct true model in 74 of 100 runs.

Table 1. The average EMR and model size of the additive COSSO SVM classifier.

n EMR Model Size

250 0.234 (0.009) 5.07
500 0.225 (0.006) 4.46

Table 2. The appearance frequency of the input variables in the COSSO
SVM classifiers.

n X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

250 100 100 100 98 14 18 18 17 23 19

500 100 100 100 100 9 12 10 8 2 5
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Figure 5.1. The histogram of the model size given by the COSSO SVM in
the 100 runs when n = 500. The plot on the left is for the additive model,
and the plot on the right is for the two-way interaction model.

5.2. Example 2. two-way interaction model

In this example, we generated four input variables independently from

Unif[0, 1]. The true logit function contains the important main effects X (1), X(2)
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and their interaction:

f(x) = 4x(1)+π sin
(

πx(1)
)

+ 6x(2)−8
(

x(2)
)3

+3 cos
(

2π(x(1)−x(2))
)

−5.

The Bayes error is 0.155. We fit the two-way interaction model with n = 300 and

n = 500. Table 3 shows that the COSSO SVM never missed any important main

or interaction term in the 100 runs under each setting. When n increased from

300 to 500, the COSSO SVM selected the correct model size more precisely, as

shown in Table 4. The distribution of the model size in 100 runs is depicted in

Figure 5.1 (right plot), showing that the correct model was chosen by the COSSO

SVM in 66 of 100 runs.

Table 3. The average EMR and model size of the two-way interaction
COSSO SVM classifier.

n EMR Model Size

300 0.198 (0.016) 4.56 (1.73)
500 0.182 (0.010) 3.56 (1.03)

Table 4. The appearance frequency of the input variables in the COSSO
SVM classifiers.

n X1 X2 X3 X4 X1, X2 X1, X3 X1, X4 X2, X3 X2, X4 X3, X4

300 100 100 23 20 100 22 24 28 24 15

500 100 100 6 5 100 13 8 7 5 12

5.3. Data examples

Gestel, Suykens, Baesens, Viaene, Vantheienen, Dedene, Moor and Van-

dewalle (2004) conducted a benchmark study comparing a number of com-

monly used machine learning techniques including the SVM; least squares SVM

(LS-SVM); linear discriminant analysis (LDA); quadratic discriminant analysis

(QDA); logistic regression (Logit); the decision tree algorithm C4.5; Holte’s one-

rule classifier (oneR); instance based learners (IB); and the Naive Bayes method.

They found the least squares SVM (LS-SVM) with the radial basis function

(RBF) kernel performed best among six types of LS-SVMs. Thus we only in-

clude the LS-SVM with RBF kernel and linear kernel for our comparison. They

considered two instance based learners (IB1 and IB10) and two types of Naive

Bayes methods, and we only report the better performance of the two. There

are five binary classification datasets with continuous predictors in their study,

and we test the performance of the COSSO SVM on these datasets. The results

for the other algorithms are taken from their paper.

The datasets are the BUPA Liver Disorder data, the Johns Hopkins Univer-

sity Ionosphere data; the PIMA Indian Diabetes; the Sonar, Mines vs. Rocks
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data; and the Wisconsin Breast Cancer data. The basic features of the datasets
and the performances of different algorithms are summarized in Table 5. Follow-
ing Gestel, Suykens, Baesens, Viaene, Vantheienen, Dedene, Moor, and Vande-
walle (2004), for each dataset we randomly select 2/3 of the data for training and

tuning, and test on the remaining 1/3 of the data. We do this randomization 10
times and report the average test set performance and sample standard devia-
tion for the COSSO SVM. The best average test set performances are denoted in
bold face for each dataset in Table 5. The additive COSSO SVM is fitted and its
performances on these benchmark datasets are very competitive to that of the
other algorithms.

Table 5. Comparison of the test set performance of the COSSO SVM with
those of SVM, LS-SVM, LDA, QDA, Logit, C4.5, oneR, IB, Naive Bayes,
and the Majority Rule. The results of the other algorithms are taken from
the paper Gestel et al. (2004).

BUPA Ionosphere Pima Indian Sonar MR Wisc. BC

n 345 351 768 208 683

d 6 33 8 60 9

COSSO SVM 72.0 (5.0) 89.6 (2.6) 77.3 (2.3) 78.6 (2.6) 95.8 (1.2)

SVM (linear) 67.7 (2.6) 87.1 (3.4) 77.0 (2.4) 74.1 (4.2) 96.3 (1.0)
SVM (RBF) 70.4 (3.2) 95.4 (1.7) 77.3 (2.2) 75.0 (6.6) 96.4 (1.0)

LS-SVM (linear) 65.6 (3.2) 87.9 (2.0) 76.8 (1.8) 72.6 (3.7) 95.8 (1.0)

LS-SVM (RBF) 70.2 (4.1) 96.0 (2.1) 76.8 (1.7) 73.1 (4.2) 96.4 (1.0)

LDA 65.4 (3.2) 87.1 (2.3) 76.7 (2.0) 67.9 (4.9) 95.6 (1.1)
QDA 62.2 (3.6) 90.6 (2.2) 74.2 (3.3) 53.6 (7.4) 94.5 (0.6)

Logit 66.3 (3.1) 86.2 (3.5) 77.2 (1.8) 68.4 (5.2) 96.1 (1.0)

C4.5 63.1 (3.8) 90.6 (2.2) 73.5 (3.0) 72.1 (2.5) 94.7 (1.0)

oneR 56.3 (4.4) 83.6 (4.8) 71.3 (2.7) 62.6 (5.5) 91.8 (1.4)

IB 61.3 (6.2) 87.2 (2.8) 73.6 (2.4) 77.7 (4.4) 96.4 (1.2)
Naive Bayes 63.7 (4.5) 92.1 (2.5) 75.5 (1.7) 71.6 (3.5) 97.1 (0.9)

Majority Rule 56.5 (3.1) 64.4 (2.9) 66.8 (2.1) 54.4 (4.7) 66.2 (2.4)

The number of interaction terms in the two-way interaction model is d(d −
1)/2, which can be very large even for a moderate d. For example, in the Sonar,
Mine, Rock data there are 60 variables and the full two-way ANOVA model has
1, 770 interaction terms. This can cause great difficulty in both model fitting and

interpretation. Therefore, when d is large, additive models are often preferred,
and maybe sufficient. We also fitted the two-way interaction models for three
data sets having fewer than 10 variables (BUPA, Pima Indian and Wisconsin
BC), and they gave similar classification performances as additive models, but
took much longer to fit. For example, for the BUPA data, the average accuracy
of the two-way interaction model was 73.0% and that of the additive model was
72.0%.
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6. Discussion

The COSSO SVM is attractive in its compact mathematical formulation
and nice solution properties. The novel regularization setup naturally combines
smoothing and shrinkage-type operations on the ANOVA components of the
classifier. In addition, the COSSO SVM includes the 1-norm SVM as a special
case. Numerical studies demonstrate its desirable performances when compared
with other classification schemes.

The proposed idea provides a general framework for variable selection in the
SVM. We focus on the two-class classification in this paper, however, the idea
can be used in multi-class classification problems. See the technical report of Lee,
Kim, Lee, and Koo (2004). In addition, it is straightforward to generalize the
COSSO SVM to nonstandard classification situations where: (i) different costs
are used for different types of misclassification; (ii) the proportions of two classes
in samples do not represent those in populations. Let the false positive and
the false negative cost be c+ and c− respectively, the proportions of two classes
in populations be π+

0 and π−

0 , and those in samples be π+ and π−. Following
Lin, Lee, and Wahba (2002), we define the weight w function on the label by
w(+1) = c−π−π+

0 and w(−1) = c+π+π−

0 . The non-standard COSSO SVM can
be posed as

minf
1

n

n
∑

i=1

w(yi)[1 − yif(xi)]+ + τ2
q

∑

α=1

‖P αf‖. (5.1)

The algorithm suggested in Section 4 can be adapted to solve this problem.
For high dimension, low sample size data, d � n, linear classifiers often

give better performances than nonlinear ones (Hastie, Tibshirani, and Friedman
(2001)). This fact is related to the asymptotic results in Hall and Marron (2004):
when d → ∞ with n fixed, the pairwise distances between any two points are
asymptotically identical to each other, so the points form an n-simplex. Linear
classifiers are natural choices to discriminate two simplices. In those situations,
the L1-norm SVM (Bradley and Mangasarian (1998) and Zhu, Rosset, Hastie
and Tibshirani (2003)) may be sufficient for classification and variable selection.
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Appendix 1. Proof of Solution Existence

Proof of Theorem 3.1. Denote the functional to be minimized in (3.1) by

A(f) =

n
∑

i=1

[1 − yif(xi)]+ + τ2J(f).
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Then A(f) is convex and continuous, and

q
∑

α=1

‖P αf‖2 ≤ J2(f) ≤ q

q
∑

α=1

‖P αf‖2. (A.1)

Without loss of generality, we assume τ = 1.
Define F1 = ⊕q

α=1F
α. By (A.1) we have J(f1) ≥ ‖f1‖ for any f1 ∈ F1.

Let RF1 be the reproducing kernel of F1 and 〈·, ·〉F1 be the inner product in F1.

Write a = maxn
i=1 R

1/2
F1

(xi,xi). By the reproducing property of the kernel we
have, for any f1 ∈ F1 and i = 1, . . . , n,

|f1(x)| = |〈f1(·), RF1 (xi, ·)〉F1 | ≤ ‖f1‖〈RF1(xi, ·), RF1 (xi, ·)〉
1
2
F1

= ‖f1‖R
1
2
F1

(xi,xi) ≤ a‖f1‖ ≤ aJ(f1). (A.2)

Let n+ and n− be, respectively, the number of sample points from the +1 and

−1 classes. Define ρ = min{2n+/n, 2n−/n}. Consider the set

D = {f ∈ F : f = b + f1,with b ∈ {1}, f1 ∈ F1, J(f) ≤ ρ, |b| ≤ 1 + a}.

Then D is a closed, convex, and bounded set. By Theorem 4 of Tapia and
Thompson (1978, p.162), there exists a minimizer of (3.1) in D. Let the minimizer

be f̄ . Direct calculation gives us

n
∑

i=1

[1 − yif(xi)]+ =
∑

yi=+1

[1 − f(xi)]+ +
∑

yi=−1

[1 + f(xi)]+,

hence A(+1) = 2n−/n for the function f(x) ≡ +1 and A(−1) = 2n+/n for the
function f(x) ≡ −1. Since the constant functions +1 and −1 are both in D, we

must have A(f̄) < min{A(+1), A(−1)} = ρ.
On the other hand, for any f 6∈ D, one of the following must happen.

(i) When J(f) > ρ, we have A(f) ≥ J(f) > ρ.
(ii) When J(f) ≤ ρ, f = b + f1, f1 ∈ F and b > 1 + a, we use (A.2) to get that,

for any i = 1, . . . , n, b + f1(xi) ≥ b − a > 1 and
∑

yi=+1

[1−b1−f1(xi)]++
∑

yi=−1

[1+b1+f(xi)]+ ≥
∑

yi=−1

[1+b1+f(xi)]+ > 2n−.

We then have A(f) > 2n−/n.
(iii)When J(f) ≤ ρ, f = b + f1, f1 ∈ F and b < −1 − a, we use (A.2) to get

that, for any i = 1, . . . , n, b + f1(xi) ≤ b + a < −1 and
∑

yi=−1

[1−b1−f1(xi)]++
∑

yi=−1

[1+b1+f(xi)]+ ≥
∑

yi=+1

[1−b1−f(xi)]+ > 2n+.

We then have A(f) > 2n+/n.
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Hence for any f 6∈ D, we have A(f) > A(f̄). Therefore f̄ is a minimizer of (3.1)

in F .

Appendix 2. Proof of Representer Theorem

Proof of Theorem 3.2. For any f ∈ F , we can write f = b +
∑q

α=1 fα with

fα ∈ Fα. Let the projection of fα onto span{Rα(xi, ·), i = 1, . . . , n} ⊂ Fα be

denoted by gα, and its orthogonal complement by hα. Then fα = gα + hα,

and ‖fα‖
2 = ‖gα‖

2 + ‖hα‖
2, α = 1, . . . , q. Since the reproducing kernel of F is

1 +
∑q

α=1 Rα is, we have

f(xi) = 〈1 +

q
∑

α=1

Rα(xi, ·), b +

q
∑

α=1

(gα + hα)〉 = b +

q
∑

α=1

〈Rα(xi, ·), gα〉,

where 〈·, ·〉 is the inner product in F . Therefore (3.1) can be written as

1

n

n
∑

i=1

[

1 − yi(b +

q
∑

α=1

〈Rα(xi, ·), gα〉)
]

+
+ τ2

q
∑

α=1

(‖gα‖
2 + ‖hα‖

2)
1
2 ,

and any minimizer f satisfies hα = 0, α = 1, . . . , q. The theorem is proved.

Proof of Theorem 3.3. Denote the functional in (3.1) by A(f), and the func-

tional in (3.2) by N(θ, f). For any θα ≥ 0, f ∈ F , we have

λ0θ
−1
α ‖P αf‖2 + λθα ≥ 2λ

1/2
0 λ1/2‖P αf‖ = τ2‖P αf‖,

and the equality holds if and only if θα = λ
1/2
0 λ−1/2‖P αf‖. Therefore N(θ, f) ≥

A(f) for any θα ≥ 0, α = 1, . . . , q, and f ∈ F , and the equality holds if and only

if θα = λ
1/2
0 λ−1/2‖P αf‖, α = 1, . . . , q.
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