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SMOOTHED FUNCTIONAL INVERSE REGRESSION

Louis Ferré and Anne-Françoise Yao
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Abstract: A generalization of Sliced Inverse Regression to functional regressors was

introduced by Ferré and Yao (2003). Here we first address the issue of the identifi-

ability of the Effective Dimension Reduction (EDR) space. Next, we estimate the

covariance operator of the conditional expectation by means of kernel estimates.

Consistency is proved and this extends the results of Zhu and Fang (1996) in the

multivariate context to the functional case. We also suggest a new way for esti-

mating the EDR Space for functional data which avoids inverting the covariance

operator of the regressor. We apply our method to a prediction problem where the

regressors are spectrometric curves.

Key words and phrases: Dimension reduction, functional data analysis, inverse

regression, prediction.

1. Introduction

We consider the Tecator data set where the problem is one of predicting

the fat content of pieces of meat from a near infrared absorbance spectrum. Fat

content is evaluated by analytic chemistry with high cost, while infrared analysis

is substantially cheaper. Achieving a good prediction of the fat content from the

infrared analysis is an economic challenge for the Tecator company. The point

is now that while the response variable Y , the fat content, is real, the regressor

variable X, the spectrum, is a curve, see Figure 1. The abscissa correspond to the

wavelength (100 channels) and the ordinates to the absorbance, that is − log10 of

the transmittance measured by the spectrometer. The solution to this problem

is clearly a functional regression with a real response. Functional data analysis is

now an important research field with many applications. A substantial body of

work has been developed in this area and an extensive review is given in Ramsay

and Silverman (1997). In particular, functional regression has been investigated

from the linear point of view (see e.g., Cardot, Ferraty and Sarda (1999)), but

also by kernel nonparametric regression in Ferraty and Vieu (2002).
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Figure 1. The regressor curves.

At the same time, Dauxois, Ferré and Yao (2001) have proposed a semi-

parametric model for Hilbertian variables which corresponds, when the response

is real (Ferré and Yao (2003)), to the functional version of Li’s Sliced Inverse

Regression (SIR) (Li (1991)). This model is:

Y = g

(∫ b

a
θ1(t)X(t), . . . ,

∫ b

a
θD(t)X(t), ε

)
, (1)

where θ1, . . . , θD are D functions in L2([a, b]), the space of square integrable

functions from [a, b] into <, linearly independent and spanning a subspace ED, ε

is a real random variable independent of X and g is a function from <D+1 to <.

The space ED is usually called the Effective Dimension Reduction (EDR) space.

In the multivariate context, SIR has led to numerous works either for de-

termining the dimensionality, such as Li (1991), Schott (1994), Ferré (1998) and

Velilla (1998), or for improving the method. In this latter case, different es-

timates of the covariance of the conditional mean have been proposed in Hs-

ing and Carroll (1992), Zhu and Ng (1995) and Zhu and Fang (1996). More-

over, other methods have been proposed for estimating ED: pHd (Li (1992)),

SAVE (Cook (1991)), PIR (Bura and Cook (2001)), MAVE (Xia, Tong, Li and

Zhu (2002)), estimation of the Central Mean Subspace (Cook and Li (2002))

and use of the conditional kth moment (Yin and Cook (2002)). In functional

analysis, the reduction of dimensionality is sizeable since this sufficient subspace

(sufficient since the relationship between Y and X only involves the projection

of X onto ED) is assumed finite.

Unlike the multivariate SIR, functional inverse regression has to face up to

some technical difficulties. Let Γ (respectively Γe) be the covariance operator

of X (resp. E(X|Y )). A previous problem arises since, under the assumptions

made on X, the operator Γ is a Hilbert-Schmidt operator and not invertible

as an operator from L2([a, b]) to L2([a, b]). By considering some restrictions, a
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definition of an “inverse” operator, Γ−1, is given and, by using the results of

Dauxois et al. (2001), it can be proved that the EDR subspace contains the Γ-

orthonormed eigenvectors of Γ−1Γe associated with the D positive eigenvalues.

This is the generalization of Li (1991) on SIR to the infinite-dimensional case.

The operator Γ−1 is unbounded so that the identifiability of the EDR space is

not insured. Similarly to He, Muller and Wang (2003) for functional canonical

analysis, we give a sufficient condition on X and Y that guarantees the existence

of a basis of the EDR space. These issues are investigated in Section 2.

In Ferré and Yao (2003), the properties of Functional SIR are studied when

Γe is estimated by slicing the range of Y . Here, we propose in Section 3 a new

version of Functional SIR obtained by replacing the slicing by kernel smoother

regressions: the Functional Inverse Regression (FIR). For multivariate regressors,

this approach has been tackled by Zhu and Fang (1996), who show the consistency

of the obtained estimate. Our purpose here is to show the consistency of the

estimate in the functional context.

The fact that Γ−1 is unbounded leads to estimating it by an ill-conditioned

matrix. While in Ferré and Yao (2003) a method of filtering is used to overcome

this problem, we suggest a different way to provide a consistent estimate of ED

in Section 4.

Section 5 is devoted to applications. We first give simulations that show

the efficiency in practice of FIR. Then, the spectrometric data set is treated.

Our model is particularly well adapted to the problem mentioned above since

predictions can be obtained after ED and g have been estimated. Our approach

is compared to several competitors, most of them relying on dimension reduction

reached by means of PCA. The conclusion is that FIR leads to better results

than PCA and that, combined with simple prediction methods, it can compete

with more sophisticated approaches.

2. The Model

Let (X,Y ) be a random variable that takes values in H × <, where H is a

functional space, for instance H = L2([a, b]). Actually, our purpose extends to

the more general context where H is a general Hilbert space with inner product

< ·, · > and associated norm denoted by ||.||. While all the proofs are given in

this general context, the remainder of the paper may be read with H considered

either as a Hilbert space or simply as a functional space.

We assume that X is centered, without loss of generality, and that

(A-1) E
(
‖X‖4

)
< +∞.

Under Assumption (A-1), the covariance operators of X and E(X|Y) exist and

are denoted Γ and Γe.

(A-2) Γ is positive definite.
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Under Assumption (A-1), both Γ and Γe are Hilbert-Schmidt operators. The

operator Γ is therefore compact and is not invertible as defined from H to H. We

denote by (δi)i=1,...,∞ the sequence of eigenvalues of Γ, (ui)i=1,...,∞ the sequence of

associated eigenvectors and (π)i=1,...,∞ the sequence of associated eigenprojectors.

For convenience, for (x, y) ∈ H ×H, let x⊗y denote the tensor product operator

from H to H defined as the operator which associates to any z in H, (x⊗y)(z) =<

x, z > y. Note that we have Γ = E(X ⊗ X). We let RΓ be the range of Γ and

R−1
Γ = {h ∈ H : h =

∑∞
i=1 1/δi(ui ⊗ ui)(f), f ∈ RΓ}. We have that (restricted to

R−1
Γ ) Γ is a one-to-one mapping from R−1

Γ onto RΓ whose inverse, Γ−1, is defined

by Γ−1 =
∑∞

i=1(1/δi)πi.

We denote by (ξi)i=1,...,∞ the coordinates of X on the Hilbertian basis

(ui)i=1,...,∞. If H = L2([a, b]), X =
∑∞

i=1 ξiui is the Karunen-Loeve decomposi-

tion of the stochastic process X.

Condition 1. For any b in H, there exists a vector C in <D satisfying E(<

b,X > |B) = C ′B with B′ = (< θ1, X >, . . . , < θD, X) >).

Using these notations, Model (1) becomes

Y = g(< θ1, X >, . . . , < θD, X >, ε),

and, under Condition 1, it can be shown that the EDR subspace contains the

Γ-orthonormed eigenvectors of Γ−1Γe associated with the D positive eigenvalues.

A basis of the EDR space is thus given by the eigenvectors of Γ−1Γe, but the

operator Γ−1 is not bounded and there is no guarantee that these eigenvectors

exist in H.

(A-3)
∑∞

i=1

∑∞
j=1(1/δ

2
i δj)E(E(ξi|Y )E(ξj |Y ))2 < ∞.

Theorem 2.1. Under (A-1), (A-2) and (A-3), the eigensubspace associated with

the D positive eigenvalues of Γ−1Γe is well defined in H.

The proof is given in Appendix 6.1. This theorem is the analogue of the

results given in He et al. (2003) for functional canonical analysis.

3. Estimation of the Conditional Covariance Operator

Let (Xi, Yi), be an i.i.d. sample, i = 1, . . . , n. The estimation of the EDR

space is obtained by replacing the covariance operators by suitable estimates just

as in Li (1991), although here we do not use the same form for the conditional

covariance operator. The operator Γ is estimated by Γn = (1/n)
∑n

i=1(Xi−X)⊗
(Xi − X) where X is the empirical mean of X, and Γe remains to be estimated.

We consider a kernel based estimate.

Assume that Y has a probability density f and let r(·) = E(X | Y = ·). The

Nadaraya-Watson estimate of f is f̂ and, for any y in <, a kernel estimate of
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r(y) is given by

r̂(y) =

∑n
i=1 XiK(Yi−y

h )
∑n

i=1 K(Yi−y
h )

=
m̂

f̂
,

where h is the bandwidth and K(.) an order k kernel. To avoid the effect of the

small values of f , we consider fen = max(f, en) and f̂en = max(f̂ , en) instead of

f and f̂ , (en)n∈ℵ∗ being a sequence of numbers which tends to zero. Thus take

r̂en = m̂/f̂en . We estimate Γe by the operator

Γ̂e =
1

n

n∑

i=1

r̂en(Yi) ⊗ r̂en(Yi) − X ⊗ X,

which is the functional version of the Zhu and Fang (1996) estimate for a multi-

variate regressor. Now we make the following assumptions

(A-4) f and r belong to Ck;

(A-5) K(·) is an order k kernel with compact support;

(A-6) there exists d1 and d2 satisfying supy |f (k)(y)| < d1 and supy ||r(k)(y)|| < d2;

(A-7) h ' n−c1 and en ' n−c2, where c1 and c2 are positive scalars such that

(c2/k) + (1/4k) < c1 < 1/4 − c2;

(A-8) the function ϕ(.) = E(||X||2|Y = .) is continuous;

(A-9)
√

n E
(
‖r(Y )‖2 I{f(Y )<en}

)
tends to 0.

The consistency of Γ̂e is ensured by the following theorem whose proof is

given in Appendix 6.2 (||.||hs here denotes the Hilbert-Schmidt norm for opera-

tors).

Theorem 3.1. Under (1), (A-1) and (A-4) to (A-9), we have ||Γ̂e − Γe||hs =

Op(1/
√

n).

A central limit theorem is also obtained and its proof is presented in Ap-

pendix 6.3:

Theorem 3.2. Under (1), (A-1) and (A-4) to (A-9),
√

n(Γ̂e − Γe) converges in

distribution, in the space of Hilbert-Schmidt operators, to a centered Hilbertian

Gaussian variable with covariance operator Var (r(Y ) ⊗ r(Y )).

These results extend those obtained by Zhu and Fang (1996) in a multivariate

context. In addition, the consistency of Γn is derived from the Law of Large

Numbers for Hilbertian variables, see, e.g., Fortet (1995).

Theorem 3.1 offers an interesting perspective for functional inverse regression

because determining the optimal bandwidths by cross-validation is an advantage

of kernel covariance estimates over sliced covariance estimates. Indeed, even if the

method is not sensitive to the number of slices, H, one can artificially reduce the

dimension by taking too few slices. While this can be overcome in the multivariate
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context by choosing H larger than or at least close to the number of regressors, no

such guideline is available in the infinite-dimensional case and, unlike the kernel

approach for the bandwidth, no automatic and optimal procedure for selecting

H has been available.

4. Estimation of the EDR Space

In a multivariate context, the estimation of the EDR space does not pose

any problem since Γ−1 is accurately estimated by the inverse of the empirical

covariance matrix of X. Unfortunately, this is no longer true for functional inverse

regression if we assume that Γ is a Hilbert-Schmidt operator: this inverse might

be ill-conditioned. To overcome this difficulty Ferré and Yao (2003) suggest to

replacing Γn by a generalized inverse of π̂knΓnπ̂kn , where π̂kn is the eigenprojector

associated with the first kn eigenvalues of Γn. The authors use an estimate of Γe

based on slicing and they call the method Functional Sliced Inverse Regression

(FSIR). Computation of FSIR relies on the choice of two parameters: the number

of slices H and the value of kn.

An alternative is derived from the following observation. Under our model,

Γ−1Γe has finite rank. Then, it has the same eigen subspace associated with

positive eigenvalues as Γ+
e Γ, where Γ+

e is a generalized inverse of Γe. Now, we

avoid the inversion of Γ by estimating the EDR space from the spectral decom-

position of Γ̂+
e Γn, where Γ̂+

e is a generalized inverse of Γ̂e. The price to pay is

that computing Γ̂+
e requires the knowledge of D.

Let (α1, . . . , αD) be the decreasing sequence of eigenvalues of Γ+
e Γ, assumed

to be distinct, and let β1, . . . , βD (respectively β̂1, . . . , β̂D) be the eigenvectors,

Γ -orthonormed, of Γ+
e Γ (resp., Γn -orthonormed of Γ̂+

e Γn). From Theorem 3.1,

and by using the consistency of Γn, it is easy to derive the consistency of Γ̂+
e Γn.

Then we deduce that (1/
√

n)||Γ̂+
e Γn − Γ+

e Γ||hs is bounded in probability by a

constant M . The consistency of the estimated EDR space is thus ensured by the

following theorem.

Theorem 4.1. Under (1) and (A-1) to (A-9), if (1/
√

n) ≤ [(mini=1,...,D | αi −
αi−1|)/(2M )], then, for any i = 1, . . . , D, ||β̂i − βi|| = Op(1/

√
n).

This result is a straightforward application of perturbation theory for linear

operators, see, e.g., Kato (1966).

Determining D can be tackled in different ways and it depends on the goal

of the analysis. If the purpose is prediction, the dimensionality can be treated

as a parameter of the whole model and adjusted according to the performance

of the prediction. This has been successfully experimented with in applications.

But FIR can also be used in a descriptive way, for instance to provide relevant

scatter plots; in that case it is necessary to estimate D a priori. We suggest
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evaluating D by applying to Γe a criterion measuring the quality of estimation of

its eigensubspaces by those of Γ̂e. This criterion has been proposed to determine

the dimensionality in multivariate SIR by Ferré (1998).

Let Πq (respectively Π̂q) be the eigenprojector associated with the q largest

eigenvalues of Γe (resp. Γ̂e), we consider the loss function

R(q) = 1 − 1

q
E(tr(ΠqΠ̂q)).

Let Un =
√

n(Γ̂e−Γe) and (λi)i=1,...,D+1 (respectively (λ̂i)i∈ℵ∗) be the increasing

sequence of eigenvalues of Γe (respectively Γ̂e) with λD+1 = 0. We assume, to

simplify, that the λi, i = 1, . . . , D, are distinct and, for i = 1, . . . , D, let bi be

the eigenvector associated with λi. An estimate of R(q) is given by the following

theorem.

Theorem 4.2. If 1/
√

n < mini<j(λi − λj)/2C where ||Un||∞ is bounded in

probability by C, if X satisfies Condition (1), if (A-1) and (A-4) to (A-7) are

satisfied and if, for any (i, j), V̂ar (< r(Y ), bj >< r(Y ), bi >) is the empirical

variance of (< r̂(Y ), bj >< r̂(Y ), bi >), then for q = 1, . . . , D − 1,

R̂(q) =
1

nq

q∑

i=1

D∑

j=q+1

V̂ar (< r(Y ), bj >< r(Y ), bi >)

(λj − λi)2

is an estimate of R(q) which satisfies E(R̂(q)) = R(q) + O(n−3/2).

This result is again a straightforward application of perturbation theory

associated with elementary calculus in Hilbert spaces.

Actually, R̂(q) depends on the unknown D. We suggest using the same

strategy as in Ferré (1998): compute R̂(q,D) for D = 1, 2, . . . and q = 1, . . . , d,

and retain the dimension D as the common value of q for which R̂(q+1, d) clearly

departs from zero.

5. Applications

5.1. Algorithm

We apply the following algorithm.

(1) Center X;

(2) compute Γn;

(3) compute the kernel estimate of r(y), the bandwidth h being selected by cross-

validation;

(4) compute Γ̂e, the empirical variance of r(Y );

(5) perform the eigenvalue decomposition of Γ̂e;

(6) determine D by computing the R̂(q,D)’s;
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(7) perform the eigenvalue decomposition of (Γ
1/2
n (Π̂DΓ̂eΠ̂D)+Γ

1/2
n )+ where Π̂D

is the eigen projector associated with the D largest eigenvalues of Γ̂e;
(8) for each i = 1, . . . , D, compute β̂i = α̂i(Π̂DΓ̂eΠ̂D)+Γ

1/2
n η̂i, where (α̂i)i=1,...,D

are the D largest eigenvalues of (Γ
1/2
n (Π̂DΓ̂eΠ̂D)+Γ

1/2
n )+ and (η̂i)i=1, . . . ,D

are the associated eigenvectors.

Note that in a prediction context, steps (5) and (6) can be omitted and step
(7) can be replicated for several values of D.

5.2. Simulations

In this section, we report on some simulations that provide an insight in

the behavior of our approach in practice. Our goal is to evaluate the ability of
FIR to estimate the EDR space, but we also want to test how it behaves as a
preliminary step for predictions.

Data were generated according to the following model:

Y = sin(
π

2
< θ1, X >)+ < θ2, X > +ε,

where X is a standard Brownian motion, ε is a N (0, 1) variable, and the EDR
space was generated by the functions satisfying θ1(x) = (2x−1)3 +1 and θ2(x) =
cos(π(2x − 1)) + 1.

The sample size was n = 500 and each curve X was evaluated at p =
100 points. Since prediction is one of our goals, the sample was divided into
three parts: a training sample to estimate the EDR space (size 300), S1; a
monitoring sample (size 100) to select the best ”parameters” of the prediction
method, S2; and a test sample to compute the prediction error, S3. We performed

100 replications of the simulations in order to compute the average and standard
error of the criteria used to evaluate the performance of the method.

To compute Γ̂e on S1, a bandwidth selection was required and cross-valid-
ation returned values around 1.8 for each curve. This value was stable over the
replications. We performed the analysis with the true value D = 2 and the

erroneous D = 3. In Table 1, we give the corresponding eigenvalues for a single
simulation, those values being very stable over the simulations. The two analyses
are not nested and the first two eigenvalues are of course different. Moreover, the
third eigenvalue in the second analysis is almost 0, indicating that the correct
dimension of the model is indeed 2. This fact was also confirmed by the criterion
R(q): we found R̂(q,D) ≤ 0.1 for D = 1, 2, 3 and q = 1, 2 and R̂(3, 3) > 0.45.

Table 1. Eigenvalues for the simulations.

k 1 2 3

D = 2 0.481 0.002

D = 3 0.01 0.02 6e−18
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Next, to study the ability of our method to estimate the EDR space, we used

R2(B̂), the squared trace correlation between the EDR space and its estimates,

i.e., the average of the squared coefficients between < θ̂1, X >, < θ̂2, X > and <

θ1, X >, < θ2, X > . Table 2 reports its averaged values over the 100 simulations

and it shows that our method yielded rather good results. Moreover, FIR worked

better than FSIR (this method used the optimal kn = 2), even if the variance

of R2(B̂) was larger for FIR. To confirm this, we observed that in 84% of the

simulations FIR outperformed FSIR.

Table 2. Average over the 100 replications of R2(B̂) and SEP (standard

error in parenthesis.

FIR FSIR

R2(B̂) 0.925 0.891

(0.060) (0.016)

SEP 0.382 0.464

(0.070) (0.042)

Finally, we compared the predictive performance of FIR and FSIR. Here,

the dimension of the EDR space was known to be two and the amount of data

being rather large, we selected a bivariate Nadaraya-Watson kernel smoother to

estimate g. Computed on S2, the optimal bandwidth was around 1 for every

replication. Finally, we computed the Standard Error of Prediction, SEP, on S3,

for the bivariate kernel smoother applied to the indices (< θ̂1, X >,< θ̂2, X >)

of FIR and FSIR. The averages of the SEP over the hundred replications are

also reported in Table 2. On the average, FIR provided better results than FSIR

and we also observe that FIR outperformed FSIR for 85% of the replications.

Finally, we tested the effects of the parameters D and kn for FIR and FSIR by

also computing the SEP for the erroneous values D = 3 and kn = 3. We got,

respectively, 0.46 and 0.53 for the averaged SEP which points out the crucial role

of those parameters.

5.3 Application to spectrometric data

We return to our initial problem. We have n = 215 i.i.d. observations (Xi, Yi)

of the couple (X,Y ), where we recall that X is the spectrum of absorbance

discretized at one hundred points and Y is the lipid rate. This data set has been

treated in several ways and, in order to compare efficiently our results with those

analyses, we have adopted the same scheme as Thodberg (1995): the sample has

been divided into a training sample, S11 (size 129) used to estimate the EDR

space, a monitoring sample S12 (size 43) used to estimate the function g, and a
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testing sample, S2 (size 43) used to compute the Standard Error of Prediction

(SEP).

The computation of Γ̂e was performed from S11 and for each inverse regres-

sion the bandwidth selected by cross-validation was around 2. The estimation of

R̂(q) led to a ten-dimensional solution since all R̂(q,D) were close to 0 for any

q ≤ 10 and they presented a gap for q > 10 when D > 10. The eigenvalues of

FIR are given in Figure 2. We also give in this Figure the eigenvalues obtained

by FSIR for H = 20 and kn = 10. This latter value was selected after several

trials as the one which provided the best SEP. Note also that the ten eigenvalues

of FIR are very close to the first ten eigenvalues of FSIR. We give in Figure 3

the ten curves that span the estimated EDR space.
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Figure 2. Eigenvalues of FIR (cross)and FSIR (circle).
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Figure 3. The ten curves spanning the EDR space.

Unfortunately, any nonparametric method like kernel regression, spline re-

gression or wavelet regression, is excluded from estimating g (recall that we deal
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with a ten-dimensional regressor but only 43 observations in S12 for prediction).

A method insensitive to the curse of dimensionality is required. Multi-layer

perceptrons were used since, due to their low Vapnick-Chernonenkis dimension

(Vapnick (1998)), they are not affected by this curse.

Then, a Multi-layer Neural Network with the projections of X onto the space

ED as input and Y as output was computed. Actually, Ferré and Villa(2005)

show that any functional inverse regression (it can be FSIR, FIR, or any other

method performing functional inverse regression) can be used as a relevant first

stage to compute networks with functional inputs: the functional data are first

projected onto a convenient basis (spanning the EDR space) before a (multi-

variate) Neural Network is applied. They also show that the estimated weights

converge to the optimal weights of the networks. Previously, other projections

have been suggested. For instance, in Conan-Guez and Rossi (2002), spline basis,

orthonormal polynomial, Fourier basis, are considered; but the main drawback

is that one does not know which elements of the basis are relevant. In order to

overcome this problem, the basis can be extracted from the data themselves by

means of Principal Component Analysis (PCA) and this is the choice of Borggard

and Thodberg (1992) and Thodberg (1995). Unfortunately, this only depends

on X while ”conditional” information is required here, and this is exactly what

FIR does.

The training sample S11 was used by Borggard and Thodberg (1992) and

Thodberg (1995) to compute the first ten principal components without justifica-

tion of the choice of this dimension. Those ten multivariate regressors were used

to perform linear regression (lm) and several Neural Networks: a classical six hid-

den unit multi-layer perceptron (NN1) and two Bayesian neural networks (NN2)

and (NN3), using previous knowledge on the data set (see Thodberg (1995) for

details). When FIR is used to estimate the EDR space, the optimal architecture

is found to have five hidden units. Note that we have performed the analysis with

several values of D and several architectures for the network, but the lower SEP

has been reached for a five hidden unit network and D = 10 (this confirms that

ten is indeed the correct dimension). On the other hand, we have built different

networks that reached the best SEP for NN1 when the number of PC’s is larger

than ten.

We give in Table 3 the values of the SEP for the methods mentioned above.

Let us first examine the SEP computed for (lm), the linear regression on the

ten PCs, and the linear regression (flm) on the projection of X onto the EDR

space. The results are very close. This is explained by the fact that, for linear

regression, the prediction based on X is correlated with the prediction based

on the projection of X onto the EDR space (simple calculations prove it). The

slight difference observed here results from the ’approximation’ of X by the ten
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PCs. Anyway, linear regression is not a suitable solution here. We also include

in the comparison the functional nonparametric regression (fnp) of Ferraty and

Vieu (2002), based on a Nadaraya-Watson estimate computed from a semi-norm

in the regressor space. Even if it outperforms the linear regressions, (fnp) is still

far from obtaining the best results.

Table 3. Standard Error of Prediction (SEP) for the compared methods.

Method Linear Non- FIR FSIR

Reg. parametric +Linear +N.N.

SEP 2.79 2.13 2.75 0.56

Method N.N. N.N. N.N. FIR

early with with +N.N.

stopping prunning committee

SEP 0.65 0.55 0.52 0.55

The best performances are reached by Neural Networks; note that all these

methods provide rather close results. Particularly, using FIR or FSIR only makes

a slight difference in favor of FIR. Neither of them outperforms the Bayesian

approach based on committee, but the combination of FIR and Neural Networks

provides results similar to the Bayesian network with pruning based on a single

evidence. Thus, it can compete with sophisticated methods while being simple

and requiring much less computational time. Our feeling is that the results

could have been improved by combining FIR with a Bayesian network, but this

is beyond the scope of the paper. The main point here is that FIR combined

with neural networks works better than PCA combined with neural networks:

since the same type of neural networks is involved, the improvement only results

from the performance of FIR.

6. Appendix-Technical Results

6.1. Proof of Theorem 2.1

To get the Γ-orthonormed eigenvectors of Γ−1Γe, β1, . . . , βD, it is convenient

to determine η1, . . . , ηD, the orthonormed eigenvectors of Γ−1/2ΓeΓ
−1/2, and to

use, for any d = 1, . . . , D, βd = Γ−1/2ηd.

The proof the theorem is close to the one used by He et al. (2003) to define the

canonical functions in functional canonical analysis, we use the same definitions.

We denote by FXX , the range of Γ1/2 =
∑∞

i=1 δ
1/2
i ui ⊗ ui. This is FXX = {u ∈

H,
∑∞

i=1(1/δi) < u, ui >2< ∞}. As an operator from F−1
XX = {h ∈ H,h =∑∞

i=1(1/δi)(ui ⊗ ui)u, u ∈ FXX} onto FXX , Γ1/2 is a one to one mapping whose

inverse is denoted by Γ−1/2. We first prove the existence of the vectors η ′
ds.
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For that, we show that, for any vector u ∈ FXX , ΓeΓ
−1/2u ∈ FXX . From the

definition of Γ1/2, we have

Γ−1/2 =
∞∑

i=1

1

δ
1/2
i

ui ⊗ ui

and, from the decomposition of X on the basis (ui)i=1,...,∞,

Γe =
∞∑

i=1

∞∑

j=1

E(E(ξi|Y )E(ξj |Y ))(ui ⊗ uj).

Thus, we have

ΓeΓ
−1/2u =

∞∑

i=1

∞∑

j=1

E(E(ξi|Y )E(ξj |Y ))

δ
1/2
i

(ui ⊗ uj)(u),

∞∑

i=1

1

δi
< ΓeΓ

−1/2u, ui >2≤
∞∑

i=1

∞∑

j=1

E(E(ξi|Y )E(ξj |Y ))2

δiδj
‖ u ‖2,

by using the Cauchy-Schwarz inequality.

But (A-3) implies
∑∞

i=1

∑∞
i=1(1/δiδj)E(E(ξi|Y )E(ξj |Y ))2 < ∞. Then Γe

Γ−1/2u ∈ FXX , for any u, and the operator Γ−1/2ΓΓ−1/2 is well defined.

It remains to prove that ηd ∈ FXX for any d. Since ηd is an eigenvector of

Γ−1/2ΓeΓ
−1/2, we just have to show that Γ−1/2ΓeΓ

−1/2ηd belongs to FXX . We

have, for any d,
∞∑

i=1

1

δi
< Γ−1/2ΓeΓ

−1/2ηd, ui >2

=
∑∞

i=1
1
δi

(
∑∞

j=1
E(E(ξj)E(ξi))

δ
1/2

j δ
1/2

i

< uj , ηd >)2 ≤ ∑∞
i=1

∑∞
j=1

E(E(ξi)E(ξj))
2

δ2

i δj
< ∞ by

the Cauchy-Schwarz inequality and assumption (A-3), which completes the proof.

6.2. Proof of Theorem 3.1

Recall that < ., . >hs is the inner product in the space of Hilbert-Schmidt

operators and, for any bounded operator A, take ||A||∞ = sup||x||=1 ||Ax||.
In the following, m ∗ f denotes the convolution product of m and f . To

simplify, we set K( .
h) = Kh(.).

Lemma 6.1. (Rao (1983)) Under assumptions (A-4), (A-5) and (A-6), we have

supy |f̂(y) − f(y)| = Op(h
k + (

√
log n/

√
nh)) and supy |(f ∗ Kh(y)/h) − f(y)| =

O(hk).

Lemma 6.2. (Yao (2001) Under assumptions (A-4) to (A-6), supy ‖m̂(y) −
m(y)‖ = Op(h

k +
√

log n/
√

nh) and supy ||(m ∗ Kh(y)/h) − m(y)|| = O(hk).
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To prove Theorem 3.1, we set ren(y) = m(y)/fen(y), Γe = 1
n

∑n
i=1 ren(Yi) ⊗

ren(Yi) and Γ̃e = 1
n

∑n
i=1 r(Yi) ⊗ r(Yi). Then

Γ̂e − Γe = (Γ̂e − Γe) + (Γe − Γ̃e) + (Γ̃e − Γe). (2)

First we show that

Γe − Γ̃e = op(
1√
n

). (3)

Some calculus, using the relation (1/f 2
en

(Y )) = (1/f 2(Y ))I{f(y)≥en} − (1/e2
n)

I{f(y)<en}, leads to

E

(∥∥∥
√

n
[
Γe − Γ̃e − E

(
Γe − Γ̃e

)]∥∥∥
2

hs

)
≤ E(‖r(y) ⊗ r(y)‖2

hs I{f(y)<en}).

Since E(‖r(y)⊗r(y)‖2
hsI{f(y)<en}) tends to 0 by dominated convergence, Tcheby-

chev’s inequality gives Γe−Γ̃e = E(Γe−Γ̃e)+op(1/
√

n). But,
√

n‖E(Γe−Γ̃e)‖hs ≤√
nE(‖r(Y ) ⊗ r(Y )‖hsI{f(Y )<en}) which tends to zero according to assump-

tion (A-9), and (3) is proved.

Secondly, we prove that

Γ̂e − Γe = op

(
1√
n

)
. (4)

For that, we set Γ̂e − Γe = S1 + S2 + S3, where S1 = (1/n)
∑n

i=1(r̂en(Yi) −
ren(Yi)) ⊗ (r̂en(Yi) − ren(Yi)), S2 = (1/n)

∑n
i=1(r̂en(Yi) − ren(Yi)) ⊗ ren(Yi) and

S3 = (1/n)
∑n

i=1 ren(Yi) ⊗ (r̂en(Yi) − ren(Yi)).

But we have

S1 = op(
1√
n

). (5)

Indeed, for all i ∈ ℵ∗,

r̂en(Yi) − ren(Yi) =
ren(Yi)

f̂en(Yi)

(
fen(Yi) − f̂en(Yi)

)
+

1

f̂en(Yi)
(m̂(Yi) − m(Yi)) , (6)

|f̂en(Yi)−fen(Yi)| ≤ |f̂(Yi)−f(Yi)| ≤ supy |f̂(y)−f(y)| and ||ren(Yi)|| ≤ ||r(Yi)||.
By using the properties of the Hilbert-Schmidt norm of tensor products, we get

||S1||hs ≤ (1/n)
∑n

i=1 ‖r̂en(Yi) − ren(Yi)‖2; thus

√
n||S1||hs ≤

√
n

e2
n

(
1

n

n∑

i=1

||r(Yi)||2) sup
y

∣∣∣f̂(y) − f(y)
∣∣∣
2

+

√
n

e2
n

sup
y

‖m̂(y) − m(y)‖2

+
2
√

n

e2
n

(
1

n

n∑

i=1

||r(Yi)||) sup
y

∣∣∣f̂(y) − f(y)
∣∣∣ sup

y
‖m̂(y) − m(y)‖
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and
√

n||S1||hs = Op((n
−kc1 +(

√
log n/

√
nh))2n2c2+1/2) by assumptions (A-4) to

(A-7) and Lemmas 6.1 and 6.2, and (5) is obtained by assumption (A-9).

We also have

S2 = op(
1√
n

). (7)

Write S2 = (U1 − Γe) − (U2 − Γe) − U3 + U4, where

U1 =
1

n

n∑

i=1

m̂(Yi)

fen(Yi)
⊗ ren(Yi),

U2 =
1

n

n∑

i=1

ren(Yi) ⊗ ren(Yi)
f̂(Yi)

fen(Yi)
,

U3 =
1

n

n∑

i=1

ren(Yi) ⊗ ren(Yi)
f̂en(Yi) − f̂(Yi)

fen(Yi)
,

U4 =
1

n

n∑

i=1

(m̂(Yi) − m(Yi)) ⊗ ren(Yi)
f̂en(Yi) − fen(Yi)

f̂en(Yi)fen(Yi)

+
1

n

n∑

i=1

ren(Yi) ⊗ ren(Yi)
(f̂en(Yi) − fen(Yi))

2

f̂en(Yi)fen(Yi)
.

A proof, similar to the one used to get (5), leads to U4 = op(1/
√

n).

Furthermore, it can easily be shown that ||U3||hs ≤ (2/n)
∑n

i=1 ||r(Yi)||
I
{f̂(Yi)<en}

and, since I
{f̂(Yi)<en}

≤ I{f(Yi)<2en} + (supy |f̂(y) − f(y)|2/e2
n), we

get

||U3||hs ≤ 2

n

n∑

i=1

||r(Yi)||(I{f(Yi)<2en} +
supy |f̂(y) − f(y)|2

e2
n

).

Hence, U3 = op(1/
√

n) by (A-4) to (A-7), (A-9), and Lemma 6.1. We next show

U1 − Γe = Γe − E(Γe) + op(
1√
n

). (8)

Let us set U1 − Γe = T + R where

T =
1

n2h

n∑

i=1

Xi ⊗
ren(Yi)

fen(Yi)
K(0),

R =
1

n2h

n∑

i=1

∑

j 6=i

XjKh(Yj − Yi) ⊗
ren(Yi)

fen(Yi)
− Γe.

Since ||T ||hs≤(K(0)/(nhen))[(1/n)
∑n

i=1||Xi||||r(Yi)||], we get T =Op(n
−1+c1+c2)

= op(1/
√

n).
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It remains to show now that R = Γe − E(Γe) + op(1/
√

n). For that, we
set R1 = ((n − 1)/n)(1/(nh))

∑n
i=1 m ∗ Kh(Yi) ⊗ ((ren(Yi))/(fen(Yi))), R2 =

(1/(n2h))
∑n

i=1

∑
j 6=i XjKh(Yj − Yi) ⊗ ((ren(Yi))/(fen(Yi))) and we verify that

R2 − R1 − (Γe − E(Γe)) = op(
1√
n

). (9)

Take, for all i ∈ ℵ∗, αen(Yi) = ren(Yi)/fen(Yi). Then we have

E(||R2−R1||2hs)=
1

n4h2
E
(
||

n∑

i=1

(
∑

j 6=i

(XjKh(Yj−Yi)−m ∗ Kh(Yi))
)
⊗ αen(Yi)||2hs)

and
E(||R2 − R1||2hs) = M + Q, (10)

with

M =
1

n4h2

n∑

i=1

E(||
(∑

j 6=i

(XjKh(Yj − Yi) − m ∗ Kh(Yi))
)
⊗ αen(Yi)||2hs),

Q =
1

n4h2

n∑

l=1

∑

p6=l

E
(

<
∑

j 6=l

(XjKh(Yj − Yl) − m ∗ Kh(Yl))) ⊗ αen(Yl)

∑

j 6=p

(XjKh(Yj − Yp) − m ∗ Kh(Yp))) ⊗ αen(Yp) >hs

)
.

Properties of conditional expectation, the Dominated Convergence Theo-
rem, and the inequality ||αen(Y )||2 ≤ ||r(Y )||2/f(Y )en, yield M ≤ (1/(n2hen))
E((||r(Y )||2/f(Y ))(((ϕf) ∗ K2

h(Y ))/h). Next, (A-8), the Dominated Converge
Theorem and the Cauchy-Schwarz inequality lead to for y ∈ <, (1/h)(||r(y)||2/
f(y))((ϕf) ∗ K2

h(y)) ≤ (||r(y)||2/f(y))E(ϕ2f(Y ))1/2(
∫ 1
−1 K4(t)dt)1/2. From the

Dominated Convergence Theorem and (A-8) and (A-7), we deduce

M = o(
1

n
). (11)

Now one can write
Q = I + II, (12)

I =
2

n4h2

n∑

l=1

∑

p6=l

E(< (XpKh(Yp − Yl) − m ∗ Kh(Yl)) ⊗ αen(Yl)

∑

j 6=p

(XjKh(Yj − Yp) − m ∗ Kh(Yp)) ⊗ αen(Yp) >hs),

II =
1

n4h2

n∑

l=1

∑

p6=l

∑

j 6=l,j 6=p

E(< (XjKh(Yj − Yl) − m ∗ Kh(Yl)) ⊗ αen(Yl)

∑

m6=p

(XmKh(Ym − Yp) − m ∗ Kh(Yp)) ⊗ αen(Yp) >hs).
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Using properties of conditional expectation, we get |I| ≤ (2/(n2h2))E((ϕf)∗
K2

h(Y )||αen(Y )||2) which leads to

I = o(
1

n
) (13)

by (A-1), (A-7) and (A-8).

It can easily be checked that

II =
1

nh2
(E(||X ⊗ (αenf) ∗ Kh(Y )||2hs)

− 1

nh2
||E(m ∗ Kh(Y )) ⊗ αen(Y ))||2hs) + o(

1

n
). (14)

Thus (10), (11), (13) and (14) yield

E(||R2 − R1||2hs) =
1

nh2
(E(||X ⊗ (αenf) ∗ Kh(Y )||2hs)

− 1

nh2
||E(g ∗ Kh(Y )) ⊗ αen(Y ))||2hs) + o(

1

n
). (15)

But we also have

E(<Γe−E(Γe), R2−R1 >hs)=
1

nh
E(<m(Y ) ⊗ αen(Y ), X ⊗ (αenf) ∗ Kh(Y )>hs)

− 1

nh
< E(m(Y ) ⊗ αen(Y )), E(g ∗ Kh(Y ) ⊗ αen(Y )) >hs +o(

1

n
). (16)

Thus, E(||R2 −R1 − (Γe −E(Γe))||2hs) ≤ (1/n)E(||X ⊗ (αenf) ∗ ((1/h)Kh(Y ))−
m(Y )⊗αen(Y )||2hs)+o(1/n) and we get E(||R2−R1−(Γe−E(Γe))||2hs) = o(1/n),

so (9) follows in the same way as (11). Now, since R1−Γe = R1−((n − 1)/n)Γe+

op(1/
√

n), by the Dominated Convergence Theorem, we get R1−((n − 1)/n)Γe =

op(1/
√

n). Then we deduce R = Γe − E(Γe) + op(1/
√

n) and (8) is proved.

By substituting m by f and m̂ by f̂ , we similarly prove that U2 − Γe =

Γe − E(Γe) + op(1/
√

n) and finally get (7) by using (8), U3 = op(1/
√

n) and

U4 = op(1/
√

n).

To get (4), it is enough to notice that the proof of S3 = op(1/
√

n) is similar

to that of (7).

Combining (2), (3) and (4) leads to Γ̂e − Γe = Γ̃e − Γe + op(1/
√

n). But, by

the Weak Law of Large Number, we also have Γ̃e−Γe = Op(1/
√

n) and the proof

is complete.

6.3. Proof of Theorem 3.2

From the previous proof, we have Γ̂e − Γe = Γ̃e − Γe + op(1/
√

n), and it is

enough to use the Central Limit Theorem for Hilbertian variables (Fortet (1995)

and Slusky’s theorem to complete the proof.
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