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Abstract: We propose a state-space approach for studying the dynamic relation-

ship between multiple brain regions. Our approach decomposes the observed mul-

tiple time series into measurement error and the BOLD (blood oxygenation level

dependent) signals. The proposed model consists of the activation and connectiv-

ity equations. In the activation equation, we model the observed signals at each

brain region as a function of the BOLD signal. One special feature of our model

for capturing the complexities of the dynamic processes in the brain is that the

region-specific time-varying coefficients in the activation equation are subsequently

modelled, in the connectivity equation, as a function of the BOLD signals at other

brain regions. Because our model has a state-space representation, the parame-

ters are readily estimated by maximum likelihood via a routine application of the

Kalman filter and smoother. In this paper, we apply our model to a functional

magnetic resonance imaging data set to investigate the attentional control network

in the brain.

Key words and phrases: Effective connectivity, functional magnetic resonance imag-

ing, Kalman filter, state-space model.

1. Introduction

Over the last two decades, there has been a dramatic advancement in technol-

ogy that allows neuroscientists to detect brain signals for studying the complex

activities in human brain. In the neuroscience community, there is a growing

interest in investigations that target possible interactions between different brain

regions. In this paper, we propose a state-space approach for studying the dy-

namic relationship between multiple brain regions. Our model consists of the

activation and connectivity equations which correspond to the observation and

state equations in the state-space model framework. In the activation equation,

we model the observed signals at each brain region as a function of the BOLD

(blood oxygenation level dependent) signal. In the connectivity equation, we

model the region-specific time-varying coefficients in the activation equation as a

function of the BOLD signal at the other regions. Through a system of two equa-

tions, complexities of the dynamic processes in the brain are modelled. Moreover,
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the parameters in the model are readily estimated by maximum likelihood via a

routine application of the Kalman filter and smoother.

We first give a brief discussion on the functional magnetic resonance imaging

(fMRI) data set that we use in this paper. In functional brain imaging studies,

the signal changes of interest are caused by neuronal activity, but such electrical

activity is not directly detectable by fMRI. The signal being measured in fMRI

experiments is called the Blood Oxygenation Level Dependent (BOLD) response,

which is a consequence of the hemodynamic changes (including local changes in

blood flow, volume and oxygenation level) occurring within a few seconds of

changes in neuronal activity. The BOLD signal is usually used as a proxy for the

underlying neuronal activity. Most fMRI studies concern the detection of sites

of activation (‘hot-spots’) in the brain and their relationship to the experimental

stimulation, and we refer to them as activation studies. A typical BOLD response,

x(t), usually occurs between 3-10 seconds after the stimulus, s(t), is presented,

and reaches its peak at about 6 seconds. The delay of the BOLD response

is usually modelled by a hemodynamic response function (HRF), h(t), which

weighs the past stimulus values by a convolution

x(t) =

∫ t

0
h(u)s(t − u) du, (1.1)

where s(t) takes the value ‘1’ when the stimulus is ‘ON’ and ‘0’ when the stimulus

is ‘OFF’. The top panel in Figure 1 shows a stimulus presented periodically in

a fMRI experiment. The HRF is usually modelled by a Poisson, Gaussian or

Gamma density, or by the difference of two Gamma functions. The second panel

in Figure 1 shows a typical hemodynamic response function and the bottom panel

shows how the BOLD signal looks after convolution with the periodic stimulus

function in the top panel. The magnitude of the BOLD signal, denoted as β,

varies over brain regions and experimental conditions, and is usually estimated

by the general linear model

yi(t) = αi + βixi(t) + ei(t), (1.2)

where yi(t) is the observed fMRI signal, and ei(t) is measurement noise at voxel

i (voxel is the 3-D generalization of pixel). The coefficient, βi, measures ‘acti-

vation’ at voxel i in fMRI studies and αi represents the baseline. Without loss

of generality, we assume the fMRI data is detrended here. Detrending is a com-

mon pre-processing step in fMRI experiments and attempts to remove the drift

(mainly caused by the MRI scanner) present in fMRI data. A priori detrending

is not necessary but can simplify the computation. We will comment on how to

incorporate a drift component in our approach in the conclusion.



A STATE-SPACE APPROACH TO MODELLING BRAIN DYNAMICS 409

PSfrag replacements

0

0

0

0

0

0

50

50

50

100

100

100

150

150

150

200

200

200

250

250

250

300

300

300

350

350

350

400

450

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

2

4

6
-0.2

-1

-1

BOLD Response, x(t)

Time (sec)

Hemodynamic Response Function, h(t)

Stimulus, s(t)

Middle Frontal Gyrus (Detrended)

Middle Occipital Gyrus (Detrended)

Lingual Gyrus (Detrended)

Figure 1. Convolution of hemodynamic response function.

P
S
fra

g
re

p
la

c
e
m

e
n
ts

0

0

0

50

50

50

100

100

100

150

150

150

200

200

200

250

250

250

300

300

300

350

350

350

400

400

400

450

450

450

4600

4800

5000

5000

5200

5200

5400

5400

5600

5600

5600

5800

5800

6000

6000

6200

6400

6600

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91246

-0
.2-1

B
O

L
D

R
e
sp

o
n
se

,
x
(
t)

T
im

e
(se

c
)

H
e
m

o
d
y
n
a
m

ic
R

e
sp

o
n
se

F
u
n
c
tio

n
,

h
(
t)

S
tim

u
lu

s,
s
(
t)

Middle Frontal Gyrus (Detrended)

Middle Occipital Gyrus (Detrended)

Lingual Gyrus (Detrended)

Figure 2. Three detrended fMRI time series.
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Figure 2 shows three examples of fMRI time series after they have been

detrended by a running-line smoother (Marchini and Ripley (2000)). A running-

line smoother is a linear regression fitted to the k−nearest neighbors of a given

point and used to predict the response at that point. For an fMRI experiment

with periodic design (e.g., a block of experimental stimuli and a block of control

stimuli are alternatively presented to the subjects), Marchini and Ripley (2000)

suggested setting k equal to at least twice the cycle length (one cycle is one block

of experimental stimuli plus one block of control stimuli, as in the previous ex-

ample). These activation studies do not reveal a great deal about how different

brain regions relate or ‘communicate’ with each other. Disparate regions of the

brain do not operate in isolation. It is therefore important to characterize the

connectivities underlying the fMRI data so as to understand the functional or-

ganization of the brain. Influence of one neuronal system on another is referred

to as effective connectivity (Friston (1994) and Nyberg and McIntosh (2001)).

Two common approaches, namely structural equation modelling (see McIntosh

and Gonzalez-Lima (1994), for example) and time-varying parameters regression

(see Büchel and Friston (1998), for example), have been applied to fMRI data for

studying effective connectivity. However, these approaches suffer several limita-

tions. For both approaches, fMRI researchers first choose their regions-of-interest

and extract the corresponding time series from the high-dimensional fMRI data

of a single subject. In the applications of structural equation modelling, a within-

subject covariance matrix of the regions-of-interest is derived and a path analysis

model is then fitted to this matrix. Effective connectivity is then measured by

the path or structural coefficients. This approach ignores the temporal correla-

tion in the data which can lead to inaccurate standard errors and test statistics.

Connectivity between brain regions is also assumed to be time-invariant. Time-

varying parameter regression, on the other hand, relaxes this assumption and

allows time-varying connectivity. In the applications of time-varying parameter

regression, one brain area’s time series is regressed on another brain area’s time

series as

y1(t) = β(t)y2(t) + e(t),

β(t) = β(t − 1) + w(t),

where e(t) and w(t) are independent white noises. The regression coefficient,

β(t), following a random walk process, measures the dynamic effective connec-

tivity in this approach. Applications of time-varying parameter regression, how-

ever, have been limited to studying the relationship between two brain regions so

far. A more general way to characterize the dynamics of β(t) can be through the

functional coefficients model first explored in Chen and Tsay (1993), and later

extended to non-linear time series models by Cai, Fan and Yao (2000). Harrison,
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Penny and Friston (2000) proposed the use of multivariate/vector autoregressive

(MAR) models for modeling effective connectivity. They included interaction

term between pairs of regional contemporaneous time series to account for the

nonlinear interregional dependence in the models. Lagged regional time series

were also included to account for the temporal autocorrelation. Their approach

model the brain systems behavior by simply quantifying relationships within the

measured data only. Our approach differs from their approach in that we model

the brain as a dynamic system so as to understand temporal and spatial order

within measured fMRI data. We attempt to account for correlations within the

data by invoking state variables whose dynamics generate the data. The MAR

approach used by Harrison, Penny and Friston (2000) models temporal effects

across different brain regions without using state variables, and inter-regional

dependencies within the data were characterized in terms of the historical in-

fluence of one region on another. Horwitz(1998) and Horwitz, Tagamets and

McIntosh (1999) referred to all the aforementioned approaches as system-level

neural modeling, which attempts to address the problem that large covariance in

inter-regional activity can come about by direct and indirect effects. Recently,

Horwitz and his colleagues proposed another approach, referred to as large-scale

neural modelling, using neurobiologically realistic networks to simulate neural

data at multiple spatial and temporal levels, such as single unit electrophysiolog-

ical data (Deco, Rolls and Horwitz (2004) and Positron Emission Tomography

(PET) data (Tagamets and Horwitz (1998)). Their approach is computationally

intensive and emphasizes the mimicking of qualitative patterns observed in the

brain imaging experiments. Statistical estimation of unknown parameters is of

secondary importance and these parameters are usually chosen or fixed a priori

(usually based on animal studies). The method proposed in this paper can be

classified as the system-level neural modeling in Horwitz’s terminology. We focus

on the state-space modelling approach. Our approach differs primarily in its in-

tent to model the stochastic inter-relationship between the different components

of multiple signals. Another important statistical methodology that is related

to our work is that of Tiao and Box (1981), who provide very interesting appli-

cations to modelling of the relationships between components of a multivariate

time series. The distinct feature in our model is a particular form of the dynamic

relationship between different brain regions via the connectivity equations (to be

defined below).

Our proposed approach can overcome some of the limitations encountered in

structural equation modelling and time-varying parameter regression methods.

Our method treats the brain as an input-output system. By perturbing the sys-

tem with known inputs (i.e., experimental stimuli), the measured responses (i.e.,

observed fMRI signals) are used to estimate various parameters that govern the
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evolution of the activation. The proposed method: (1) allows modelling relation-

ships among multiple brain areas; (2) separates out the signal-of-interest (BOLD)

from the measurement noise; (3) models the temporal correlation explicitly by

the recent history of the experimental inputs. Almost all effective connectivity

studies using the two aforementioned methods focus on studying the connectiv-

ity from single subject’s fMRI data. Inter-subject commonalities and differences

in the connectivity pattern are seldom investigated (but see Mechelli, Penny,

Price, Gitelman and Friston (2002)). At the end of the paper we discuss how to

extend the proposed approach to examine commonalities and differences in the

connectivity patterns across subjects or groups of subjects.

2. Effective Connectivity Analysis by State-space Models

In (1.2), the ‘activation’ β is assumed to be time-invariant, which may not be

realistic. Recently some studies reported a ‘learning’ effect in fMRI experiments,

and strong fMRI activation was mainly detected in the beginning of the experi-

ment but weakened overtime (see Milham, Banch, Claus and Cohen (2003), for

example). Therefore, it is reasonable to consider activation to be time-varying.

Dropping the time-invariant assumption, we can rewrite (1.2) as

yi(t) = αi + βi(t)xi(t) + ei(t).

The ‘activation’ βi(t) is postulated to depend on the BOLD history from itself

and/or other brain regions to account for its variation over time. Consider, for

example, two regions-of-interest and activation from these two areas as charac-

terized by

y1(t) = α1 + β1(t)x1(t) + e1(t); (2.1)

y2(t) = α2 + β2(t)x2(t) + e2(t). (2.2)

We refer to (2.1) and (2.2) as the activation equations. The ‘activation’ of both

regions-of-interest are allowed to vary over time and the ‘activation’ from one

region is expressed as the BOLD history from itself and another region as follows:

β1(t) = γ1·1Z1(t − 1) + γ1·2Z2(t − 1) + w1(t), (2.3)

β2(t) = γ2·1Z1(t − 1) + γ2·2Z2(t − 1) + w2(t), (2.4)

where Z1(t− 1) = x1(t− 1)β1(t− 1) and Z2(t− 1) = x2(t− 1)β2(t− 1) represent

the BOLD signals from an earlier time point (t − 1). We refer to (2.3) and (2.4)

as the connectivity equations.

Higher order effects of the BOLD history (from t − 2, t − 3 and so on)

and other covariates of interest (e.g., physiological measures such as respiration
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rate and heart beat rate) may also be included in the model. The order of

the BOLD history can also vary for different brain regions. Activation may

evolve in a nonlinear fashion but we focus on linear functions in this paper. Our

formulation considers the brain as a dynamical system which assumes that the

instantaneous state of any brain system depends on the history of its input. In

this model, effective connectivity is characterized by the coefficients γ1·2 and γ2·1

that describe the ‘coupling’ or ‘lead-lag’ relationships between the two regions.

We can examine hypotheses where (a) there is ‘no dynamic coupling’ between

the two regions (γ1·2 = 0 and γ2·1 = 0); (b) region 2 is a ‘leading indicator’ of

region 1 (e.g., only γ1·2 6= 0); (c) region 1 is a ‘leading indicator’ of region 2 (e.g.,

only γ2·1 6= 0); (d) a form of ‘dynamic coupling’ exists between both regions

(γ1·2 6= 0 and γ2·1 6= 0). It is obvious that if we ignore the connectivity equations

and constrain β(t) to be invariant over time, we obtain the general linear model

used for activation analysis in (1.2).

As pointed out by one of our reviewers, an alternative candidate model for

(2.3) and (2.4) is to express the β(t) as a function of the history of β(t − 1),

i.e., β1(t) = γ1·1β1(t − 1) + γ1·2β2(t − 1) + w1(t) and β2(t) = γ2·1β1(t − 1) +

γ2·2β2(t − 1) + w2(t). We have implemented this alternative but unfortunately

the goodness-of-fit and the model prediction based on this alternative model

was much worse than our proposed formulation (2.3) and (2.4), at least in the

application to the dataset described in Section 4. To save space, we omit the

results of this alternative model here. Our proposed approach can be thought of

a generalization of this alternative model. We can re-write (2.3) and (2.4) as

β1(t) = [γ1·1x1(t − 1)]β1(t − 1) + [γ1·2x2(t − 1)]β2(t − 1) + w1(t),

β2(t) = [γ2·1x1(t − 1)]β1(t − 1) + [γ2·2x2(t − 1)]β2(t − 1) + w2(t),

or, equivalently, as

β1(t) = γ∗

1·1β1(t − 1) + γ∗

1·2β2(t − 1) + w1(t),

β2(t) = γ∗

2·1β1(t − 1) + γ∗

2·2β2(t − 1) + w2(t),

where γ∗

i·j=γi·jxj(t − 1) for i = 1, 2, and j = 1, 2. Our model can now be

thought of a generalization of the reviewer’s alternative but with time-varying

‘connectivity’, i.e., the magnitude of the connectivity coefficients vary over time

in proportional to the historical influence of convoluted hemodynamic response

function: γ∗

i·j(t) = γi·jxj(t − 1). We plan to investigate a general version of

time-varying connectivity equations without this proportionality constraint in

the future and will report the results in a separate paper.

Our proposed approach integrates activation and effective connectivity anal-

yses into one model. This model can be reformulated as a state-space model (Ho
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(2003)). Details will be given in the next section. State-space model provides a

unifying framework for describing and modelling a wide class of linear stochas-

tic processes. Classical Box-Jenkins ARIMA models, conditional heteroscedas-

tic models, structural time series models, vector autoregressive moving average

models, and many others, can be express as special cases of state-space models

(Harvey (1991), Jones (1993) and Shumway and Stoffer (2000)). An advantage

of reformulating the current proposed model as a state-space model is that the

maximum likelihood estimates for the parameters in (2.1) to (2.4) can be readily

computed by routine application of the Kalman filter via prediction error de-

composition or the EM (expectation-maximization) algorithm. We consider the

latter method in this paper.

3. Parameter Estimation and Statistical Inference

3.1. Maximum likelihood estimation by EM algorithm

A linear Gaussian state-space model is defined as, for t = 1, . . . , n,

yt = αt + Atβt + et, et ∼ Np(0, Rt), (3.1)

βt = dt + Φtβt−1 + wt, wt ∼ Nk(0, Qt), (3.2)

where yt is a p × 1 vector of observations and βt is a k × 1 state vector. The

noises, et and wt, are assumed to be independent of each other at all time points

and follow Gaussian distribution. The model implies that the development of

the system under study, over time, is determined by a series of ‘state’ vectors

β1, . . . , βn (they can be observed or unobserved), linearly associated with a series

of observations y1, . . . , yn. The equation (3.1) is called the observation equation,

which has the structure of a linear regression with time varying coefficient vector

αt. Equation (3.2) is called the state equation and describes the dynamics of the

states in terms of a Markov (first-order vector autoregressive model) process. The

unobserved Markovian process of the states might be of interest in its own right,

or as a technical tool for formulating a specific correlation structure. The initial

state vector β0 is assumed to be Nk(µ0,Σ0) and independent of the disturbances,

et and wt. It is common to set µ0 = 0 and to assign large values to the diagonal

elements of Σ0 (e.g., 106 ∗ Ik). The classical autoregressive integrated moving

average (ARIMA) models can be put into the state-space form, with the latent

process of the states containing the lagged observations of the observed process

that is not of separate interest. In financial time series analysis, the variance of

the observations (i.e., the volatility), which is usually changing over time, can

be represented as the latent state. Here, the process of the states measures the

stability of a stock market.
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The model (2.1) to (2.4) can be reformulated as a state-space model in the

form of (3.1) and (3.2):
(

y1(t)

y2(t)

)

︸ ︷︷ ︸
=

(
α1

α2

)

︸ ︷︷ ︸
+

(
x1(t) 0

0 x2(t)

)

︸ ︷︷ ︸

(
β1(t)

β2(t)

)

︸ ︷︷ ︸
+

(
e1(t)

e2(t)

)

︸ ︷︷ ︸
,

yt = αt At βt et (3.3)

(
β1(t)

β2(t)

)

︸ ︷︷ ︸
=

(
γ1·1x1(t − 1) γ1·2x2(t − 1)

γ2·1x1(t − 1) γ2·2x2(t − 1)

)

︸ ︷︷ ︸

(
β1(t − 1)

β2(t − 1)

)

︸ ︷︷ ︸
+

(
w1(t)

w2(t)

)

︸ ︷︷ ︸
,

βt = Φt βt−1 wt (3.4)

dt = (0, 0)′, Qt = Q and Rt = R are diagonal matrices with (σ2
w1

, σ2
w2

) and

(σ2
e1

, σ2
e2

) on their diagonals, respectively. For convenience, the unknown parame-
ters in (2.1) to (2.4) are written as Θ = (α,Γv ,ΣQ,ΣR), where α = αt = (α1, α2)

′,

Γv = (γ1·1, γ1·2, γ2·1, γ2·2)
′, ΣQ = (σ2

w1
, σ2

w2
)′, ΣR = (σ2

e1
, σ2

e2
)′. As mentioned

before, the hemodynamic response function h in (1.1) is chosen a priori by re-
searchers in most fMRI studies, and the At are assumed to be known. One can

also estimate the parameters in the hemodynamic response function but that

involves more complicated computation. The challenge is that these parameters
in h usually enter the model nonlinearly. We are currently examining this issue

and will discuss it in a separate paper.

The maximum likelihood estimator for the parameter Θ can be obtained

using the EM-algorithm of Dempster, Laird and Rubin (1977), as proposed by

Shumway and Stoffer (1982). The EM-algorithm requires computation of the

Kalman filter and Kalman smoother for βt. In what follows, we denote the

Kalman filter and Kalman smoother estimators for βt as βt−1
t =E(βt|y1, . . . , yt−1)

and βn
t = E(βt|y1, · · · , yn), respectively, with the corresponding mean squared

covariance estimator as P t−1
t = E{(βt − βt−1

t )|y1, · · · , yt−1} and P n
t = E{(βt −

βn
t )|y1, · · · , yn}. The recursion formulae to compute these quantities can be found

in many references(see, for example, Anderson and Moore (1979), Jones (1993)

and Shumway and Stoffer (2000, Properties P4.1, P4.2, p.313)). Under Gaussian

assumptions, we can write the log-likelihood of (3.3) and (3.4) as if the state

vectors βt are observed. Then Shumway and Stoffer (1982) have shown that the

log-likelihood can be maximized by following a sequence of expectation and max-

imization steps given by applying the EM (expectation-maximization) algorithm.

Following their results, we developed the following set of recursions to update

the unknown parameters Θ:

α(j) =
1

n

n∑

t=1

(yt − Atβ
n
t ), (3.5)
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Γ(j) =

( n∑

t=1

S10,tA
′

t−1

)( n∑

t=1

At−1S00,tA
′

t−1

)
−1

, (3.6)

Q(j) =
1

n

n∑

t=1

(S11,t − Γ(j−1)At−1S
′

10,t − S10,tA
′

t−1Γ
(j−1)′
t

+ Γ(j−1)At−1S00,tA
′

t−1Γ
(j−1)′), (3.7)

R(j) =
1

n

n∑

t=1

[(yt − α(j−1) − Atβ
n
t )(yt − α(j−1) − Atβ

n
t )′ + AtP

n
t A′

t], (3.8)

where

S00,t = βn
t−1(β

n
t−1)

′ + P n
t−1, (3.9)

S10,t = βn
t (βn

t−1)
′ + P n

t,t−1, (3.10)

S11,t = βn
t (βn

t )′ + P n
t . (3.11)

Notice that Φt = ΓAt−1; Γv defined earlier is the ‘vectorized’ version of Γ. The

initial mean and covariance cannot be estimated simultaneously, so it is conven-

tional to fix one or both of them.

The overall procedure can be regarded as simply alternating between the

Kalman filtering and smoothing recursion and the multivariate normal maximum

likelihood estimators, as given by (3.5) to (3.8). Convergence results for the EM-

algorithm under general conditions can be found in Wu (1983). We summarize

the iterative procedure.

1. Initialize the procedure by selecting starting values for the parameters

Θ(0), and fix µ0,Σ0.

At iteration j (j = 1, 2, · · ·), proceed as follows.

2. Compute the incomplete-data likelihood, −2 log L(Yn; Θ) (see, for example,

(4.67) in Shumway and Stoffer (2000)).

3. Perform the E-Step. Use Properties (P4.1)−(P4.3) in Shumway and Stoffer

(2000, pp.313-321)) to obtain the smoothed values βn
t , P n

t and P n
t,t−1 for t =

1, · · · , n, using the parameters Θ(j−1). Use the smoothed values to calculate

S11,t, S10,t, S00,t given in (3.9)−(3.11).

4. Perform the M-Step. Update the estimates, α, Γ, Q and R using (3.5)−(3.8),

to obtain Θ(j).

5. Repeat Steps 2−4 to convergence.

3.2. Bootstrap estimation of standard errors

The EM algorithm does not provide an easily computed version of the in-

formation matrix, hence it is a challenge to find the variances and covariances of
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the estimated parameters. Computation of the information matrix via recursions

is possible as in Harvey (1991) or Cavanaugh and Shumway (1986). Versions of

the information matrix, obtained from outputs arising naturally in the EM al-

gorithm, such as in Meng and Rubin (1991) or Oakes (1999), are either hard to

compute, as in the former case, or involve relatively untractable derivatives, as in

the latter. A compromise that is easy to apply and robust toward distributional

assumptions is the bootstrap, as derived in Stoffer and Wall (1991). We focus on

their methodology here.

Suppose we obtain maximum likelihood estimators for Θ = {α,Γ,ΣQ,ΣR}

as Θ̂ = {α̂, Γ̂, Σ̂R, Σ̂Q}. Define the residuals from these estimators as v̂t = yt −

α̂ − Atβ̂
t−1
t , and construct scaled residuals of the form

ε̂t = Σ
−1/2
t v̂t, (3.12)

where a hat over a quantity indicates that it has been evaluated at the maximum

likelihood estimator Θ̂. Then, draw a random sample with replacement from

the scaled residuals, say, ε̂∗t , t = 1, · · · , n. Rescale the residuals, v∗

t = Σ
1/2
t ε̂∗t , to

obtain residuals with the correct time-varying covariance matrix. To reconstruct

the data, note that

y∗t = α̂ + Atβ̂
t−1
t + v∗t (3.13)

and compute the values β̂t−1
t , using Property P4.1 and the maximum likelihood

estimator Θ with (4.37) in in Shumway and Stoffer (2000) replaced by

β̂t
t = β̂t−1

t + K̂tv̂
∗

t . (3.14)

Using the reconstructed bootstrap sample to compute maximum likelihood es-

timators Θ∗ = {α∗,Γ∗,Σ∗

Q,Σ∗

R} using the procedure described in Section 3.1.

The above bootstrap steps are repeated a large number of times, to obtain

{Θ̂∗

b , b = 1, · · · , B}. The finite sample distribution of (Θ̂−Θ) is approximated by

the distribution of (Θ̂∗

b − Θ̂), b = 1, · · · , B. For example, the estimated variance

of the estimated parameter θ̂, can be computed as

σ̂2
θ̂

=
1

B − 1

B∑

b=1

(θ̂∗b − θ
∗

)2, (3.15)

where θ
∗

denotes the mean of the bootstrap estimators.

4. Application

In this section, we present an application of the proposed approach for in-

vestigating the mechanism of an attentional control network using functional

magnetic resonance imaging data from a single subject.
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4.1. Attentional control network

Human brain has limited processing capacity, and it is important to have

mechanisms to filter out task-irrelevant information and select task-relevant in-

formation. Attention is the cognitive function underlying the human brain that

can discriminate between relevant and irrelevant information. In a recent re-

view, Frith (2001) argued that there are two types of selection processes in the

brain, bottom-up and top-down. Bottom-up selection is driven by the difference

between the intrinsic properties of a stimulus. Conversely, top-down selection

favors the task-relevant feature(s) of the stimulus, independent of its intrinsic

properties. Such top-down selection bias requires coordination of neural activ-

ity within the attentional network and is usually referred to as the attentional

control. Implementation of the attentional control has been suggested to involve

(at least) three systems (e.g., Banich et al. (2000)): (1) a system that involves

processing task-relevant stimulus dimension (task-relevant processing system);

(2) a system that involves processing task-irrelevant stimulus dimension (task-

irrelevant processing system); and (3) a higher order executive control system

(source of control) performing the top-down selection bias that may increase the

neural activity within the task-relevant processing system and/or may suppress

the neural activity within the task-irrelevant processing system. Many studies

have found the dorsal lateral prefrontal cortex to be a main source of the atten-

tional control. Depending on the task (visual, auditory, etc.), the sites of the

attentional control (task-relevant and task-irrelevant processing systems) might

vary.

4.2. Experimental design

There were two phases in the experiment. In the learning phase, the subject

learned to associate each of three unfamiliar shapes with a unique color word

(‘Blue’, ‘Yellow’ and ‘Green’), and was to name the three shapes with 100%

accuracy before the test phase started. In the test phase, two types of trials

were presented. In the interference trials, the shape was printed in an ink color

incongruent with the color used to name the shape, whereas in the neutral trials,

the shape was printed in white, which was not a color name for any of the shapes.

A block design was used, in which a block of neutral trials was alternated with

a block of interference trials. A total of 6 interference and 6 neutral blocks was

presented, with each block consisting of 18 trials presented at a rate of one trial

every 2 seconds. Each trial consisted of a 300 millisecond fixation cross by a

1, 200 millisecond presentation of the stimulus (shape) and a 500 millisecond

inter-trial interval. The subject was instructed to subvocally name each shape
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with the corresponding color from the learning phase, while ignoring the ink color

in which the shape was presented.

4.3. Data acquisition and pre-processing

A GE Signa (1.5 T) magnetic resonance imaging system equipped for echo-

planar imaging (EPI) was used for data acquisition. For each run, a total of

300 EPI images was acquired (TR=1, 517 ms, TE = 40 ms, flip angle= 90o),

each consisting of 15 contiguous slices (thickness = 7 mm, in-plan resolution =

3.75 mm, parallel to the AC-PC line). A high resolution 3D anatomical set (T1-

weighted 3-dimensional spoiled gradient echo images) was also collected. The

head coil was fitted with a bite bar to minimize head motion during the session.

Stimuli were presented on a goggle system. Interested readers can find more

details about the experiment in Milham, Banich, Claus, and Cohen (2003). The

first seven volumes of the images were discarded to allow the MR signal to reach

steady state.

4.4. Identification of region of interests

For illustration, three regions were selected to investigate the attentional

control in the Stroop task. They were the lingual gyrus, the middle occipital

gyrus, and the dorsolateral prefrontal cortex. The lingual gyrus (LG) is a visual

area sensitive to color information (Corbetta et al. (1991)) representing a site

for processing task-irrelevant information (i.e., the ink color) in the present ex-

periment (Kelley et al. (1998)). The middle occipital gyrus (MOG) is another

visual area sensitive to shape information and represents a site for processing

task-relevant information (the shape’s form). The dorsolateral prefrontal cortex

(DLPFC) is selected to represent the source of attentional control. These areas

were also found to be significantly activated in the interference trials compared

to neutral trials in this experiment (see Milham et al. (2003)).

4.5. Statistical analysis

The time series of the three selected ROIs are shown in Figure 2. The

conceptual model for attentional control network is tested by the state-space

approach described in the previous section. We use y1(t), y2(t) and y3(t) to

denote the detrended fMRI time series from LG, MOG and DLPFC respectively.

Various possible mechanisms of the attentional control network were explored:

whether DLPFC suppresses the activation of LG, facilitates the activation of

MOG, or both; if there is reciprocal suppression between LG and MOG (as our

brain’s processing capacity is limited, the LG and MOG may need to compete for

the ‘resources’); whether there is feedback from LG and MOG on DLPFC. We
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present below the state-space formulation of our proposed model which allows

LG, MOG and DLPFC to influence each other directly.

Observation Equation



y1(t)

y2(t)

y3(t)


=




α1

α2

α3


+




x1(t) 0 0

0 x2(t) 0

0 0 x3(t)







β1(t)

β2(t)

β3(t)


+




e1(t)

e2(t)

e3(t)


 .

State Equation



β1(t)

β2(t)

β3(t)


=




γ1·1x1(t−1) γ1·2x2(t−1) γ1·3x3(t−1)

γ2·1x1(t−1) γ2·2x2(t−1) γ2·3x3(t−1)

γ3·1x1(t−1) γ3·2x2(t−1) γ3·3x3(t−1)







β1(t−1)

β2(t−1)

β3(t−1)


+




w1(t)

w2(t)

w3(t)


 .

This model was fitted by using the EM-algorithm described in the previous sec-

tion.

Table 1. Model fitting summary.

Model Γ −2∗Log-Likelihood Number of Parameters BIC

M1




γ1·1 γ1·2 γ1·3

γ2·1 γ2·2 γ2·3

γ3·1 γ3·2 γ3·3


 9129.1 36 32.37

M2




γ1·1 0 γ1·3

0 γ2·2 γ2·3

γ3·1 γ3·2 γ3·3


 9130.2 34 32.35

M3




γ1·1 0 γ1·3

0 γ2·2 γ2·3

0 0 γ3·3


 9262.7 32 32.80

M4




γ1·1 γ1·2 0
γ2·1 γ2·2 0

0 0 γ3·3


 9241.3 32 32.73

M5




γ1·1 0 0
0 γ2·2 0

γ3·1 γ3·2 γ3·3


 9276.3 32 32.85

M6




γ1·1 0 0
0 γ2·2 0

0 0 γ3·3


 9276.4 30 32.83

4.6. Results

A total of six models were fitted and the fit summary is shown in Table

1. We report −2∗Log-Likelihood and BIC (Bayesian Information Criterion) for

model comparison purposes. For those models with nested relationships, we
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perform a likelihood-ratio test (LRT) to check if the model can be simplified.

The results are summarized in Table 2. From both the nested model comparisons
and BIC, among the six candidate models, M2 fits the best in terms of goodness-

of-fit and model parsimony. We also checked the normality and homoscedasticity
assumptions based on the residuals. No significant violation of assumptions were

found and we therefore skip the details here. The maximum likelihood estimates

and the standard errors computed by the bootstrap (250 bootstrapped samples)
are shown in Table 3.

Table 2. Model comparison summary.

Model Comparisons LRT degree of freedom p-value

M1 vs. M2 1.1 2 0.42

M1 vs. M4 112.2 4 < .0001
M2 vs. M3 132.5 2 < .0001

M2 vs. M5 146.1 2 < .0001

From Table 3, we can see that there is a significant suppression from DLPFC
on LG (γ1·3), and a relatively weaker facilitation from DLPFC on MOG (γ2·3).

These results are consistent with the proposal of Banich et al (2000). We, also

find that there is positive feedback from the LG and MOG on DLPFC (γ3·1 and
γ3·2). Moreover, DLPFC shows negative self-feedback control on itself (γ3·3). Our

results provide support for the implementation of an attentional control network.
The present result is based on a single subject. More fMRI data will be analyzed

in the future to cross-validate this result.

Table 3. Maximum Likelihood Estimators and Standard Errors for M2.

Parameters Maximum Likelihood Estimators Standard Errors




α1

α2

α3







−1.58

−1.01

−2.19







10.05

8.47

7.37







γ1·1 0 γ1·3

0 γ2·2 γ2·3

γ3·1 γ3·2 γ3·3







2.19 −− −6.31

−− 1.88 5.71
2.69 0.62 −2.01







0.04 −− 0.25

−− 0.01 0.01
1.24 0.13 0.35







σ2
w1

σ2
w2

σ2
w3







8.67

0.55

36.34







1.47

0.14

12.57







σ2
e1

σ2
e2

σ2
e3







2122.3

1475.0

1608.4







385.36

300.50

167.18



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5. Conclusion

Incorporating Drift

For convenience, we detrended the data first before fitting our model. A

priori detrending is not a necessary step and the drift component can be incor-

porated in our model. For illustration, we assume the drift component follows a

simple random walk process in (2.1) and (2.2) as

y1(t) = α1(t) + β1(t)x1(t) + e1(t),

y2(t) = α2(t) + β2(t)x2(t) + e2(t),

α1(t) = α1(t − 1) + ε1(t),

α2(t) = α2(t − 1) + ε2(t).

We can express the above, (2.3) and (2.4), in state-space form as

(
y1(t)

y2(t)

)

︸ ︷︷ ︸
=

(
x1(t) 0 1 0

0 x2(t) 0 1

)

︸ ︷︷ ︸




β1(t)

β2(t)

α1(t)

α2(t)




︸ ︷︷ ︸

+

(
e1(t)

e2(t)

)

︸ ︷︷ ︸
,

yt = At βt et




β1(t)

β2(t)

α1(t)

α2(t)




︸ ︷︷ ︸

=




γ1·1x1(t − 1) γ1·2x2(t − 1) 0 0

γ2·1x1(t − 1) γ2·2x2(t − 1) 0 0

0 0 1 0

0 0 0 1




︸ ︷︷ ︸




β1(t − 1)

β2(t − 1)

α1(t − 1)

α2(t − 1)




︸ ︷︷ ︸

+




w1(t)

w2(t)

ε1(t)

ε2(t)




︸ ︷︷ ︸

.

βt = Φt βt−1 wt

Other forms of drift, such as a stochastic cubic spline, can be put in the state-

space form in a similar way.

Time-varying Connectivity

In the present formulation of the state-space model, connectivity between

brain areas (γi·js) is assumed to be time-invariant. This may not be true in gen-

eral. There is increasing evidence that the connectivity between brain areas is

dynamic, i.e., it is varying over the experimental context and time (e.g., McIntosh

and Gonzalez-Lima (1994) and Büchel and Friston (1998)). We are currently de-

veloping an approach to modelling the dynamic characteristics of the connectivity

by using a moving window method. We assume the process within this window

is locally stationary (i.e., the connectivity is constant within this window). The
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model (2.1)−(2.4) is fitted to the time series data within this ‘window’, which

is then shifted forward by some amount and the model refitted using the data

within the new window. As a result, a trajectory of the connectivity coefficient

can be obtained which can provide some insight on how the effective connectivity

evolves over time.

Multiple subjects analysis

In this paper, we focused the analysis on fMRI data from a single-subject.

In fMRI experiments, data are usually collected from multiple subjects. Esti-

mates for connectivity can vary greatly across subjects. This raises the ques-

tion of whether these differences in connectivity are significant or simply due to

chance. Therefore, it is important to develop a method to characterize subject-

specific variability in connectivity that permits evaluation of between-subject or

between-group differences. We are working on two possible approaches. The

first is a meta-analytic two-stage approach. The first stage is to analyze each

subject’s data separately. Then we combine information across subjects in the

second stage by combining hypothesis tests (i.e., significance of the connectivity

parameter estimates) or combining estimates of treatment effects (i.e., estimates

of the connectivity parameters). The second approach is to simultaneously ana-

lyze multi-subject fMRI data in a single stage to accommodate subject-specific

variations in connectivity. The proposed model (2.1)−(2.4) has a state-space rep-

resentation for single subject data. It can be shown that this representation can

be preserved in a model with multiple subject’s data simultaneously analyzed.

The results of this research will be reported in a separate paper.

Final Remarks

In this paper, we gave an application to data from a block design fMRI

experiment. The proposed approach can handle fMRI data collected from an

event related design as well. Each event’s effect can be characterized by its

own β(t) in the activation and the state equations. In principle, there is no

limitation on the number of regions one can study (as long as the model is

identified). Practically, however, if there are a large number of regions involved,

a large number of parameters are required to be estimated. Fast and efficient

optimization algorithms still need to be developed to handle such situations.
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