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Abstract: The definition and properties of Lévy-driven CARMA (continuous-time

ARMA) processes are reviewed. Gaussian CARMA processes are special cases in

which the driving Lévy process is Brownian motion. The use of more general Lévy

processes permits the specification of CARMA processes with a wide variety of

marginal distributions which may be asymmetric and heavier tailed than Gaussian.

Non-negative CARMA processes are of special interest, partly because of the in-

troduction by Barndorff-Nielsen and Shephard (2001) of non-negative Lévy-driven

Ornstein-Uhlenbeck processes as models for stochastic volatility. Replacing the

Ornstein-Uhlenbeck process by a Lévy-driven CARMA process with non-negative

kernel permits the modelling of non-negative, heavy-tailed processes with a con-

siderably larger range of autocovariance functions than is possible in the Ornstein-

Uhlenbeck framework. We also define a class of zero-mean fractionally integrated

Lévy-driven CARMA processes, obtained by convoluting the CARMA kernel with

a kernel corresponding to Riemann-Liouville fractional integration, and derive ex-

plicit expressions for the kernel and autocovariance functions of these processes.

They are long-memory in the sense that their kernel and autocovariance functions

decay asymptotically at hyperbolic rates depending on the order of fractional inte-

gration. In order to introduce long-memory into non-negative Lévy-driven CARMA

processes we replace the fractional integration kernel with a closely related abso-

lutely integrable kernel. This gives a class of stationary non-negative continuous-

time Lévy-driven processes whose autocovariance functions at lag h also converge

to zero at asymptotically hyperbolic rates.

Key words and phrases: Continuous-time ARMA process, Lévy process, stochastic
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1. Introduction

Continuous-time models for time series which exhibit both heavy-tailed and

long-memory behaviour are of considerable interest, especially for the modelling

of financial time series where such behaviour is frequently observed empirically.

A recent paper of Anh, Heyde and Leonenko (2002) develops such models via

the Green-function solution of fractional differential equations driven by Lévy

processes. A very general class of Gaussian fractionally integrated continuous
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time models with extensive financial applications has also been introduced by

Comte and Renault (1996, 1998). An alternative approach to generating slowly

decaying autocorrelation functions by randomizing the time-scale of a CARMA

process has been developed by Ma (2003). For financial applications of the models

which we discuss in this paper, see the recent work of Todorov and Tauchen

(2004).

We consider the class of second-order Lévy-driven continuous-time ARMA

(CARMA) processes and the fractionally integrated (FICARMA) processes ob-

tained by fractional integration of the kernel of the CARMA process. In Section

2 we review the definition and properties of Lévy-driven CARMA processes,

deriving the kernel and autocovariance functions, specifying the joint character-

istic functions, and discussing the issue of causality. In Section 3 we indicate

the relevance of CARMA processes with non-negative kernel to the stochastic

volatility model of Barndorff-Nielsen and Shephard (2001), giving an example of

a CARMA(3,2) process with non-negative kernel and non-monotone autocovari-

ance function. In Section 4, following Brockwell (2003), zero-mean Lévy-driven

FICARMA processes are defined and the asymptotic forms of the kernel and au-

tocovariance functions determined. In Sections 5 and 6, explicit expressions are

derived for the kernel and autocovariance functions in the case when the autore-

gressive zeroes are distinct. Using these results, a comparison is made in Section

7 of the autocorrelation functions at integer times of the fractionally integrated

Ornstein-Uhlenbeck process and the fractionally integrated (in the discrete time

sense) sampled Ornstein-Uhlenbeck process. In Section 8 we introduce a related

class of non-negative, stationary, Lévy-driven processes whose kernel and auto-

correlation functions at lag h also decay at hyperbolic rates for large h.

For a discussion of the relative merits of stochastic volatility and GARCH

models in finance we refer the reader to the article by Shephard (1996), where it

is pointed out that although the stochastic volatility models are more difficult to

handle statistically, their properties are easier to understand and manipulate, and

the multivariate and continuous-time generalizations are more straightforward.

These properties and the discontinuous nature of high-frequency transaction data

point naturally to the use of the Barndorff-Nielsen and Shephard Lévy-driven

Ornstein-Uhlenbeck stochastic volatility model and its generalization to Lévy-

driven CARMA volatility.

Before proceeding further we need a few essential facts regarding Lévy pro-

cesses. For a detailed account of the pertinent properties of Lévy processes see

Protter (2004). Suppose we are given a filtered probability space (Ω,F ,(Ft)0≤t≤∞,

P ), where F0 contains all the P -null sets of F and (Ft) is right-continuous.

Definition 1.(Lévy Process) An adapted process {L(t), t ≥ 0} with L(0) = 0

a.s. is said to be a Lévy process if
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(i) L(t) − L(s) is independent of Fs, 0 ≤ s < t <∞,

(ii) L(t) − L(s) has the same distribution as L(t− s) and

(iii)L(t) is continuous in probability.

Every Lévy process has a unique modification which is càdlàg (right continu-

ous with left limits) and which is also a Lévy process. We assume that our

Lévy process has these properties. The characteristic function of L(t), φt(θ) :=

E(exp(iθL(t))), has the form

φt(θ) = exp(tξ(θ)), θ ∈ R, (1.1)

where

ξ(θ) = iθm− 1

2
θ2s2 +

∫

R0

(eiθx − 1 − ixθ

1 + x2
)ν(dx), (1.2)

for some m ∈ R, s ≥ 0, and measure ν on the Borel subsets of R0 = R\{0}. The

measure ν is called the Lévy measure of the process L and has the property,

∫

R0

u2

1 + u2
ν(du) <∞.

If ν is the zero measure then {L(t)} is Brownian motion with E(L(t)) = mt and

Var(L(t)) = s2t. If m = s2 = 0 and ν(R0) < ∞, then L(t) = at + P (t), where

{P (t)} is a compound Poisson process with jump-rate ν(R0), jump-size distribu-

tion ν/ν(R0), and a = −
∫

R0
(u/(1 + u2))ν(du). A wealth of distributions for L(t)

is attainable by suitable choice of the measure ν. See for example Barndorff-

Nielsen and Shephard (2001). For the second-order Lévy processes (with which

we are concerned in this paper), E(L(1))2 <∞ and there exist real constants µ

and σ such that

EL(t) = µt, t ≥ 0, (1.3)

Var(L(t)) = σ2t, t ≥ 0. (1.4)

2. Second-order Lévy-driven CARMA Processes

A second-order Lévy-driven continuous-time ARMA(p, q) process is defined

(see Brockwell (2001)) in terms of the following state-space representation of the

formal equation,

a(D)Y (t) = b(D)DL(t), t ≥ 0, (2.1)

in which D denotes differentiation with respect to t, {L(t)} is a Lévy process

with EL(1)2 <∞,

a(z) := zp + a1z
p−1 + · · · + ap,

b(z) := b0 + b1z + · · · + bp−1z
p−1,
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and the coefficients bj satisfy bq 6= 0 and bj = 0 for q < j < p. To avoid

trivial and easily eliminated complications we assume that a(z) and b(z) have no

common factors. The state-space representation consists of the observation and

state equations,

Y (t) = b′X(t), (2.2)

dX(t) −AX(t)dt = e dL(t), (2.3)

where

A =
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
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(If p = 1, A is defined to be −a1.) In the special case when {L(t)} is Brownian

motion, (2.3) is an Ito equation with solution {X(t), t ≥ 0} satisfying

X(t) = eAtX(0) +

∫ t

0
eA(t−u)e dL(u), (2.4)

(where the integral is defined as the L2 limit of approximating Riemann-Stieltjes

sums), and more generally,

X(t) = eA(t−s)X(s) +

∫ t

s
eA(t−u)e dL(u), for all t > s ≥ 0. (2.5)

Equations (2.2) and (2.5), with {L(t)} a general second-order Lévy process (i.e.,

satisfying E(L(1))2 < ∞) are the starting point for our definition of a second

order Lévy-driven CARMA process (Definition 2 below). Equation (2.5) clearly

shows (by the independence of increments of {L(t)}) that {X(t)} is Markov. The

following propositions give necessary and sufficient conditions for stationarity of

{X(t)}.
Proposition 1. If X(0) is independent of {L(t), t ≥ 0} and E(L(1)2) < ∞,

then {X(t)} is weakly stationary if and only if the eigenvalues of the matrix A

all have strictly negative real parts and X(0) has the mean and covariance matrix

of
∫∞
0 eAue dL(u).

Proof. The eigenvalues of A must have negative real parts for the sum of the

covariance matrices of the terms on the right of (2.4) to be bounded in t. If this

condition is satisfied, then {X(t)} converges in distribution as t→ ∞ to a random

variable with the distribution of
∫∞
0 eAue dL(u). Hence, for weak stationarity,
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X(0) must have the mean and covariance matrix of
∫∞
0 eAue dL(u). Conversely

if the eigenvalues of A all have negative real parts and if X(0) has the mean and

covariance matrix of
∫∞
0 eAue dL(u), then a simple calculation using (2.4) shows

that {X(t)} is weakly stationary.

Proposition 2. If X(0) is independent of {L(t), t ≥ 0} and E(L(1)2) <∞, then

{X(t)} is a strictly stationary second-order process if and only if the eigenvalues

of the matrix A all have strictly negative real parts and X(0) has the distribution

of
∫∞
0 eAue dL(u).

Proof. Necessity follows from Proposition 1. If the conditions are satisfied then

strict stationarity follows from the fact that {X(t)} is a Markov process whose

initial distribution is the same as its limit distribution.

Remark 1. It is convenient to extend the state process {X(t), t ≥ 0} to a

process with index set (−∞,∞). To this end we introduce a second Lévy process

{M(t), 0 ≤ t < ∞}, independent of L and with the same distribution, and then

define the following extension of L:

L∗(t) = L(t)I[0,∞)(t) −M(−t−)I(−∞,0](t), −∞ < t <∞.

Then, provided the eigenvalues of A all have negative real parts, the process

{X(t)} defined by

X(t) =

∫ t

−∞
eA(t−u)e dL∗(u), (2.6)

is a strictly stationary process satisfying (2.5) (with L replaced by L∗) for all

t > s and s ∈ (−∞,∞). Henceforth we shall refer to L∗ as the background

driving Lévy process (BDLP) and denote it for simplicity by L rather than L∗.

Remark 2. It is easy to check that the eigenvalues of the matrix A, which

we shall denote by λ1, . . . , λp, are the same as the zeroes of the autoregressive

polynomial a(z). The corresponding right eigenvectors are [1 λj λ
2
j . . . λp−1

j ]′,

j = 1, . . . , p.We are now in a position to define the CARMA process {Y (t),−∞ <

t <∞} via (2.2) under the condition that

Re(λj) < 0, j = 1, . . . , p. (2.7)

Definition 2.(Causal CARMA Process) If the zeroes λ1, . . . , λp of the autore-

gressive polynomial a(z) satisfy (2.7), then the CARMA(p, q) process with second

-order BDLP {L(t),−∞< t <∞} and coefficients {a1, . . . , ap, b0, . . . , bq} is the

strictly stationary process Y (t) = b′X(t), where X(t) =
∫ t
−∞ eA(t−u)edL(u), so

Y (t) =

∫ t

−∞
b′eA(t−u)e dL(u). (2.8)
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Remark 3.(Causality and Non-causality) Under Condition (2.7) we see from
(2.8) that {Y (t)} is a causal function of {L(t)}, since it has the form

Y (t) =

∫ ∞

−∞
g(t− u) dL(u), (2.9)

where

g(t) =







b′eAte if t > 0,

0 otherwise.

(2.10)

The function g is referred to as the kernel of the CARMA process {Y (t)}. Under

(2.7), the function g defined by (2.10) can be written as

g(t) =
1

2π

∫ ∞

−∞
eitλ

b(iλ)

a(iλ)
dλ. (2.11)

(To establish (2.11) when the eigenvalues λ1, . . . , λp are distinct, we use the
explicit expressions for the eigenvectors of A to replace eAt in (2.10) by its spectral

representation. The same expression is obtained when the right side of (2.11)
is evaluated by contour integration. When there are multiple eigenvalues, the

result is obtained by separating the eigenvalues slightly and taking the limit
as the repeated eigenvalues converge to their common value.) It is of interest

to observe that the representation (2.9) and (2.11) of {Y (t)} defines a strictly

stationary process even under conditions less restrictive than (2.7), namely

Re(λj) 6= 0, j = 1, . . . , p. (2.12)

Thus (2.9), (2.11) and (2.12) provide a more general definition of CARMA pro-

cesses than Definition 2 above. However if any of the zeroes of a(z) has real
part greater than 0, the representation (2.9) of {Y (t)} in terms of {L(t)} will

no longer be causal as is the case when (2.7) is satisfied. This distinction be-
tween causal and non-causal CARMA processes is analogous to the classification

of discrete-time ARMA processes as causal or otherwise, depending on whether
or not the zeroes of the autoregressive polynomial lie outside the unit circle (see

e.g., Brockwell and Davis (1991)). From now on we shall restrict attention to

causal CARMA processes, i.e., we assume (2.7), so that the general expression

(2.11) for the kernel g can also be written in the form (2.10). However both forms
of the kernel will prove to be useful.

Remark 4 (Second-order Properties). From the representation (2.8) of

the causal CARMA process with BDLP {L(t)} satisfying (1.3) and (1.4), we
immediately find that EY (t) = −b′A−1eµ. From the representation (2.9) of

Y (t) we see that its autocovariance function can be expressed as

γ(h) = cov(Y (t+ h), Y (t)) = σ2
∫ ∞

−∞
g̃(h− u)g(u)du,
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where g̃(x) = g(−x) and g is defined in (2.11). Using the convolution theorem

for Fourier transforms, we find that

∫ ∞

−∞
e−iωhγ(h)dh = σ2

∣

∣

∣

∣

b(iω)

a(iω)

∣

∣

∣

∣

2

,

showing that the spectral density of the process is

f(ω) =
σ2

2π

∣

∣

∣

∣

b(iω)

a(iω)

∣

∣

∣

∣

2

(2.13)

and the autocovariance function is

γ(h) =
σ2

2π

∫ ∞

−∞
eiωh

∣

∣

∣

∣

b(iω)

a(iω)

∣

∣

∣

∣

2

dω. (2.14)

Remark 5 (Distinct Autoregressive Zeroes). When the zeroes λ1, . . . , λp

of a(z) are distinct and satisfy (2.7), the expression for the kernel g takes an

especially simple form. Expanding the integrand in (2.11) in partial fractions

and integrating each term gives the expression

g(h) =
p
∑

r=1

b(λr)

a′(λr)
eλrhI[0,∞)(h). (2.15)

Applying the same argument to (2.14) gives a corresponding expression for the

autocovariance function:

γ(h) = cov(Y (t+ h), Y (t)) = σ2
p
∑

j=1

b(λj)b(−λj)

a′(λj)a(−λj)
eλj |h|. (2.16)

For the stationary Ornstein-Uhlenbeck (or CAR(1)) process, b(z) = 1 and a(z) =

z + c for some c > 0. From (2.15) and (2.16) we immediately find that g(h) =

e−chI[0,∞)(h) and γ(h) = (σ2/2c)e−c|h| where σ2 = Var(L(1)).

Remark 6.(The Joint Distributions) Since the study of Lévy-driven CARMA

processes is largely motivated by the need to model processes with non-Gaussian

joint distributions, it is important to go beyond a second-order characterization

of these processes. From Proposition 2 we already know that the marginal dis-

tribution of Y (t) is that of
∫∞
0 g(t−u)dL(u), where g is given by (2.11) or, under

the conditions of Remark 5, by (2.15). Using the expression (1.1) for the charac-

teristic function of L(t), we find that the cumulant generating function of Y (t)

is

logE(exp(iθY (t))) =

∫ ∞

0
ξ(θg(u))du. (2.17)
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More generally it can be shown (see Brockwell (2001)) that the cumulant gener-

ating function of Y (t1), . . . , Y (tn), (t1 < · · · < tn) is

logE[exp(iθ1Y (t1) + · · · + iθnY (tn))]

=

∫ ∞

0
ξ

(

n
∑

i=1

θig(ti + u)

)

du+

∫ t1

0
ξ

(

n
∑

i=1

θig(ti − u)

)

du

+

∫ t2

t1

ξ

(

n
∑

i=2

θig(ti − u)

)

du+ · · · +
∫ tn

tn−1

ξ (θng(tn − u)) du. (2.18)

If {L(t)} is a compound Poisson process with finite jump-rate λ and bilateral

exponential jump-size distribution with probability density f(x) = (1/2)βe−β|x|,

then by (2.17), the corresponding CAR(1) process of Remark 4 has marginal

cumulant generating function, κ(θ) =
∫∞
0 ξ(θe−cu)du, where ξ(θ) = λθ2/(β2+θ2).

Straightforward evaluation of the integral gives

κ(θ) = − λ

2c
log

(

1 +
θ2

β2

)

,

showing that Y (t) has a symmetrized gamma distribution, or more specifically

that Y (t) is distributed as the difference between two independent gamma dis-

tributed random variables with exponent λ/(2c) and scale parameter β. In par-

ticular, if λ = 2c, the marginal distribution is bilateral exponential. For more

examples see Barndorff-Nielsen and Shephard (2001).

3. An Application to Stochastic Volatility Modelling

Barndorff-Nielsen and Shephard (2001) introduced a model for asset-pricing

in which the logarithm of an asset price is the solution of the stochastic differential

equation

dX∗(t) = (µ+ βσ2(t))dt+ σ(t)dW (t),

where {σ2(t)}, the instantaneous volatility, is a non-negative Lévy-driven

Ornstein-Uhlenbeck process, {W (t)} is standard Brownian motion and µ and

β are constants. With this model they were able to derive explicit expressions

for quantities of fundamental interest such as the integrated volatility. A cru-

cial feature of volatility modelling is the requirement that the volatility must be

non-negative, a property achieved by the Lévy-driven Ornstein-Uhlenbeck pro-

cess since its kernel is non-negative and the driving Lévy process is chosen to

be non-decreasing. A limitation of the use of the Ornstein-Uhlenbeck process

(and of convex combinations of independent Ornstein-Uhlenbeck processes) is

the constraint that the autocorrelations ρ(h), h ≥ 0, necessarily decrease as the

lag h increases.
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Much of the analysis of Barndorff-Nielsen and Shephard can however be

carried out after replacing the Ornstein-Uhlenbeck process by a CARMA process

with non-negative kernel driven by a non-decreasing Lévy process. This has the

advantage of allowing the representation of volatility processes with a larger

range of autocorrelation functions than is possible in the Ornstein-Uhlenbeck

framework. For example, the CARMA(3,2) process with a(z) = (z + 0.1)(z +

0.5 − iπ/2)(z + 0.5 − iπ/2) and b(z) = 2.792 + 5z + z2 has non-negative kernel

and autocovariance functions,

g(t) = 0.8762e−0.1t +

(

0.1238 cos
πt

2
+ 2.5780 sin

πt

2

)

e−0.5t, t ≥ 0,

and

γ(h) = 5.1161e−0.1h +

(

4.3860 cos
πh

2
+ 1.4066 sin

πh

2

)

e−0.5h, h ≥ 0,

respectively, both of which exhibit damped oscillatory behaviour.

Remark 7. In the next section, following Brockwell (2003), we define a frac-

tionally integrated Lévy-driven CARMA process by fractional integration of the

corresponding CARMA kernel.

4. Fractionally Integrated Lévy-driven CARMA Processes

The discrete-time process {Xt, t = 0,±1,±2, . . .} is said to be a fractionally

integrated ARMA process of order (p, d, q), with p, q ∈ {0, 1, 2, . . .} and 0 < d <

0.5 if {Xt} is a stationary solution of the equations

(1 −B)dφ(B)Xt = θ(B)Zt, (4.1)

where φ(B) and θ(B) are polynomials of degrees p and q in the backward shift

operator B, {Zt} is a sequence of uncorrelated random variables with mean zero

and variance σ2, and φ(z) 6= 0 for all complex z such that |z| ≤ 1.

If d = 0 in (4.1), {Xt} is an ARMA(p, q) process with the mean square and

almost surely absolutely convergent representation

Xt =
∞
∑

j=0

αjZt−j , (4.2)

where
∑∞

j=0 αjz
j = θ(z)/φ(z), |z| < 1. If d ∈ (0, 0.5), Xt has the mean-square

convergent representation

Xt =
∞
∑

j=0

ψjZt−j , (4.3)
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where {ψj} is the convolution of the sequences {αj} and {βj} and
∑∞

j=0 βjz
j =

(1−B)−d, |z| < 1. The slow rate of decay of the sequence {ψj} as compared with

{αj} and the resulting long-memory properties when d > 0 can be attributed

directly to the convolving of {αj} with the hyperbolically decaying sequence

{βj}. In fact, from Stirling’s formula, it is easy to check that βj ∼ jd−1/Γ(d) as

j → ∞.

In order to incorporate long-memory into the class of causal Lévy-driven

CARMA processes, this suggests convolving the kernel g as defined by (2.10)

with the function h(t) = td−1I(0,∞)(t)/Γ(d), 0 < d < 0.5. The resulting kernel,

gd(t) =

∫ t

0
g(t− u)

ud−1

Γ(d)
du, (4.4)

is then the Riemann-Liouville fractional integral of the kernel g of the CARMA

process defined by (2.8).

Definition 3.(FICARMA(p, d, q) Process) If 0 < d < 0.5, the roots of a(z) = 0

all have negative real parts and L is a second-order Lévy process with mean

zero, then the FICARMA(p, d, q) process with coefficients a1, . . . , ap, b0, . . . , bq
and driving process L is defined by (2.9) with g(t) replaced by gd(t) as in (4.4),

or equivalently,

gd(t) =
1

2π

∫ ∞

−∞
eitλ(iλ)−d b(iλ)

a(iλ)
dλ, 0 < d < 0.5. (4.5)

(The equivalence of (4.4) and (4.5) follows from the fact that gd is the convolution

of the functions g and h, with Fourier transforms
∫∞
−∞ e−iλtg(t)dt = b(iλ)/a(iλ)

and
∫∞
−∞ e−iλth(t)dt = (iλ)−d respectively.)

From (4.5) and the expression γd(h) = σ2
∫∞
0 gd(u + |h|)gd(u)du for the

autocovariance function of the CARMA(p, d, q) process, Brockwell (2003) derived

the asymptotic expressions,

gd(t) ∼
td−1

Γ(d)
.
b(0)

a(0)
as t→ ∞, (4.6)

γd(h) ∼ h2d−1 σ
2Γ(1 − 2d)

Γ(d)Γ(1 − d)

[

b(0)

a(0)

]2

as h→ ∞, (4.7)

showing that the asymptotic behaviour of the kernel gd(t) and of the autocovari-

ance function γd(h) is analogous to that of the corresponding functions for the

discrete time process {Xt} defined by (4.1) (see e.g., Beran (1994)):

ψj ∼
jd−1

Γ(d)
.
θ(1)

φ(1)
as j → ∞, (4.8)
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γX(h) ∼ h2d−1 σ
2Γ(1 − 2d)

Γ(d)Γ(1 − d)

[

θ(1)

φ(1)

]2

as h→ ∞. (4.9)

Our goal in the following two sections is to determine the kernel and auto-
covariance functions gd and γd of the fractionally integrated process. The joint
distributions of the FICARMA process have cumulant generating functions which
are obtained from (2.18) on replacing the kernel g by gd.

5. The Kernel of the Fractionally Integrated CARMA Process

Our starting point is the kernel of the CARMA(p, q) process with autore-
gressive polynomial a(z) and moving average polynomial b(z). We assume that
the p roots λ1, . . . , λp, of a(z) = 0 are distinct with real parts less than zero. The
kernel gd of the fractionally integrated process is then given by (4.4) with g given
by (2.15).

The evaluation of the convolution in (4.4) is quite straightforward, leading
to the expression

gd(t) =
p
∑

j=1

b(λj)

a′(λj)
u(d, λj , t), (5.1)

where
u(d, λ, t) = λ−deλtP (λt, d)I[0,∞)(t). (5.2)

In this expression, λ−d = r−de−idθ, where (r, θ) is the polar representation of λ
with −π < θ ≤ π, and P (z, d) is the incomplete gamma function with complex
argument,

P (z, d) =
1

Γ(d)

∫ z

0
e−xxd−1dx,

where integration is along the radial line in the complex plane from 0 to z. The
function P can also be expressed as

P (z, d) =
zd

Γ(d+ 1)
1F1(d; d + 1;−z),

where 1F1 is the confluent hypergeometric function of the first kind. This is a
standard function, available for example in MATLAB. Thus

gd(t) =
p
∑

j=1

b(λj)

a′(λj)
λ−d

j eλj tP (λjt, d)I[0,∞)(t). (5.3)

The asymptotic form of gd(t) as t→ ∞ is given by (4.6).

Example 1.(The fractionally integrated Ornstein-Uhlenbeck process) For the
Ornstein-Uhlenbeck process, a(z) = z + c for some c > 0 and b(z) = 1. From
(2.15) we obtain the familiar expression for the kernel,

g(t) = e−ctI[0,∞)(t), (5.4)
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and from (5.3) we obtain the fractionally integrated kernel,

gd(t) = (−c)−de−ctP (−ct, d)I[0,∞)(t). (5.5)

From (4.6), the asymptotic form of gd(t) in this special case is

gd(t) ∼
td−1

cΓ(d)
as t→ ∞. (5.6)

If c = 1 and d = 0.2, the exact and asymptotic expressions (5.5) and (5.6) agree to

within 1 percent for h ≥ 100. The exact and asymptotic expressions for g0.2(100)

are 0.005516 and 0.005472 respectively, as compared with the much smaller value

of the unintegrated kernel, g(100) = 3.72 × 10−44.

Example 2.(A fractionally integrated CAR(2) process) For the fractionally in-

tegrated CAR(2) process with distinct complex conjugate autoregressive roots λ

and λ, equation (5.3) gives

gd(h) = 2Re
[λ−deλhP (λh, d)

λ− λ

]

I[0,∞)(h)

and (4.6) gives gd(h) ∼ hd−1/(|λ|2Γ(d)) as h→ ∞.

6. The Autocovariance Function of the Fractionally Integrated

CARMA Process

The autocovariance function of the fractionally integrated CARMA process

Yd(t) =
∫∞
−∞ gd(t− u)dL(u), with gd(u) defined as in (4.4), can be expressed as

γd(h) = cov(Yd(t+ h), Yd(t)) = σ2
∫ ∞

−∞
g̃d(h− u)gd(u)du,

where g̃d(x) = gd(−x). Using the representation (4.5) of gd(x), and the convolu-

tion theorem for Fourier transforms, we find that

∫ ∞

−∞
e−iωhγd(h)dh =

σ2

|ω|2d

∣

∣

∣

∣

b(iω)

a(iω)

∣

∣

∣

∣

2

, (6.1)

showing that the spectral density of the fractionally integrated process is

fd(ω) =
σ2

2π|ω|2d

∣

∣

∣

∣

b(iω)

a(iω)

∣

∣

∣

∣

2

.

Applying the convolution theorem again to (6.1), we find that γd can be expressed

as

γd(h) =
1√
2π

∫ ∞

−∞
γ(h− u)r(u)du, (6.2)
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where

r(u) =
1√
2π

∫ ∞

−∞

eiωu

|ω|2d
dω =

√

2

π
sin(πd)Γ(1 − 2d)|u|2d−1. (6.3)

Substituting from (2.16) and (6.3) into (6.2) we find, by an argument analogous

to that used in Section 4, that

γd(h) =
p
∑

j=1

b(λj)b(−λj)

a′(λj)a(−λj)
v(d, λj , |h|), (6.4)

where

v(d, λ, h) =
σ2

2 cos(πd)

[

2(−λ)−2d cosh(λh) + λ−2deλhP (λh, 2d)

−(−λ)−2de−λhP (−λh, 2d)
]

, (6.5)

and the complex-valued incomplete gamma function is defined as in Section 5.

The asymptotic behaviour of γd(h) as h→ ∞ was specified in (4.7).

Example 3.(The fractionally integrated Ornstein-Uhlenbeck process) For the

Ornstein-Uhlenbeck process, a(z) = z + c for some c > 0 and b(z) = 1. From

(2.16) we obtain the familiar expression for the autocovariance function, γ(h) =

σ2e−c|h|/(2c), and from (6.4) and (6.5) we find, for the fractionally integrated

process, that the variance is

γd(0) =
σ2

2c2d+1 cos(πd)
, (6.6)

while the autocorrelation function, ρd(h) = γd(h)/γd(0), is

ρd(h) = cosh(ch) − ech

2
P (ch, 2d) +

e−ch

2
(−1)−2dP (−ch, 2d), h ≥ 0. (6.7)

(In a related paper, Hφg (2000) derived expressions for the autocovariance func-

tion of the non-stationary fractionally integrated Ornstein-Uhlenbeck process

with initial value zero.)

The autocorrelation function (6.7), interestingly, depends on c and h only

through the value of ch. The following table displays the autocorrelation function

for d = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.45, 0.49 and for ch = 0, 5, 10, 15, 20, 25, 30.

From (4.7) and (6.6) we obtain the asymptotic expression for the autocorrelation

function,

ρd(h) ∼ (ch)2d−1 2Γ(1 − 2d) cos(πd)

Γ(d)Γ(1 − d)
as h→ ∞. (6.8)

The relative error of the asymptotic approximation when ch = 30 is less than

0.3% across the range of d-values tabulated. The variances γd(0) are readily
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calculated from (6.6) and range from 0.50025σ2 when d = 0.01 to 15.91811σ2

when d = 0.49. (γd(0) → ∞ as d→ 0.5.)

Table 1. The autocorrelation function (6.7).

ch\d 0.01 0.05 0.10 0.20 0.30 0.40 0.45 0.49

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
5 0.01133 0.03345 0.07070 0.18462 0.36528 0.63081 0.80127 0.95788

10 0.00221 0.01354 0.03514 0.11450 0.26901 0.54338 0.74421 0.94393

15 0.00144 0.00926 0.02513 0.08918 0.22790 0.50029 0.71414 0.93618

20 0.00108 0.00712 0.01990 0.07490 0.20289 0.47209 0.69373 0.93077

25 0.00087 0.00582 0.01663 0.06545 0.18547 0.45138 0.67835 0.92661
30 0.00072 0.00493 0.01436 0.05864 0.17237 0.43516 0.66606 0.92323

7. Comparison with a Discrete-time Fractionally Integrated ARMA

Process

From (4.7) and (4.9) we see that the asymptotic behaviour of the autocovari-

ance function of the fractionally integrated CARMA process is closely analogous

to that of the discrete-time fractionally integrated ARMA process defined by

(4.1). In this section we compare in more detail the autocorrelation structure

of a fractionally integrated CARMA process with the process obtained by frac-

tionally integrating (in the discrete time sense) the ARMA process obtained by

sampling the CARMA process at integer times.

Starting from a continuous-time fractionally integrated process, the first step

is to determine the parameters of the discrete-time ARMA process obtained by

sampling the CARMA process at integer times. We restrict attention here to

the simplest case, namely the Ornstein-Uhlenbeck process of Example 1. The

sampled process in this case clearly satisfies the discrete-time AR(1) equations

Xt = e−cXt−1 + Zt, {Zt} ∼ WN(0, σ2(1 − e−2c)/(2c)). (7.1)

The comparison to be made in this case is therefore between the autocovari-

ance functions of the process obtained by (discrete-time) fractional integration

with order d of the AR(1) process (7.1) and the continuous-time autocovariance

function γd defined by (6.6) and (6.7).

Example 4.(The fractionally integrated Ornstein-Uhlenbeck process) For the

Ornstein-Uhlenbeck process of Example 1 and for the sampled process (7.1), we

find from (4.7) and (4.9) that the autocovariance functions of the corresponding

fractionally integrated processes have the asymptotic forms

γd(h) ∼ h2d−1 σ
2Γ(1 − 2d)

Γ(d)Γ(1 − d)
c−2, (7.2)
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δd(h) ∼ h2d−1 σ
2Γ(1 − 2d)

Γ(d)Γ(1 − d)

coth(c/2)

2c
, (7.3)

respectively. Of course the functions γ0(h) and δ0(h) are identical, but for d > 0,

(7.2) and (7.3) show that

δd(h)

γd(h)
→ c

2
coth

c

2
as h→ ∞. (7.4)

For 0 < c < 2.2 the corresponding discrete-time AR(1) process has coefficient e−c

between 1 and 0.1108 and the asymptotic ratio in (7.4) is between 1 and 1.37.

To compare the autocovariance functions at finite lags we need to compare

the expression

γd(h) =
σ2

2c2d+1 cos(πd)

[

cosh(ch) − ech

2
P (ch, 2d) +

e−ch

2
(−1)−2dP (−ch, 2d)

]

(7.5)

for the fractionally integrated CARMA process with the expression

δd(h) =
σ2Γ(1 − 2d)Γ(d + 1 − h)

2c Γ(1 − d)Γ(2 − d− h)Γ(d)

×
[

e−cF
(

d+1−h, 1; 2−d−h; e−c
)

+ecF
(

d−1+h, 1;h−d; e−c
)

−e−c
]

(7.6)

from Sowell’s formula (see also Hosking (1981)) for the fractionally integrated dis-

crete time AR(1) with coefficient e−c and white noise variance σ2(1− e−2c)/(2c).

The following tables show the corresponding autocorrelation functions when

c = 1.

Continuous-time ACF, γd(h)/γd(0).

d\h 1 2 5 10 20 100 500

0 0.36788 0.13534 0.00674 0.00005 0.00000 0.00000 0.00000

0.01 0.38086 0.14582 0.01133 0.00221 0.00108 0.00022 0.00005

0.25 0.70131 0.49109 0.26550 0.17994 0.12640 0.05642 0.02523

0.49 0.98940 0.97774 0.95788 0.94393 0.93077 0.90125 0.87270

Discrete-time ACF, δd(h)/δd(0).

d\h 1 2 5 10 20 100 500

0 0.36788 0.13534 0.00674 0.00005 0.00000 0.00000 0.00000

0.01 0.37871 0.14523 0.01156 0.00236 0.00116 0.00024 0.00005

0.25 0.66499 0.46686 0.25592 0.17414 0.12241 0.05465 0.02444

0.49 0.98644 0.97468 0.95515 0.94132 0.92823 0.89878 0.87031
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These autocorrelations illustrate the general qualitative similarity between

the behaviour of the FICARMA and fractionally integrated ARMA autocorrela-

tion functions. The Lévy-driven FICARMA processes constitute a very conve-

nient parametric family of processes exhibiting long memory, a large variety of

marginal distributions and a broad range of correlation structures.

8. Stationary Long-memory Non-negative CARMA Processes

In Definition 3 we restricted the mean of the background driving Lévy process

(BDLP) to be zero. For a non-negative Lévy-driven CARMA process the BDLP,

{L(t)}, is necessarily non-decreasing and therefore E(L(1)) > 0. The kernel gd as

defined in (4.4) cannot be applied to {L(t)} as in previous sections to generate

a non-negative stationary long-memory process, since a kernel which is both

integrable and square integrable on [0,∞) is required. However a convenient

family of “moderately long memory” Lévy-driven processess with asymptotically

hyperbolically decreasing kernel and autocovariance function can be generated

from (2.9) on replacing the kernel g by

ga,d(t) =

∫ t

0
g(t− u)ha,d(u)du, a > 0, d < 0, (8.1)

where

ha,d(t) = Ka,d min(ad−1, td−1)I(0,∞)(t), (8.2)

and Ka,d is chosen (for convenience) so that ha,d is a probability density, i.e.,

Ka,d = a|d||d|/(1 + |d|). (8.3)

Other probability densities with slowly decreasing tails could be chosen in-

stead of ha,d, but this particular choice generates a convenient two-parameter

family of convolution operations with the property that as a→ 0 and d→ −∞,

ga,d(t) → g(t) for each t > 0. Moreover calculations analogous to those of Sections

5 and 6 can be carried out for the kernels ga,d and the corresponding autocovari-

ance functions. The asymptotic rates of convergence to zero of the kernel and

autocovariance functions are analogous to those of (4.6) and (4.7), but of course

the rates are somewhat faster since d is restricted to be negative. We now sketch

the details.

Repeating the argument of Section 5, with ha,d replacing the kernel h, and

assuming as before that the p roots of a(z) = 0 are distinct with real parts less

than zero, we can evaluate the kernel ga,d as

ga,d(t) = Ka,d

p
∑

j=1

b(λj)

a′(λj)
w(a, d, λj , t), (8.4)
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where

w(a, d, λ, t)

=







ad−1

λ
(eλt − 1) if t ≤ a,

eλt
[

ad−1

λ
(1−e−λa)+ td

d 1F1(d; d+1;−tλ)− ad

d 1F1(d; d+1;−aλ)
]

if t > a.

Like the kernel gd in (5.3), the kernel ga,d can easily be computed using MATLAB.

If λ has negative real part and d < 0, straightforward integration shows that,

as x→ ∞,

x−d+1
[
∫ a

0
eλ(x−u)ad−1du+

∫ x

a
eλ(x−u)ud−1du

]

→ −λ−1.

Hence, from (8.4), as t→ ∞,

t−d+1ga,d(t) → −Ka,d

p
∑

j=1

b(λj)

a′(λj)

1

λj

= Ka,d
b(0)

a(0)
. (8.5)

This demonstrates the hyperbolic asymptotic rate of decay of the kernel.

The autocovariance function γa,d of the process (2.9) with kernel g replaced

by ga,d is the convolution,

γa,d = γ ∗ ha,d ∗ h̃a,d, (8.6)

where h̃a,d(x) := ha,d(−x). As t→ ∞, ha,d ∗ h̃a,d(t) ∼ Ka,dt
d−1, and

t−d+1γa,d(t) → −2Ka,d

p
∑

j=1

b(λj)b(−λj)

a′(λj)a(−λj)

1

λj
= Ka,d

[

b(0)

a(0)

]2

. (8.7)

From (8.6) and (8.7) we see that the rate of approach to zero of both the kernel

and the autocovariance function is the same in this case, in contrast with the

different rates in (4.6) and (4.7).
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