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Abstract: Typically, the likelihood function for non-Gaussian state-space models

cannot be computed explicitly and simulation-based procedures, such as impor-

tance sampling or MCMC, are commonly used to estimate model parameters. In

this paper we consider two alternative estimation procedures, each based on an

approximation to the likelihood function. In the first approach, the approximation

is computed and maximized directly, and this results in a fast estimation proce-

dure without resort to simulation. Moreover, estimates are competitive with those

produced using simulation-based procedures. The speed of the procedure makes it

viable to fit a wide range of potential models to the data, and it allows for boot-

strapping parameter estimates. In the second approach, importance sampling is

used to estimate the error in the approximation to the likelihood. This particular

simulation-based method is extremely quick and accurate, since the error term is

well-approximated by a linear function.

Key words and phrases: Approximate likelihood, importance sampling, non-linear

state space models, stochastic volatility models.

1. Introduction

The class of state-space models (SSM) provides a flexible framework for

modeling and describing a wide range of time series in a variety of disciplines.

The books by Harvey (1989) and Durbin and Koopman (2001) contain exten-

sive accounts of state-space models and their applications. One of the attractive

features of state-space models is that many traditional models, such as ARMA

and ARIMA, can be expressed in a linear state-space system. For linear and/or

Gaussian state-space models, the Kalman filter can be used to compute pre-

dictors of the state-variables and one-step-ahead predictors of the observations.

This allows for straightforward calculation of the likelihood in the Gaussian case.

However, in many applications in which the Gaussian assumption is not realistic,

the likelihood function is difficult to calculate, which makes maximum likelihood

estimation problematic.

The state-space model that we consider in this paper has the following for-

mulation. If Y1, Y2, . . . , is a time series of observations and α1, α2, . . . are the
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respective “state variables”, then it is assumed that

p(yt|αt, αt−1, . . . , α1, yt−1, . . . , y1) = p(yt|αt)

belongs to a known parametric family of distributions. In addition, the state

process is assumed to follow an AR(p) model given by

αt = γ + φ1αt−1 + . . . + φpαt−p + ηt, (1)

where p is a non-negative integer and ηt ∼ i.i.d. N(0, σ2), t = 1, 2, . . .. Perhaps

the most important special case is when the conditional distribution p(yt|αt) is

a member of the exponential family, an extremely rich class of distributions.

Durbin and Koopman (1997) and Kuk (1999) consider this in the form

p(yt|αt) = e(x
T
t β+αt)yt−b(xT

t β+αt)+c(yt), (2)

where xt is a vector of covariates observed at time t, β is a vector of parameters,

and b(·) and c(·) are known real functions.

One special application that we consider in more detail is the case in which

the time series Y1, . . . , Yn consist of counts. Here it might be plausible to model

Yt by a Poisson distribution with rate λt := eαt+xT
t β, in which case p(yt|αt;β) is

a particular case of (2). Models of this type have been used for modeling counts

of individuals infected by a rare disease, e.g., Zeger (1988), Campbell (1994),

Chan and Ledolter (1995), Harvey and Fernandes (1989) and Davis, Dunsmuir

and Wang (1998).

Another noteworthy application of the SSM that we consider is the stochastic

volatility model (SVM), a frequently used model for returns of financial assets.

In the basic SVM, the distribution of Yt|αt is Gaussian with mean 0 and variance

eαt . Applications, together with estimation for SVMs, can be found in Jacquier,

Polson and Rossi (1994), Briedt and Carriquiry (1996), Harvey and Streibel

(1998), Sandmann and Koopman (1998), Geweke and Tanizaki (1999) and Pitt

and Shepard (1999).

Let y := (y1, . . . , yn) denote the vector of observations, α := (α1, . . . , αn)

the vector of states and ψ := (θ, λ) the parameters in the state-space model.

Here θ is the vector of the parameters associated with the specification of p(yt|αt),

which may include the regression parameter β, and λ := (φ1, . . . , φp, γ, σ
2) is the

parameter vector associated with the AR model in (1). With this specification,

the likelihood based on the “complete data” (y,α) of the SSM is

L(ψ;y,α) = p(y|α,θ)p(α|λ)

=

(
n∏

t=1

p(yt|αt,θ)

)
|V|1/2e−(α−µ)T V(α−µ)/2/(2π)n/2, (3)
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where V−1 := Cov {α}, µ = γ/(1−φ1 − . . .− φp)1 is the vector of means of the

state process, and 1 is a vector of ones. From (3) it follows that the likelihood

of the observed data is given by the n-fold integral

L(ψ;y) =

∫
L(ψ;y,α)dα. (4)

Except in simple cases, the integral in (4) cannot be computed explicitly,

which makes maximum likelihood estimation difficult. There are several simula-

tion approaches in the literature for estimating and ultimately maximizing this

likelihood. For example, Durbin and Koopman (1997, 2001) use importance sam-

pling. The observation density p(y|α;θ) is approximated by selecting a Gaussian

density g(y|α;θ) that best approximates p(y|α;θ). The Monte Carlo integration

is computed using g(α|y;ψ), the conditional density of α relative to the working

model, as the importance density. This approach is known as “many samples”

because, for distinct values of ψ, the importance function g(α|y;ψ) is updated

during the optimization of the approximate observed likelihood. To overcome

the instability problem inherent with the “many samples” approach, Durbin and

Koopman generate from g(α|y;ψ) using the same noise sequence. Kuk (1999)

advocates a “single-sample” approach in which, for a fixed ψ0, a sample is drawn

from the importance density g(α|y,ψ0), and then the relative likelihood func-

tion is optimized using this sample. To get better approximations of the relative

likelihood near the true maximum likelihood estimate, Geyer (1996) suggests re-

peating the process several times, updating ψ0 with the new maximizer at each

iteration.

While the formulation of the importance density based on the working model

in the Durbin and Koopman setup is straightforward when p(yt|αt;θ) is a member

of the “standard” exponential family of distributions, it can be tedious and dif-

ficult to formulate the working model for other cases. One such “nonstandard”

example is the stochastic volatility model, in which Sandmann and Koopman

(1998) implement this method to find an approximate MLE of the parameters of

this model. Their working model is based on the log of the squared log returns.

Since the time series of log returns may have values near zero, this logarithmic

tranformation may create additional modeling obstacles.

A Monte Carlo EM algorithm treating the unobserved α’s as missing values

was proposed by Chan and Ledolter (1995). At the ith iteration of the algo-

rithm, the M -step is performed by Monte Carlo integration drawing a sample

from the conditional distribution p(α|y,ψ (i−1)), where ψ(i−1) is the maximizer

obtained in the previous iteration. Kuk and Cheng (1997) proposed a Monte

Carlo implementation of the Newton-Raphson (MCNR) as a viable alternative

to the MCEM algorithm. All of these simulation-based procedures can be com-

putationally intense.
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In this paper we follow a different approach to obtain an approximation

pa(α|y;ψ) to the distribution p(α|y;ψ). Unlike Durbin and Koopman’s method,

our procedure is not based on any working model which makes it easier to im-

plement in the case when the distribution of the observations is not a member

of the standard exponential family of distributions, yet it coincides with Durbin

and Koopman’s importance distribution for this family. This approximation

pa(α|y;ψ) is obtained in Section 2 and it is used to obtain an analytical ap-

proximation to (4) which can be maximized to produce an estimate of ψ. In

a second method, the approximation error is computed using a first order Tay-

lor series expansion. The estimates obtained when this linear approximation is

used approximate very well the importance sampling estimates, as is shown in an

example in Section 3. The innovations algorithm (Brockwell and Davis (1991))

can be used to speed up the computation of these estimates. In Section 4 we

demonstrate the good performance of these procedures via simulation experi-

ments. Illustration use two time series: the monthly number of U.S. cases of

poliomyelitis for 1970 to 1983 (Zeger (1988)) is analyzed using a Poisson state-

space model; historical pound to dollar exchange rates (Harvey et al. (1994)) are

analyzed using a stochastic volatility model.

The quality of the analytical approximation depends, to a large extent, on

the normal approximation to the posterior, p(α|y;ψ). In a numerical example

we assess this approximation in two ways. First, we notice the closeness between

the posterior mode and posterior mean of p(α|y;ψ). As a second check of close-

ness we compare samples generated from p(α|y;ψ) using sampling importance

resampling (SIR) with the approximating normal distribution via a Chi-squared

QQ-plot and a correlation test. These topics, together with bootstrap bias cor-

rection are considered in Section 4. Application of the innovations algorithm to

the problems considered in Sections 2, 3 and 4 is given in the Appendix.

2. Parameter Estimation

In this section we find a factorization of the observed likelihood L(ψ;y) (4)

based on an approximation La(ψ;y,α) to the likelihood L(ψ;y,α) using the

complete data. For the latter, a Taylor series expansion of log p(y|α;θ) in a

neighborhood of the posterior mode of p(α|y;ψ) is used.

To begin, let `(θ;y|α) := log p(y|α;θ). Note that the log of the likelihood

based on y,α is given by

`(ψ;y,α) = −
n

2
log(2π) +

1

2
log |V| + `(ψ;y|α) −

1

2
(α− µ)T V(α− µ).

Now, let k∗ := ∂
∂α`(θ;y|α)|α=α∗ , where α∗ is the mode of `(ψ;y,α), which

solves (∂/∂α)`(ψ;y,α) = 0. From (3), it follows that k∗ = V(α∗ − µ). Hence,
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if T (α;α∗) denotes the second order Taylor expansion of `(θ;y|α) around α∗

and R(α;α∗) := `(θ;y|α) − T (α;α∗) is the corresponding remainder, then

`(θ;y|α) = T (α;α∗) +R(α;α∗),

= h∗ + (α−α∗)Tk∗ −
1

2
(α−α∗)T K∗(α−α∗) +R(α;α∗),

= h∗+(α∗−µ)T V(α−α∗)−
1

2
(α−α∗)TK∗(α−α∗)+R(α;α∗),

where

h∗ := `(θ;y|α)|α=α∗ and K∗ := −
∂2

∂α∂αT
`(θ;y|α)|α=α∗ . (5)

Thus,

`(ψ;y,α) = −
n

2
log(2π) +

1

2
log |V| + h∗ −

1

2
(α∗ − µ)TV(α∗ − µ)

−
1

2
(α−α∗)T (K∗ + V)(α−α∗) +R(α;α∗).

We note that the posterior p(α|y;ψ) satisfies p(α|y;ψ) ∝ L(ψ;y,α). Let

pa(α|y;ψ) be the posterior based on the log likelihood `(ψ;y,α) when the term

R(α;α∗) is omitted. It follows that

pa(α|y;ψ) = φ(α;α∗, (K∗ + V)−1), (6)

where φ(.;µ,Σ) is the multivariate normal density with mean µ and covariance

matrix Σ. Hence

L(ψ;y) = La(ψ;y)Era(ψ), (7)

where Era(ψ) :=
∫
eR(α;α∗)pa(α|y;ψ)dα, and

La(ψ;y) :=
|V|1/2

|K∗ + V|1/2
eh

∗− 1
2
(α∗−µ)T V(α∗−µ), (8)

obtained when eR(α;α∗) is ignored in Era(ψ). If pa(α|y;ψ) is highly concentrated

around α∗, the approximation error should be close to 1.

The approximation pa(α|y;ψ) can be used to implement a Monte Carlo

estimation of the likelihood L(ψ;y). Suppose α(1), . . . ,α(N) are draws from

pa(α|y;ψ). In the Appendix, a quick procedure to sample from this distribution

is provided. Equation (7) suggests the estimator

L̂(ψ;y) = La(ψ;y)Êra(ψ), (9)

where

Êra(ψ) =
1

N

N∑

i=1

eR(α(i);α∗). (10)
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We see below that for the standard exponential family of distributions, the esti-

mator in (9) is the estimator in (15) proposed by Durbin and Koopman (1997).

We call IS the approximate MLE of ψ obtained when (9) is maximized with re-

spect to ψ. Evaluations of this function require Monte Carlo integrations, which

can be expensive. We propose two approximations to the MLE of ψ that do

not need Monte Carlo integration for every value of ψ. The first estimator, AL,

is obtained by maximizing the approximate likelihood La(ψ;y) with respect to

ψ. Since the evaluation of (8) does not involve simulation, AL is obtained faster

than IS. For the second estimator, let ê(ψ) := log Êra(ψ) and let ψ̂AL be the AL

estimate of ψ. Let Tê(ψ; ψ̂AL) be the linear approximation to ê(ψ) at ψ̂AL, i.e.,

Tê(ψ; ψ̂AL) = ê(ψ̂AL) + qT
AL(ψ − ψ̂AL),

where qAL := (∂/∂ψ)ê(ψ)| ˆψAL

. Let the estimator of the likelihood be

Lc(ψ;y, ψ̂AL) = La(ψ;y) exp{Tê(ψ; ψ̂AL)}. (11)

Our second estimator, AIS, results from maximizing Lc(ψ;y, ψ̂AL) with respect

to ψ. To evaluate this function for distinct values of ψ, qAL needs to be computed

only once. For this reason, AIS is much faster than IS. Of the three estimators,

AL is the fastest. In order to compute AIS, the derivative of ê(ψ) at ψ̂AL is

found numerically. That is, for δ small,

∂

∂ψj
ê(ψ)| ˆψAL

≈
ê(ψ̂AL + δj) − ê(ψ̂AL)

δ
,

where δj is a vector consisting of value δ at position j and 0 elsewhere. This

numerical procedure avoids an explicit calculation of the derivative of α∗ with

respect to ψ.

We provide a recursive algorithm to find α∗, the mode of p(α|y;ψ). Let αj

be the current iterate to the value of α∗. If

kj :=
∂

∂α
`(θ;y|α)|α=αj and Kj := −

∂2

∂α∂αT
`(θ;y|α)|α=αj , (12)

then the Newton-Raphson algorithm gives αj+1 = αj − (῭j)−1 ˙̀j, where

˙̀j :=
∂

∂α
`(ψ;y,α)|α=αj

= kj −V(αj −µ)

= kj + Kjαj + Vµ− (Kj + V)αj,

῭j := (
∂2

∂α∂αT
`(ψ;y,α))−1|α=αj

= −Kj −V.
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Let

ỹj := kj + Kjαj + Vµ. (13)

Substituting this and the derivatives into the Newton-Raphson iteration, we ob-

tain

αj+1 = (Kj + V)−1ỹj . (14)

Each iteration of (14) needs the inversion of an n×nmatrix, while each evaluation

of (8) requires calculation of the determinant of a matrix of similar dimension. For

small values of n these computations can be carried out directly, but for large

values, direct computations are impractical. Recursive prediction algorithms,

such as the Kalman recursions or the innovations algorithm, accelerate these

calculations. Here we use the innovations algorithm, which seems to be ideally

suited for this problem. Its implementation is described in the Appendix.

Application to the exponential family

Assume the exponential family density

p(y|α;θ) =
n∏

t=1

p(yt|αt,θ) = e(xβ+α)T y−1T {b(xβ+α)−c(y)},

where b(xβ + α) := [b(xT
1 β + α1), . . . , b(x

T
nβ + αn)]T and c(y) := [c(y1), . . .,

c(yn)]T . In this setting, the matrix K∗ in (5) becomes K∗ = diag{(∂2/∂α2
t )b(x

T
t β

+αt)|α∗

t
} and the approximation to the observed likelihood is

La(ψ;y) =
|V|1/2

|K∗ + V|1/2
ey

T (xβ+α∗)−1T {b(xβ+α∗)−c(y)}−(α∗−µ)T V(α∗−µ)/2.

From (12), kj = y − ḃj , where ḃj := (∂/∂α)1Tb(xβ + α)|αj . Hence, ỹj :=

y − ḃj + Kjαj + Vµ, where Kj is defined in (12).

In (9), pa(α|y;ψ) is used as an importance density to estimate L(ψ;y). In

fact, as we show below for the case of the exponential family of distributions,

pa(α|y;ψ) coincides with the importance density function of Durbin and Koop-

man (1997) to estimate the likelihood in (4) via simulation. In order to describe

their method, let Lg(ψ) denote the likelihood of the Gaussian approximating

model of the state-space model proposed by Durbin and Koopman (1997). Such

an approximation is obtained when p(yt|αt;ψ) is replaced by a Gaussian distri-

bution g(yt|αt;θ) = φ(yt;Ztαt +µt,Ht), where µt and Ht are found by iteratively

solving
∂

∂αt
log p(yt|αt;ψ)|αt=α̂t

−H−1
t (yt − α̂t − µt) = 0,

∂2

∂α2
t

log p(yt|αt;ψ)|αt=α̂t
+H−1

t = 0,
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initialized with µt = 0 and Ht arbitrary. Here, the α̂t are found by routine

application of the Kalman filtering and smoothing algorithms. Let Eg denote

the conditional expectation operator under the approximating model. Durbin

and Koopman (1997) found that (4) can be expressed as

L(ψ) = Lg(ψ)Eg

{
p(y|α,θ)

g(y|α,ψ)
|y,ψ

}
.

Hence, with simulated values α(1), . . . ,α(N) from the conditional density g(α|y;

ψ) under the approximating model, the integral in (4) is estimated as

L̂(ψ) = Lg(ψ)
1

N

N∑

i=1

p(y|α(i),θ)

g(y|α(i),ψ)
. (15)

This method is called a “many samples” approach, because new simulated

values of the α(i)’s are needed for each value of ψ. To ensure stability, the same

noise sequence is used to construct α(i) for values of ψ.

If p(yt|αt;ψ) is a member of the exponential family of distributions as given

in (2) then, using the notation ḃt := (∂/∂αt)b(x
T
t β+αt)|αt=α̂t

and b̈t := (∂2/∂α2
t )

b(xT
t β + αt)|αt=α̂t

, Durbin and Koopman (1997) find that

H−1
t = b̈t, µt = yt − α̂t − b̈−1

t (yt − ḃt). (16)

They comment that α̂ := [α̂1, . . . , α̂n]T , obtained using the iterative proce-

dure described above, is the posterior mode of p(α|y;ψ). We conclude that

α̂ = α∗. Furthermore, from (16), it follows that the variance of the distribu-

tion g(α|y;ψ), computed under the approximating model until convergence is

achieved, is given by (K∗ + V)−1 where K∗ is given in (5). Thus, pa(α|y;ψ)

in (6) and g(α|y,ψ) are identical. Notice that g(y|α;θ) =
∏n

t=1 g(yt|αt;θ) =∏n
t=1 φ(yt;αt + µt,Ht). From (16), it follows that g(y|α;θ) = A(α∗)eT (α;α∗),

whereA(α∗) := (2π)−n/2|K∗|1/2e−h∗−(1/2)k∗T (K∗)−1k∗

, k∗ = y−(∂/∂α)1T b(xβ+

α)|α∗ , and h∗ and K∗ are defined in (5). Then, Lg(ψ;y) = A(α∗)La(ψ;y). Us-

ing this factorization of Lg(ψ;y), it can be shown that the estimates in (9) and

(15) produce identical results.

To get a feel for how these procedures perform, we consider the case when

the observation density is Poisson with rate λt = e0.7+αt and the state process

follows the AR(1) model

αt = φαt−1 + ηt,

where ηt ∼ i.i.d. N(0, 0.3), t = 1, . . ., n = 200. In this example, the state-

space model has only one parameter, i.e., ψ = φ. Using φ = 0.5, one realization

y1, . . . , y200 from this process was generated and 100 replicates of the estimation
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of the approximation error in (10) were obtained in a grid of points of φ for each

of the values N = 10 and N = 1, 000. Also, the linear approximation T ê(ψ; ψ̂AL)

to each replicate was computed, where ψ̂AL = 0.51. To compute ê(ψ), ê(ψ̂AL)

and qAL the same value of N and the same realizations u(1), . . . ,u(N), described

in the last paragraph of the appendix, were used. On the left panel of Figure

1, with N = 10, the long dashed line is a typical replicate. The solid lines are

the pointwise minimum, mean and maximum of the replicates. Notice that in a

neighborhood of φ̂AL, replicates are remarkably linear as a function of φ. The

short-dashed line is the linear approximation Tê(ψ; ψ̂AL) of the typical repli-

cate (long-dashed line). The dotted lines are the pointwise minimum, mean and

maximum of the linear approximation of the replicates. On the right panel of

this figure, N = 1, 000. Notice that the estimator in (10) has “large” Monte

Carlo error even for N = 1, 000. For each replicate of the approximation error

for N = 1, 000, the estimator to the likelihood (9) and its approximation (11)

were computed. In Figure 2, the long-dashed line is the likelihood estimation

computed with the typical approximation from Figure 1. The short-dashed line

is its corresponding approximation (11). The thick solid line is the AL estimate

of the observed likelihood. In this figure, notice that (11) is very close to (9).
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3. Comparison of IS and AIS

In this section we compare the IS and AIS estimators of Section 2 for two

state space models for which p(yt|αt;ψ) is a Poisson distribution with rate λt :=

eβ+αt . For the first model the state process is an AR(2) and, for the second, the

state process is an AR(3) process. For both cases, we set γ = 0 in (1). For the

parameter values shown in Table 1, we generated 1,000 realizations of y of length

n = 200. IS and AIS estimates were obtained for each realization using N = 100.

The results are shown in Table 1. For each realization, the IS and AIS estimates

were based on the same draws u(1), . . . ,u(100) defined in the last paragraph of

the Appendix. Notice that these estimates are essentially the same. Hence, from

now on we use AIS instead of IS estimates.

To compare the speed of the IS and AIS procedures, we provide the compu-

tation times of the likelihood for the two models from Table 1. In the AR(2) case

with N = 100, one importance sampling evaluation of the likelihood function us-

ing (9) took 0.0086 seconds. This includes the computation of α∗. For the same

parameter values, an evaluation of (9) using N = 1, 000 took 0.0456 seconds. In

contrast, once qAL is available, the evaluation time of the hybrid method based

on (11) is approximately that of (8) which, for the fixed parameter values in

question, was 0.0005 seconds. We note that qAL needs to be computed only once

and hence further evaluations of the likelihood at other parameter values are very
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fast. For this model, to obtain qAL numerically, five Monte Carlo integrations

are needed. For N = 100 and N = 1, 000, the time for each Monte Carlo inte-

gration has been given above. For the AR(3) model, the evaluation times of (9)

were 0.0092 and 0.0866 seconds for N = 100 and N = 1, 000, respectively. An

evaluation of (8) took 0.0006 seconds. Of course, to maximize an estimate of the

likelihood function, multiple evaluations of the estimated function are required.

All the reported times are based on an IBM ThinkPad, with a 1.6 GHz Intel

Pentium M processor.

Table 1. Bias comparison of IS and AIS estimates for two Poisson state space

models. The estimates are computed using N = 100. The bias estimates are

based on 1,000 replicates. Root mean square error of estimates are reported

below the bias.

Method β φ1 φ2 φ3 σ

true 1 1.25 -0.75 0.2

IS 0.0057 -0.0020 0.0036 0.0075

0.0832 0.0749 0.0668 0.0507

AIS 0.0057 -0.0020 0.0036 0.0075

0.0832 0.0749 0.0669 0.0507

true 1 1.25 -0.75 0.2 0.2
IS -0.0009 0.0027 -0.0004 0.0104 0.0031

0.1139 0.2765 0.3815 0.2011 0.0783

AIS -0.0009 0.0029 -0.0007 0.0106 0.0031

0.1139 0.2759 0.3809 0.2009 0.0783

4. Numerical Results

In this section, we perform two simulation studies: one based on the basic

stochastic volatility model, and the second based on a Poisson observation density

for modeling a time series of counts. Also, we analyze two datasets. One is a

historical dataset of the Pound-Dollar exchange rates, first studied by Harvey,

Ruiz and Shepard (1994) using a basic stochastic volatility model. The other is

the polio incidence data analyzed by Zeger (1988), who used estimating equations

to fit the model. Kuk and Cheng (1997) use the Monte Carlo Newton Raphson

algorithm to analyze these data.

4.1. Stochastic volatility model

The stochastic volatility process that is often used for modeling log-returns

of financial assets is

yt = σtξt = eαt/2ξt, αt = γ + φαt−1 + ηt,



392 RICHARD A. DAVIS AND GABRIEL RODRIGUEZ-YAM

where ξt ∼ i.i.d.N(0, 1), ηt ∼ i.i.d. N(0, σ2), t = 1, . . ., n = 1, 000, and |φ| < 1. In
this case, ψ = (γ, φ, σ2). The format for this simulation study is the same as the
layout considered in Jacquier et al. (1994). They considered nine models, indexed
by the coefficient of variation CV of the conditional variance σ2

t := eαt . For
convenience, the parameters of these models are reproduced in Table 2. Jacquier
et al. (1994) point out that the nine models are calibrated so that E(σ2

t ) = 0.0009.
Also, from empirical studies (e.g., Harvey and Shepard (1993) and Jacquier et
al. (1994)), values of φ between 0.9 and 0.98 are of primary interest.

Table 2. Parameter values for a simulation experiment of nine stochastic
volatility processes.

φ

CV 0.90 0.95 0.98

10.0 γ -0.821 -0.4106 -0.1642

σ 0.6750 0.4835 0.308

1.0 γ -0.736 -0.368 -0.1472

σ 0.363 0.260 0.1657
0.1 γ -0.706 -0.353 -0.1412

σ 0.135 0.0964 0.0614

The density of the observed series is

p(yt|αt;ψ) = e−{y2
t e−αt+αt+log(2π)}/2,

which differs slightly from the standard representation of the exponential family
of distributions given in (2). Equation (13) becomes

ỹj =
1

2
diag{(1 + αj

i )y
2
i }e

−αj

− 1/2 + Vµ.

To compare the estimate of ψ obtained by maximizing (8) with those obtained by
maximizing (15), the normal approximation g(yt|αt;θ), t = 1, . . . , n, proposed by
Durbin and Koopman is required. Working with the distribution of the log of the
squared observations, Sandmann and Koopman (1998) obtain this approximation
and comment that this tranformation may cause problems when zero or small
values are encountered. Our estimators AL and AIS avoid this transformation.

For our simulation study, we considered n = 500 and computed mean and
root mean squared errors over 500 simulated realizations for each of the nine
parameters given in Table 2. The results for the AL and AIS estimates are
shown in Table 3. To attain numerical stability, the same noise was used to
generate replicates of α(j)’s as a function of the parameters.

For both methods, the estimates become more biased as CV decreases. The
large bias for CV=0.1 comes from the fact that the data appear almost indistin-
guishable from a constant volatility model (Breidt and Carriquiry (1996); Sand-
mann and Koopman (1998)). For the remaining cases, the bias for φ and σ are
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small, while the bias for γ is large, even for large CV. Also, for this parameter,

AL has larger bias than AIS. For CV=10, the mean squared errors are roughly

equal. More importantly, the two estimation procedures have comparable per-

formance throughout the range of parameter values. The setup of the models

in the simulation study by Sandmann and Koopman (1998) is similar to ours.

They obtain parameter estimates following the Durbin and Koopman procedure

by working the log of the squared observations. The bias and root mean square

errors of φ for the models for which CV is 10 or 1, are comparable with ours. For

most of the cases we find smaller biases for σ and larger biases for γ.

Table 3. Comparison of AL and AIS estimates based on 500 replications.

For each parameter, the bias and root mean square error of each procedure

are shown. For the AIS estimates, N = 100 was used.

γ φ σ γ φ σ γ φ σ

CV=10

true -0.821 0.900 0.675 -0.411 0.950 0.484 -0.164 0.980 0.308

AL 0.081 0.010 0.012 0.080 0.010 0.005 0.092 0.011 -0.007

rmse 0.299 0.036 0.081 0.210 0.025 0.065 0.176 0.021 0.052

AIS 0.012 0.002 0.036 0.070 0.008 0.007 0.092 0.011 -0.009
rmse 0.238 0.029 0.078 0.195 0.023 0.064 0.172 0.021 0.053

CV=1

true -0.736 0.900 0.363 -0.368 0.950 0.260 -0.147 0.980 0.166

AL 0.193 0.026 -0.013 0.132 0.018 -0.010 0.101 0.014 -0.009
rmse 0.514 0.069 0.091 0.342 0.046 0.068 0.212 0.029 0.048

AIS 0.117 0.016 -0.002 0.115 0.016 -0.009 0.099 0.013 -0.010

rmse 0.395 0.053 0.079 0.299 0.040 0.064 0.199 0.027 0.047

CV=0.1

true -0.706 0.900 0.135 -0.353 0.950 0.096 -0.141 0.980 0.061
AL 0.321 0.045 -0.024 0.419 0.059 -0.040 0.334 0.047 -0.029

rmse 0.809 0.114 0.093 0.841 0.118 0.099 0.723 0.102 0.075

AIS 0.235 0.033 -0.012 0.336 0.047 -0.030 0.304 0.043 -0.025

rmse 0.676 0.095 0.078 0.676 0.095 0.081 0.646 0.091 0.065

4.2. Poisson model

For the second simulation example, we assume that p(yt|αt;ψ) is a Pois-

son distribution with rate λt := eβ+αt , where αt = φαt−1 + ηt, ηt ∼ i.i.d.

N(0, σ2), t = 1, . . . , n, and |φ| < 1. We again consider nine models. This

time, to classify the models, the index of dispersion D of the conditional vari-

ance of the observations σ2
t = eβ+αt appears to be a more useful characterization

of the ability to extract information in the signal αt than its coefficient of vari-

ation. The mean of σ2
t is held fixed at 1.5. The parameters of the models that
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result with this set up are shown in Table 4.

For this simulation, we considered realizations of length n = 500 and com-

puted mean and root mean squared errors over 500 simulated realizations for

each of the nine parameters given in Table 4. The results for the AL and AIS are

shown in Table 5. For the AIS estimates, N = 1, 000 was used. From this table,

we notice that the bias for φ and σ is small for large D and is large for D = 0.1.

In general, both methods produce remarkably similar results.

Table 4. Parameter values for a simulation experiment of nine Poisson state-

space models.

φ

D -0.50 0.50 0.9

10.0 β -0.6130 -0.6130 -0.6130

σ 1.2360 1.2360 0.6221

1.0 β 0.1501 0.1501 0.1501
σ 0.6190 0.6190 0.3115

0.1 β 0.3732 0.3732 0.3732

σ 0.2200 0.2200 0.1107

Table 5. Comparison of AL and AIS estimates based on 500 replications.

For the AIS estimates, N = 1, 000 was used. Root mean square errors of

estimates are reported below each bias estimate.

β φ σ β φ σ β φ σ

D = 10

true -0.613 -0.500 1.236 -0.613 0.500 1.236 -0.613 0.900 0.622

AL 0.020 -0.006 -0.019 -0.008 0.042 0.021 0.002 0.014 0.006

0.098 0.056 0.090 0.141 0.082 0.087 0.296 0.033 0.060
AIS -0.031 0.022 0.062 -0.056 -0.005 0.094 -0.001 0.010 0.010

0.093 0.063 0.100 0.143 0.065 0.120 0.294 0.029 0.058

D = 1

true 0.150 -0.500 0.619 0.150 0.500 0.619 0.150 0.900 0.312

AL 0.006 -0.010 -0.011 0.004 0.045 -0.003 -0.002 0.011 0.002
0.050 0.084 0.057 0.075 0.107 0.061 0.148 0.039 0.048

AIS -0.004 0.000 0.009 -0.001 0.012 0.010 -0.001 0.010 0.001

0.049 0.089 0.059 0.073 0.091 0.061 0.148 0.037 0.048

D = 0.1
true 0.373 -0.500 0.220 0.373 0.500 0.220 0.373 0.900 0.111

AL 0.011 -0.084 -0.015 0.011 0.159 -0.022 0.004 0.091 -0.023

0.041 0.360 0.094 0.047 0.393 0.092 0.061 0.249 0.071

AIS 0.005 -0.065 0.012 0.005 0.123 0.003 0.003 0.078 -0.016

0.039 0.383 0.088 0.045 0.393 0.083 0.060 0.231 0.062
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4.3. Bias correction via bootstrap

In the two simulation studies that we considered, the AL estimate of the

parameters for the Poisson and stochastic volatility models can be slightly biased.

Indeed, we see in the two applications to data, that AL and AIS can be very close

to each other. Closeness here is “measured” via the Monte Carlo standard error

of the AIS estimates. In this section, we show via simulation that the bias of

the estimates can be reduced considerably using the bootstrap. Stoffer and Wall

(1991) use the bootstrap to reduce the bias of the ML estimates of the parameters

of a classical Gaussian state-space model.

To implement the bootstrap in our modeling setup, let y1 . . . , yn be observa-

tions from a state-space model and let ψ̂AL be the maximizer of the approximate

likelihood in (8). Following Efron and Tibshirani (1993), the bootstrap bias cor-

rection of the estimate ψ̂AL of ψ is given by

ψ̄AL = ψ̂AL − b̂ias, (17)

where b̂ias = ψ̄
∗
− ψ̂AL, and ψ̄

∗
is the average of B bootstrap estimates ψ̂

∗
1, . . .,

ψ̂
∗

B . Here, the bootstrap estimate ψ̂
∗

j is the maximizer of the approximate like-

lihood in (8) computed with a realization y∗1 . . . , y
∗
n drawn from the state-space

model that has true parameters ψ̂AL. The bootstrap estimate of the variance of

the estimator ψ̂AL is

̂
var(ψ̂AL) =

1

B − 1

B∑

j=1

(ψ̂
∗

j − ψ̄
∗
)(ψ̂

∗

j − ψ̄
∗
)T . (18)

To assess the performance of the bootstrap bias correction, we conducted a

simulation study on three Poisson models with parameters given in the second

row of Table 4. As seen in Table 5, φ has a moderate bias in these models. The

results of the simulation are given in Table 6. BC refers to the average of 500

bias corrected estimates (17), computed with B=200 bootstrap estimates. The

standard errors of the 1,000 bias corrected estimates are also shown in the table.

The AL estimates were obtained from 500 simulated realizations from the state-

space model having true parameters given in the second row of Table 4. The row

labeled AL is the average of the 500 simulated ψ̂AL estimates. Inspecting this

table, the bootstrap bias correction has done a good job in reducing the bias of

the AL estimate of φ with little alteration of the standard errors.

In Figure 3 we compare the estimated densities of the AL and BC estimates

of the parameters β and φ. Each column in this figure corresponds to the models

with parameters (0.15, -0.5, 0.619), (0.15, 0.5, 0.619) and (0.15, 0.9, 0.312),

respectively. As seen from these graphs, the BC estimates have essentially shifted

the location of the AL estimates.
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Table 6. Simulation results of bootstrap bias correction of AL estimates

for three Poisson state-space models based on 500 replications. The rows

labelled AL and BC are the average of the replications. Each BC estimate

is the bootstrap bias correction estimate defined in (17) with B=200.

β φ σ β φ σ β φ σ

true 0.150 -0.500 0.619 0.150 0.500 0.619 0.150 0.900 0.312

AL 0.144 -0.490 0.630 0.146 0.455 0.622 0.152 0.889 0.310

S.E. 0.049 0.083 0.056 0.075 0.097 0.061 0.148 0.038 0.048
BC 0.153 -0.500 0.615 0.147 0.501 0.618 0.153 0.906 0.302

S.E. 0.049 0.091 0.060 0.074 0.092 0.065 0.149 0.034 0.050
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Figure 3. Parameter densities for β (first row) and φ (second column) for

estimations AL (solid line) and BC (dotted line) for three Poisson state-space

models.

4.4. Pound-dollar exchange rates

The first dataset that we analyze is the Pound/Dollar exchange rates. The

data, taken from the site http://staff.feweb.vu.nl/koopman/sv/, consists of the

log differences yt of the daily observations of weekdays closing pound to dollar

exchange rates zt, t = 1, . . . , 946, from 10/1/81 to 6/28/85. We use the basic

stochastic volatility model (4.1) to model yt := log(zt) − log(zt−1). Setting the
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parameter vector ψ := (γ, φ, σ2), Table 7 shows the AL and AIS estimates of ψ

and the corresponding bootstrap bias corrections. MCSE denotes Monte Carlo

standard error and is obtained as the standard error of 1,000 AIS estimates of

ψ, using for each estimate the same observations y1, . . . , y945. The standard

error of AL and AIS estimates are obtained using (18). The columns labeled

as BC are bootstrap bias corrections of AL and AIS, computed with B = 500

bootstrap estimates. Notice that the AL and AIS estimates are remarkably close.

In fact, the difference between these estimates is due to the randomness of the

AIS estimate. For example, two distinct AIS estimates of σ2 are unlikely to differ

by more than four times the Monte Carlo error, i.e., 0.0028, while the estimates

AL and MCE of σ2 differ by only 0.0006. In other words, we would not be able

to differentiate the AL estimate from a “cloud” of AIS replicates.

Table 7. AL and AIS estimates for the Pound-Dollar exchange rates data.

BC are bootstrap bias corrected estimates (B = 500) and S.E. are bootstrap

estimates of the standard errors of AL and AIS, respectively. MCSE is the

standard error of 1,000 AIS replicates.

Parameter AL S.E. BC AIS MCSE S.E. BC

γ -0.0227 0.0198 -0.0140 -0.0230 0.0004 0.0173 -0.0153

φ 0.9750 0.0194 0.9845 0.9747 0.0004 0.0166 0.9832

σ2 0.0267 0.0141 0.0228 0.0273 0.0007 0.0138 0.0228

4.5. Polio data

The second dataset consists of the observed time series y1, . . . , y168 of the

monthly number of U.S. cases of poliomyelitis for 1970 to 1983, first considered by

Zeger (1988). We adopt the same model used by Zeger, in which the distribution

of Yt, given the state αt is Poisson with rate λt := eαt+xT
t β. Here, βT :=

(β1, . . . , β6), xt is the vector of covariates given by

xT
t = (1, t/1, 000, cos(2πt/12), sin(2πt/12), cos(2πt/6), sin(2πt/6)),

and the state process is assumed to follow the AR(p) model in (1). The vector

of parameters of this SSM is ψ = (β,φ, σ2). In the second and fourth columns

in Table 8, the estimated likelihoods obtained for various values of p are shown,

where AL is the maximum value of (8) and AIS (N = 1, 000) is the maximum

value of (11). The model in the last row (p = 13) was included to allow for other

montly effects not captured by the deterministic mean function. The AIC values

for both methods are shown. Based on the AIC values from the AL estimates, an

AR(1) process seems adequate to model the states. However, based on the AIC

values from the AIS estimates, an AR(4) model must be selected for the state
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process. In the last two columns we show the mean and Monte Carlo standard

error of the AIC values based on 100 replicates. Based on these columns, an

AR(1) model seems to be appropriate for the state process. Table 9 contains

the AL and AIS estimates for the case when the state process follows AR(1)

model. The Monte Carlo standard error MCSE is based on 1,000 replicates of

AIS estimates, using for each replicate the same observations y1, . . . , y168. BC

are bootstrap bias corrections of these estimates based on B = 1, 000 bootstrap

estimates. Notice that only the AL and AIS estimates for β2 and φ differ by

more than the expected difference between two AIS estimates (4 times MCSE).

In general the AL estimates are very close to the AIS estimates in spite of the

fact that the length of the observed time series is not large. We obtained larger

MCSE than in Table 7, even when we used the same number of draws (N =

1, 000) to compute the Monte Carlo standard error in (9). This may not be

surprisingly since the polio data set has far fewer observations than the Pound-

Dollar exchange rate data. Moreover, the model fitted to the latter has fewer

parameters.

Table 8. Likelihood and AIC values for various Poisson state space models
for the polio data. The simulation is based on 100 replicates of AIC values
based on AIS estimates of the likelihood (N=1,000).

AL AIS (N=1,000) simulation

p log like AIC log like AIC AIC MCSE

0 -252.00 518.00 -252.86 519.76 519.73 0.204

1 -248.14 512.28 -248.29 512.58 512.49 0.210

2 -247.14 512.28 -247.04 512.08 512.23 0.208
3 -246.93 513.86 -246.93 513.86 513.86 0.247

4 -245.15 512.30 -244.75 511.50 512.18 0.272

5 -245.09 514.18 -245.16 514.32 514.10 0.274

13 -243.72 527.43 -243.74 527.47 527.44 0.170

Table 9. AL and AIS estimates for the polio data. BC are bootstrap bias
corrected estimates and S.E. are bootstrap estimates of the standard error
of AL and AIS, respectively. MCSE is the standard error of 1,000 AIS
replicates.

Parameter AL S.E. BC AIS MCSE S.E. BC

β1 0.242 0.273 0.260 0.239 0.002 0.285 0.238

β2 -3.814 2.767 -3.955 -3.746 0.013 2.867 -3.761

β3 0.162 0.142 0.162 0.161 0.001 0.151 0.161
β4 -0.482 0.166 -0.480 -0.480 0.001 0.164 -0.467

β5 0.413 0.128 0.410 0.414 0.001 0.122 0.409

β6 -0.011 0.129 -0.020 -0.011 0.001 0.127 -0.013

φ 0.627 0.229 0.731 0.661 0.006 0.209 0.731

σ2 0.289 0.122 0.302 0.272 0.008 0.112 0.299
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4.6. How good is the posterior approximation?

As seen in the simulation studies considered above, the use of pa(α|y;ψ)

in (6) as the normal approximation to the posterior distribution p(α|y,ψ) gives

good results. The quality of the likelihood approximation is due largely to the

closeness of the normal approximation to the posterior. In this subsection we

provide two methods for examining the closeness of this normal approximation.

The first method compares the posterior mean with the posterior mode. The sec-

ond method is a statistical test based on the correlation between the generalized

squared distances defined in (20) with the quantiles of a Chi-squared distribution.

For the first method, recall that the posterior mode is given by α∗. We now

provide an estimate α̂, also known as the smoothed state vector, of the posterior

mean of the state vector. From (4) and the fact that p(α|y;ψ) ∝ L(ψ;y,α),

E(α|y,ψ) =

∫
αp(α|y,ψ)dα =

1

L(ψ;y)

∫
αL(ψ;y,α)dα.

Hence, if α(1), . . . ,α(N) are draws from pa(α|y;ψ) and L̂(ψ;y) is the estimate

of the likelihood given in (9), an estimate of the posterior mean is given by

α̂ =
1

NL̂(ψ;y)

N∑

i=1

α(i) p(y,α
(i)|ψ)

pa(α(i)|y;ψ)
=

1

N Êra(ψ;y)

N∑

i=1

α(i)eR(α(i);α∗). (19)

As an example, for the Pound-Dollar exchange rates and polio data let ψ be

the AL estimate from Tables 7 and 9, respectively. Using N = 1, 000 in (19), α̂

was computed. In Figures 4 and 5 the solid line shows the smoothed state vector,

and the dashed line shows the posterior mode α∗ of p(α|y,ψ) obtained as in

(14). In both cases, the posterior mode and smoothed state vector are relatively

close even though the number of observations of the polio data (n=168) is not

large. This adds support to the goodness of the approximation to the posterior

distribution p(α|y;ψ) by a multivariate normal density.

For the second method, if an independent sample from p(α|y,ψ) can be

generated, then we can assess the compatibility of the samples with a normal

population. Such a sample can be obtained as follows: First generate an in-

dependent sample α(1), . . . ,α(N) from the approximate distribution pa(α|y,ψ).

For N large, an i.i.d. sample from the discrete distribution with masses

pi :=
wi∑N

i=1wi

, wi =
p(α(i)|y,ψ)

pa(α(i)|y,ψ)
∝ eR(α(i);α∗),

is an (approximate) i.i.d. sample from p(α|y,ψ). In the Bayesian literature, this

method is known as sampling importance-resampling (SIR), e.g., Bernardo and

Smith (1994). Assume now that α̃(1), . . . , α̃(M) is an i.i.d. sample from p(α|y,ψ).



400 RICHARD A. DAVIS AND GABRIEL RODRIGUEZ-YAM

If pa(α|y,ψ) in (6) were a good approximation to p(α|y,ψ), for M − n large,

the squared generalized distances

d2
j := (α̃(j) −α∗)T (K∗ + V)(α̃(j) −α∗), j = 1, . . . ,M, (20)
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Figure 4. (smoothed state vector) For the Pound-Dollar exchange rates data,

the solid line shows estimate of the posterior mean of the state vector and

the dashed line shows its posterior mode.
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would resemble an i.i.d. sample from the chi-squared distribution with n de-

grees of freedom (Johnson and Wichern (2002)). Thus, a chi-squared QQ-plot of

d2
1, . . . , d

2
M , should resemble a straight line through the origin with slope 1.

To illustrate this technique, consider the state-space model for which

p(yt|αt;ψ) is the Poisson distribution with rate λt := eβ+αt , αt = φαt−1+ηt, ηt ∼

i.i.d. N(0, σ2), t = 1, . . . , n, and |φ| < 1. The vector of parameters of this process,

ψ = (β, φ, σ2), is fixed at (0.373, 0.9, 0.012). Chi-squared QQ-plots of d2
1, . . . , d

2
M

are shown in Figure 6. With a sample of size N=5,000 from pa(α|y;ψ), a

sample of size M from p(α|y;ψ) was obtained via SIR. The jth column of this

figure corresponds to the parameter value ψ = ψj, where ψ1 := (0.2, 0.8, 0.002),

ψ2 := (0.373, 0.9, 0.012) and ψ3 := (0.5, 0.95, 0.02). From this figure, we notice

that even for a small sample (n = 50), the squared generalized distances closely

resemble the chi-squared distribution with n degrees of freedom.
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Figure 6. (Chi-squared QQ-plots) The QQ-plot from ith row and jth col-

umn was obtained using a SIR sample α̃(1), . . . , α̃(M) from p(α|y,ψj) by

resampling a sample of size 5,000 from the approximation pa(α|y,ψj).

The correlation coefficient rQ between the ordered distances d2
(j), j = 1, . . .,
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M , and the Chi-squared quantiles can be used to test any departure from nor-

mality of pa(α|y,ψ) (Johnson and Wichern (2002)). The nine correlations rQ

for the data used to create Figure 6 are shown in columns 3 through 5 of Table

10. The hypothesis must be rejected at level α% if the correlation falls below rα.

The critical points r0.05 for each M , needed to test the null hypothesis of normal-

ity with 5% significance, are given in the last column of this table. In all cases,

normality is not rejected. This provides some evidence that the distribution in

(6) is a reasonable approximation for the posterior distribution p(α|y,ψ).

Table 10. Correlation coefficients of the points in the QQ-plots from figure 6.

rQ
N M ψ1 ψ2 ψ3 r0.05

50 100 0.9952 0.9978 0.9925 0.9873
100 150 0.9957 0.9952 0.9926 0.9913

200 250 0.9974 0.9974 0.9973 0.9920

Appendix. The Innovations Algorithm

In this appendix, we briefly describe the innovations algorithm (Brockwell

and Davis (1991)), and show with an example how it can be adapted to com-

pute the recursion in (14) and the determinant needed in (8). This algorithm is

applicable to any time series with finite second moments, whether stationary or

not.

Suppose that {Xt}
n
t=1 is a time series with finite second moment and covari-

ance matrix Γ = {γi,j}
n
i,j=1. Define X := (X1, X2, . . . , Xn). Let X̂ be the vector

of one-step predictors, i.e., X̂ := (0, X̂2, . . . , X̂n), and νj := E(Xj+1 − X̂j+1)
2

be the mean-squared error of the one-step predictor X̂j+1. Then (Brockwell and

Davis (2002, pp.71-72))

X = C(X− X̂), (21)

where

C :=




1 0 0 . . . 0

θ11 1 0 . . . 0

θ22 θ21 1 . . . 0
...

...
...

. . .
...

θn−1,n−1 θn−1,n−2 θn−1,n−3 . . . 1



.

The entries θij of this matrix can be found recursively as in Proposition 5.2.2.

from Brockwell and Davis (1991). Equating the covariance matrices of X and

C(X− X̂), it follows that

Γ = CDCT , (22)
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where D := E{(X − X̂)(X − X̂)T } = diag{ν0, ν1, . . . νn−1}. The last equality

comes from the fact that the components of X− X̂ are uncorrelated.

For example, consider the SSM for which the observations y1, . . . , yn are

realizations from a Poisson distribution with rates λt = eβ+αt , and the state

process follows the AR(p) model in (1). For identifiability of the parameters, we

set γ = 0. Notice that the distribution of the observations has the format of the

exponential family in (2) where b(αt) = eαt+β .

To implement the innovations algorithm, the matrix V = {vij}n×n is needed.

To start, set V−1
0 = Cov (α0), where α0 := (α1, α2, . . . , αp). The p components

γ(0), γ(1), . . . , γ(p− 1) of this matrix can be obtained by solving the p+ 1 linear

equations (Brockwell and Davis (2002, p.90))

γ(k) − φ1γ(k − 1) − . . . − φpγ(k − p) = σ2I{0}(k), k = 0, 1, . . . , p,

where I{0}(k) is the indicator function. Now, set Z = (α0, ηp+1, ηp+2, . . . , ηn),

where ηt is the tth error term of the AR(p) process in (1). Thus,

Cov (Z) =

(
V−1

0 0

0 σ2In−p

)
.

Since ηt = −φpαt−p − . . .− φ1αt−1 + αt, then Z = Aα, where the square matrix

A of dimension n× n is given by

A =

(
Ip 0

A21 A22

)
,

A21 =




−φp −φp−1 . . . −φ1

0 −φp . . . −φ2
...

...
. . .

...

0 0 . . . −φp

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0




, A22 =




1 0 . . . 0

−φ1 1 . . . 0
...

...
. . .

...

−φp−1 −φp−2 . . . 0

−φp −φp−1 . . . 0
...

...
. . .

...

0 0 . . . 1




.

Hence, Cov (Z) = ACov (α)AT = AV−1AT . From the two expressions for

Cov (Z), it follows that

V = AT

(
V0 0

0 1
σ2 I

)
A.

The determinant of the matrix V, needed in (8), can be now computed. Since

|A| = 1, it follows that |V| = (1/(σ2)n−p)|V0|. The determinant of V0 is com-

puted numerically. For p = 1, V0 = (1 − φ2
1)/σ

2. Then |V| = (1 − φ2
1)/(σ

2)n.
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Now, substituting the partitioned version of A in V, we obtain

V =

(
V0 + 1

σ2 A
T
21A21

1
σ2 A

T
21A22

1
σ2 A

T
22A21

1
σ2 A

T
22A22

)
.

It can be shown that vij = 0 if |j − i| > p. If n > 2p, there is no need to store

vij, i, j = p+1, . . . , n−p−1. For large n, this is a substantial saving in memory.

Now, let αj be the current iterate to the value of α∗. From (12),

ḃj =
∂

∂α
1Tb(α)|αj = eβdiag{eα

j

},

Kj =
∂2

∂α∂αT
1Tb(α)|αj = eβdiag{eα

j

}.

Since no intercept is included in the AR(p) process, µ = 0. Thus, ỹj defined in

(13) is given by

ỹj = y − ḃj + Kjαj + Vµ = y − eβeα
j

+ eβdiag{eα
j

}αj .

Set Γ := Kj+V and X := ỹj . Since Γ is a band-limited matrix, the entry θik

of matrix C is zero if k > p. Hence, C can be stored in a n× p matrix. For large

n, this is again a substantial memory saving. Start with v0 = γ1,1 and X̂1 = 0.

From Proposition 5.2.2 of Brockwell and Davis (1991), for i = 1, . . . , n− 1,

θi,i−k = v−1
k [γi+1,k+1 −

k−1∑

m=max{0,i−p,k−p}

θk,k−mθi,i−mvm],

k = max{0, i − p}, . . . , i− 1,

vi = γi+1,i+1 −
i−1∑

m=max{0,i−p}

θ2
i,i−mvm,

X̂i+1 =

min{p,i}∑

m=1

θim(Xi+1−m − X̂i+1−m).

Now, using (21) and (22), it follows that Γ−1X = C−Te, where the entries ej

of the vector e are the “normalized” residuals (Xj − X̂j)/νj−1. Therefore, the

iteration in (14) becomes

αj+1 = (Kj + V)−1ỹj = Γ−1X = C−Te. (23)

Since C is a triangular matrix, there is no need to invert C to compute αj+1.

To see this, notice that e = CTαj+1. Equating the nth components of e and
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CTαj+1 we obtain αj+1
n = en. And equating their (n−i)th entries the “reversed”

recursion

αj+1
n−i = en−i −

min{p,j}∑

k=1

θn+k−i−1,kα
j+1
n+k−i, i = 1, 2, . . . , n− 1,

is obtained. The iteration in (23) tends to converge quite rapidly -only a few

steps are required. To compute the determinant of the matrix K∗ +V needed in

(8), set Γ := K∗ + V, where K∗ = eβdiag{eα
∗

} -see (5), and X = y − eβeα
∗

+

eβdiag{eα
∗

}α∗, where α∗ is the converged value of the iteration in (23). Because

the determinant of the matrix C is 1, taking determinants on both sides of (22),

we obtain

|K∗ + V| = |Γ| = |CDCT | = |D| =
n−1∏

j=0

νj,

where νj, j = 0, . . . , n− 1, comes from the last iteration in (23).

The innovations algorithm allows us to sample from pa(α;α∗, (K∗ + V)−1),

useful for implementing the importance sampling procedure. If u is a draw from

N(0, In), then α := α∗ + C−TD−1/2u is a draw from pa(α;α∗, (K∗ + V)−1).

To show this, notice that E(α) = α∗ and Cov {α} = C−TD−1/2D−1/2C−1 =

(CDCT )−1 = (K∗ +V)−1. To compute C−TD−1/2u, a “reversed” recursion can

be used.
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