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Abstract: Thanks to advances in MCMC methodology, Bayesian curve estimation

has become an increasingly popular subject both in practice and in theoretical re-

search. Prior specification for curves is a more challenging task than for scalar or

multivariate parameters. Besides using fully parametric curves, common strate-

gies include using a stochastic process or discretizing the curve, each with its own

advantages and pitfalls. In this paper we adopt the second strategy, primarily

for its practicality for general users, in the context of hazard (and survival) curve

estimation. We adapt a multiresolution modeling approach from the engineering

literature, which provides a resolution-invariant prior for hazard increments, with

their a priori dependence conveniently specified via tuning a few hyperparameters.

We also investigate a hierarchical mixing strategy to combat a pitfall of the mul-

tiresolution approach: that nearby cells may exhibit lower dependence than cells

that are far apart due to the fact that the multiresolution approach is based on a

binary tree construction and not the usual Euclidean topology. Our investigations

include both simulated and textbook data, as well as comparisons to the first strat-

egy based on a Beta process prior, and to the second strategy based on a discretized

correlated Gamma process prior. The paper concludes with a detailed application

of the proposed method to an AIDS reporting delay estimation for New York City,

from data provided by the Centers for Disease Control and Prevention (CDC).

Key words and phrases: AIDS, Bayesian multiresolution models, propotional hazard

model, reporting delay, semiparametric hazard models.

1. Introduction

The literature on Bayesian hazard estimation is extensive, with a number of
competing methods for placing prior structure on the hazard function h(t). A

simple method is to model the hazard in discrete time, placing an i.i.d. Gamma

prior on the collection of discrete-time hazard increments. In many analyses,

however, it may be desirable to allow a priori dependence among the hazard

increments for “borrowing of strength” among adjacent intervals. In this pa-

per we investigate a semiparametric discrete-time model that chooses a level

of dependence in a data-driven fashion via a hierarchical Bayes model involv-

ing hyperpriors on hazard “curvature” or smoothness parameters. We adapt
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the multiresolution approach that has grown popular in the recent Bayesian

function estimation literature, and which is surveyed in Kolaczyk (1999). Re-
cent examples include Nowak and Kolaczyk (2000) using multiresolution meth-

ods for Poisson intensity estimation in an astrophysical application, Huang and

Cressie (2001) applying multiscale graphical models in spatial statistics, and

Huang, Cressie and Gabrosek (2002) formulating dynamic spatio-temporal mod-
els. The multiresolution method invokes a Haar-based wavelet, and has been

extensively applied, because of its tractability, to density estimation in a non-

Bayesian context (cf., Kolaczyk and Nowak (2003), Willett and Nowak (2003)

and Antoniadis, Grégoire and Nason (1999); the latter used a class of wavelet
(multiresolution) methods directly for the estimation of hazard curves, and can

be considered a non-Bayesian counterpart to ours. For more applications, see

http://math.bu.edu/people/kolaczyk/multigranular.html.) Our model uses a

multiresolution prior on the discrete-time hazard increments, yielding a “reso-
lution-invariant” prior specification for each hazard increment that does not vary

regardless of whether the increment can be further divided into finer increments.

The model setup also allows for an adaptive choice of the resolution level through
suitable model selection criteria.

In the context of Bayesian hazard estimation, an important competing prior

for the hazard function is the nonparametric Beta process prior on the cumulative

hazard function (Hjort (1990)) with Beta-distributed independent increments.
Both the theoretical properties of the corresponding posterior, and the needed

computation methods for sampling from it, are in general complex (e.g., Kim

and Lee (2003) and Lee and Kim (2002)). For practical purposes, therefore, a

simpler semiparametric approach may be preferable, especially if it delivers com-
parable or sometime even superior inferential performance, as we demonstrate

in this paper using the standard mean squared error (MSE) criterion. We also

explore the impact of prior assumptions about hazard increment dependence for

a small leukemia survival dataset, and investigate the information induced by
the “curvature” hyperparameter in a simulation of Weibull and Gamma hazard

estimation. By mixing over a second hyperparameter, we provide a practical

method of dealing with a potential pitfall of the multiresolution approach: incre-

ments that are close to each other may be given lower a priori correlations than
those that are further apart.

The literature on Bayesian hazard estimation using correlated hazard incre-

ments is also quite vast. Notable examples are papers on correlated Gamma

increments for the hazard function; principal sources include Arjas and Gas-
barra (1994), who place an autoregressive Gamma prior process on the hazard

increments, and Nieto-Barajas and Walker (2002), who use two latent Markov

processes to induce prior correlation among the hazard increments. Among other

work in this area, we mention Sinha (1993), Sinha and Dey (1997), Sahu, Dey,
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Aslanidou and Sinha (1997), Aslanidou, Dey and Sinha (1998), Sinha (1998) and

Craiu and Duchesne (2004), whose model is compared to ours in Section 3.

An additional feature of our semiparametric model is that it is straightfor-

ward to use Bayesian missing data imputation to adjust for a relatively wide

range of censoring mechanisms. This is demonstrated by our detailed applica-

tion to an AIDS reporting delay study using the CDC AIDS Public Information

Dataset, which suffers from both interval-censoring and truncation. Without ap-

propriate adjustment for such missing data, hazard estimation can be seriously

biased.

The paper is organized as follows: Section 2 presents the multiresolution

hazard model, some of its theoretical properties, and MCMC procedures for

fitting the model. Section 3 provides empirical investigation of the impact of prior

assumptions on hazard inference, as well as a comparison of the multiresolution

model to two other Bayesian prior processes on the cumulative hazard. Section

4 presents the AIDS reporting delay analysis with model selection criteria, while

Section 5 discusses some future work.

2. Multiresolution Model Formulation

The goal in this section is to describe a strategy for estimating population

survival S(t), given possibly censored failure times and covariate data for N sub-

jects. We adopt a Bayesian proportional-hazards model that allows for general

censoring in the common population survival curve Sbase(t). We choose a fixed

and ordered set of time horizons tj and seek estimates of Sbase(tj) at the chosen

tj. Note that Sbase(t) is an underlying baseline survival curve, and that individ-

ual patients will have different survival functions depending on their covariates

and trial arm membership. For modeling convenience, however, we follow the

well-established approach of working with the hazard Hbase(t) = − ln(Sbase(t))

and its discrete increments dj ≡ Hbase(tj)−Hbase(tj−1). The estimates for these

quantities can easily be transformed into survival function estimates using the

fact that dj =
∫ tj
tj−1

hbase(s)ds, where the function hbase(s) is the baseline hazard

rate at time s, so that Sbase(tj) = e−dj Sbase(tj−1), with Sbase(t0) ≡ Sbase(0) = 1.

2.1. Multiresolution prior for baseline hazard increments

A standard Cox proportional-hazards model estimates covariate effects for

survival, but treats the baseline hazard function as a (high-dimensional) nui-

sance parameter. The model here estimates, besides covariate effects, a baseline

survival Sbase(tj) at a fixed set of time points 0 < t1 < · · · < tJ . The spacing

between the tj need not be equal and in fact should be chosen according to the

needs of the analysis and relevant assumptions about the underlying hazard func-

tion. As for most wavelet-based methods, we set J = 2M , M > 0, as described
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below. In general, the number of bins J should be chosen as a fraction of N , the

total sample size available, so that there are multiple observations per bin.

Following the standard practice of survival analysis, we will estimate H(tj) ≡

Hbase(tj), j = 1, . . . , J, and its discrete-time increments dj . For times t such that

tj−1 < t < tj, we use a piecewise-constant hazard rate assumption to linearly

interpolate the baseline cumulative hazard at time t. For times t > tJ , S(t) is

not defined under our model, and observed failure times after tJ are regarded as

right-censored at tJ . Thus, the number of bins J = 2M and bin widths tj − tj−1

should be chosen so that tJ is close to the maximum observed failure time tmax,

and the amount of information lost by this approximation is minimized.

Given the assumed number J of time intervals, we can parametrize the

hazard increments dj in a way that makes it easy to express our prior beliefs

about the curvature of the underlying hazard curve. We start with the highest

resolution level where HM,i−1 ≡ di for i = 1, . . . , J are the J hazard incre-

ments we are trying to estimate. We then aggregate via the dyadic summands

Hm−1,p = Hm,2p + Hm,2p+1, from m = M down to m = 0, where m indexes the

level of resolution and p = 0, . . . , 2m − 1 indexes the position within each level.

Note that H0,0 ≡ H(tJ), the total hazard at the final time horizon tJ . Moving

from the top of this “binary tree”, we let Rm,p ≡ Hm,2p/Hm−1,p and parametrize

the hazard increments d1, . . . , dJ by H0,0 and the “splits” R1,0, . . . , RM,2M−1−1

(hereafter Rm,p).

Algebraically, our parametrization can be more conveniently expressed via

matrix notation log d = ΠR̃, whose definition is most clearly illustrated by the

following example with M = 3 and thus J = 2M = 8:
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The matrix expression makes clear the splitting nature of the multiresolution
process, with each column of 2m unit terms splitting into two subsequent columns,
each with 2m−1 ones (m = 1, . . . ,M), continuing until we reach 2M columns with
only a single unit element.

Inspired by the development in Nowak and Kolaczyk (2000), we place inde-

pendent symmetric Beta priors on the Rj ’s and a Gamma prior on H0,0, multiply-

ing the shape parameter of the Beta priors at each higher level of the resolution

by a hyperparameter k. For example, the priors for H0,0 and Rm,p given M = 3

are

H0,0 ∼ Ga(a, λ)

R1,0 ∼ Be(ka, ka)

R2,0, R2,1 ∼ i.i.d. Be(k2a, k2a)

R3,0, . . . , R3,3 ∼ i.i.d. Be(k3a, k3a). (1)

This formulation is one way to ensure prior self-consistency under aggregation of

hazard increments, as will be explained in the next few paragraphs. As we prove

in Section 2.6 when k = 0.5, the baseline hazard increments {d1, . . . , dJ} are a

priori uncorrelated and, in fact, independently Gamma-distributed. Adopting k

lesser or greater than 0.5 yields, respectively, negative or positive prior correlation

among the dj’s. Positive prior correlation corresponds to a smoothing of the

baseline hazard function, in which the inference for a particular hazard increment

borrows strength from those of its neighbors. This may be especially appropriate

in cases of heavy censoring. As explained in the next section, we place hyperpriors

on k and a to allow their posteriors to incorporate information from the complete-

data likelihood, as well as a hyperprior on λ to control the inference about the

total cumulative hazard H0,0.

Since the maximal resolution level M is an artifact of our model, it is de-

sirable that our prior specification for H0,0 and for any increment Hm−1,p at

fixed depth m (from the top of the tree) does not depend on our choice of

M . For H0,0, this is trivially true because M does not enter the Ga(a, λ) prior

specification for H0,0. For Hm−1,p, this is true because changing from M to

M − 1 in our choice is identical to discarding the “bottom-level” RM,p. As

a consequence of the identity HM−1,p = HM,2p + HM,2p+1, the joint prior for

HM−1,p, p = 0, . . . , 2M−1 − 1, remains the same regardless of whether the total

resolution depth is M or M − 1. By induction on M , as a generic index, we

see that the joint prior for Hm−1,p, p = 0, . . . , 2m−1 − 1, will only depend on the

depth m from the top of the tree, not the maximal depth of the tree M . Con-

sequently, the multiresolution prior is self-consistent, or resolution-invariant, to

aggregation. This property was also observed by Kolaczyk (1999) for a closely

related prior on Poisson intensities.
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2.2. Log-linear complete-data proportional hazards

This subsection considers the complete-data likelihood L for failure times Ti

observed between times 0 and tJ . Because we only estimate the baseline hazard

function in this time range, failures observed after tJ will be considered right-

censored, and will only contribute to the estimation of Hbase(tJ) or, equivalently,

Sbase(tJ). Depending on the applications and convenience of modeling and com-

putation, we can take either the actual failure times Ti, or the “interval” failure

times (tj−1, tj ] as our complete data. The distinction between these two types

can be viewed as the choice of the basic “continuous” time unit we adopt for our

model, because any “actual” time, no matter how precisely recorded, is in fact

always an interval observation. In both cases, we use the proportional-hazards

assumption (Cox (1972)) to specify the conditional hazard in the presence of

covariates, so that h(t|X,β) = exp(XT β)hbase(t).

For Ti ∈ [0, tJ ] observed continuously, the contribution to the likelihood is

L(β | Ti, Xi) = f(Ti|Xi, β) = exp(X ′
iβ)hbase(Ti)Sbase(Ti)

exp(X′

i
β), (2)

using the identity f(T ) = h(T )S(T ). When we only observe that Ti > tJ (a

right-censoring time), the contribution becomes

L(β | Ti, Xi) = S(tJ |Xi, β) = Sbase(tJ)exp(X′

i
β). (3)

When we observe that Ti ∈ (tj−1, tj ], with conditional survival probability

pj ≡ S(tj)/S(tj−1), the contribution is





j−1
∏

l=1

pl





exp(X′

i
β)
(

1 − p
exp(X′

i
β)

j

)

(4)

if j ≤ J , and
(

J
∏
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pl

)exp(X′

i
β)

(5)

otherwise. Note that (4) and (5) represent individual contributions to the so-

called “discrete proportional-hazards likelihood”, as in for example, Tu, Meng

and Pagano (1993).

2.3. Missing data strategy and implementation

The complete-data models above imply the existence of an imputation model

to handle censoring under the missing at random (MAR) assumption. What we

actually impute depends on what we regard as complete data, i.e., we may need
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to impute either a continuous Ti or the interval observation (tj−1, tj]. The most

common form of failure time censoring is right-censoring, or loss to followup.

The AIDS dataset in Section 4 also displays interval censoring and truncation.

In most cases, it is assumed that we know the interval (ts, te] in which the censored

failure time occurred; in the special case of right-censoring, where te is ∞, we may

integrate the missing data out of the likelihood and simply use the expressions in

(3) or (5). When the complete data is discrete, for any discrete-time bin (tj−1, tj]

within the range (ts, te], the probability that the actual (unobserved) failure time

tfail falls within that bin is

1

P (ts < tfail < te|Xi, β, Sbase(t))
P (tj−1 < tfail < tj|Xi, β, Sbase(t)),

creating a multinomial distribution on the discrete-time bins containing the cen-

sored tfail. Note that this distribution is conditional upon the covariates of the

censored patient and the current estimates of covariate effects and baseline sur-

vival curve. With this imputation strategy, of course, failure times are assumed

to be missing at random (MAR) (Little and Rubin (1987)), so that censoring

is not informative. Or putting it differently, we hope we have included enough

covariates to adequately capture the real essence of the censoring mechanism. In

practice, missing failure times are imputed at each step of the Gibbs sampler,

conditional upon current draws of all the other parameters. When imputed val-

ues of the missing data items are not of primary interest in the analysis, they

can be marginalized out of the parameter inference. Section 4 gives a detailed

description of the imputation strategy for the AIDS reporting delay example.

2.4. Hyperpriors for hyperparameters a, k and λ

As detailed in Section 2.1, the hyperparameter k governs the relationship

among priors for the Rm,p, and plays a critical role in determining the prior cor-

relations among the baseline hazard increments. Although we can choose a fixed

k in our specification of prior, it is often desirable to “estimate” or adaptively

choose k from the data by putting a hyperprior on k, which we choose to be the

exponential distribution with mean µk. This leads to the full conditional prior

for k, conditioning on all other parameters of the model,

π(k|k−) ∝ exp(−
k

µk

)
M
∏

m=1

2m−1−1
∏

p=0

[

Γ(2akm)

Γ2(akm)
(Rm,p(1 − Rm,p))

akm−1
]

, (6)

where the notation θ− denotes all parameters/variables except for θ itself. Ex-

pression (6) shows that the information in the data for k will come from the
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joint posterior of a and all the “splits” Rm,p. Both the model with ‘fixed k’ and

the hierarchical Bayes model will be investigated in the context of the leukemia

example in Section 3.1.

For the “basic” shape parameter a, we adopt a zero-truncated Poisson (ZTP)

hyperprior. We use this discrete prior for computational convenience, with the

understanding that integer shape parameters are adequate for most practical

purposes. Put differently, the information in the data about a is typically not

strong enough to meaningfully distinguish the “true” a from its closest integer

approximation. The density for ZTP with mean µa is e−µaµa
a/[a!(1 − e−µa)],

and thus full conditional distribution for a is proportional to

µa
a

Γ(a + 1)

Ha
0,0

Γ(a)

M
∏

m=1

2m−1−1
∏

p=0

[

Γ(2akm)

Γ2(akm − 1)
(Rm,p(1 − Rm,p))

akm
]

.

This distribution can be sampled using any general method for sampling from

univariate discrete distributions (e.g., the inverse CDF method).

Finally, to model our prior uncertainty about the scale parameter λ for the

Gamma prior in (1) on the total cumulative hazard H0,0 = H(tJ), we place an

exponential prior on λ with mean µλ, creating the full conditional distribution

π(λ|λ−) ∝ exp(−
λ

µλ

)
exp(−

H0,0

λ
)

λa
.

The next section discusses how to generate samples from these distributions.

2.5. Markov chain Monte Carlo Bayesian model estimation

In the case of the continuous-time likelihood in (2) and (3), for patient i

we observe the failure or censoring time Ti and a censoring indicator δi (0 for

censoring, 1 for observed failure). The joint parameter posterior distribution is

then proportional to

π(a)π(λ)π(k)π(H0,0|λ, a)
M
∏

m=1

2m−1−1
∏

p=0

π(Rm,p|k, a)
N
∏

i=1

L(Ti|δi,H0,0, Rm,p),

where π(·) denotes the prior or hyperprior. For general types of censoring, as in

the AIDS reporting delay example, it typically is necessary to include the miss-

ing data as part of our sampling variables. However, in the case of continuously

observed, right-censored failure times, it is more efficient to integrate out the

missing data analytically and allow for right-censoring in the likelihood expres-

sion. That is, for the continuous failure time data with simple right-censoring,

the ith patient’s contribution to the overall likelihood is

[hbase(Ti)]
δi exp(−H(min(Ti, tJ ))).
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Patients with failure time Ti > tJ are considered to suffer administrative censor-

ing (δi = 0) at time tJ , and contribute exp(−H(tJ)) to the total likelihood. Note

that here we present only the likelihood contribution for the baseline hazard;

covariate effects are introduced as for the standard proportional hazards model

(Cox (1972)).

We use the Gibbs sampler (Geman and Geman (1984)) to sample from the

joint posterior for the missing failure times and model parameters by cycling the

following steps, where the variables being conditional upon in each full condi-

tional are listed only if they are not conditionally independent given the rest.

1. Impute missing failure times for continuous complete-data failure time ob-

served only for an interval [ts, te], as in Section 2.3.

2. Draw H0,0 from the full conditional π(H0,0|λ,Rm,p, a) = Ga((a +
∑N

i=1 δi),

1/[(1/λ) +
∑N

i=1 F (Ti)]), with mean µ = (a +
∑N

i=1δi)/[(1/λ) +
∑N

i=1F (Ti)],

where F (Ti) = H(min(Ti, tJ ))/H(tJ ), a function of the Ti and Rm,p. Note

that F (Ti) does not depend on H0,0 = H(tJ), as it has been factored out of

the cumulative hazard H(min(Ti, tJ)).

3. Draw the Rm,p (in any order) from π(Rm,p|k,H0,0, a) with log full conditional

(for given m and p)

(

akm − 1 +
N
∑

i=1

δiΠi,r

)

log(Rm,p) +
(

akm − 1 +
N
∑

i=1

δiΠi,r′

)

log(1 − Rm,p)

−
N
∑

i=1

H(min(Ti, tJ )), (7)

where r and r′ are the columns of Π corresponding to log(Rm,p) and log(1 −

Rm,p) respectively. Note that this conditional distribution is not Beta, as the

terms H(min(Ti, tJ)) involve the Rm,p as well as H0,0 when Ti < tJ .

4. Draw k from π(k|Rm,p) as described in Section 2.4.

5. Draw λ from π(λ|H0,0) as described in Section 2.4.

6. Draw a from π(a|H0,0, Rm,p) as described in Section 2.4.

The full conditional in (7) can be shown to be log-concave and is therefore sam-

pled using the adaptive rejection sampling (ARS) algorithm of Gilks and Wild

(1992). The full conditional distributions for λ and k are in general not log-

concave, and are sampled from by an extension of ARS known as adaptive rejec-

tion Metropolis sampling (ARMS), described in Gilks, Best and Tan (1995).

In the case of an “interval” complete-data failure time as in (4) and (5) in

Section 2.2, steps 4−6 are unaltered, but in steps 2 and 3 we sample from the
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two conditional posterior distributions

π(H0,0|λ, a,Rm,p, Ti) ∝ π(H0,0|λ, a)
N
∏

i=1

L(H0,0, Rm,p|Ti),

π(Rm,p|k,H0,0, a, Ti) ∝ π(Rm,p|k, a)
N
∏

i=1

L(H0,0, Rm,p|Ti).

The imputation in step 1 is then for interval failure time data rather than

continuous-time data.

Even in the complete-data case, it is difficult to formally demonstrate conver-

gence properties of this sampler. Although there are general results available to

determine the geometric ergodicity of Gibbs samplers (see, for example, Robert

and Casella (1999)), the time-inhomogeneous transition kernel employed by the

ARMS algorithm does not allow these results to be directly applied, as the pro-

posal density can change with each step of the sampler. In the place of a formal

analysis, we therefore present empirical diagnostics in Section 4.5 to demonstrate

practical convergence of marginal quantities of interest.

2.6. Theoretical properties of the multiresolution prior

Our first result is to analytically determine the prior covariance cov(di, dj) =

E(didj)−E(di)E(dj), under the specification given in (1), for any i and j. Assume

that after H0,0, di and dj share the first L − 1 (L ≥ 1) levels of “splits”. Then,

by the tree construction, the remaining levels of “splits” will all be different, and

therefore we can write, with Bm,p being either Rm,p or (1 − Rm,p),

di = H0,0

(

L−1
∏

l=1

Bl,pl

)

BL,pL

M
∏

l=L+1

Bl,pi,l
,

dj = H0,0

(

L−1
∏

l=1

Bl,pl

)

(1 − BL,pL
)

M
∏

l=L+1

Bl,pj,l
.

Under (1), one can verify that E(H0,0)=λa; E(H2
0,0)=λ2a(a+1); E(Bm,p)=1/2;

E(B2
m,p)=(1/4)((2kma+2)/(2kma+1)); E(Bm,p(1−Bm,p))=(1/4)(2kma/(2kma

+1)). It follows then that

E(didj) − E(di)E(dj)

=
M
∏

l=L+1

E(Bl,pi,l
)E(Bl,pj,l

)

[

E(H2
0,0)

L−1
∏

l=1

E(B2
l,pl

)E(BL,pL
(1 − BL,pL

)) −
λ2a2

4L

]

=
λ2a(a + 1)

4M

(

2ka + 2

2ka + 1

)

. . .

(

2kL−1a + 2

2kL−1a + 1

)(

2kLa

2kLa + 1

)

−
λ2a2

4M
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=
λ2a2

4M

[

(2ka + 2k)

(

2k2a + 2k

2ka + 1

)

· · ·

(

2kLa + 2k

2kL−1a + 1

)

(

1

2kLa + 1

)

− 1

]

=
λ2a2

4M

[(

L
∏

l=1

(2kla + 2k)

(2kla + 1)

)

− 1

]

. (8)

Now note that for k = 0.5, the terms (2kla + 2k)/(2kla + 1) are all identically

1, implying zero prior correlation among the hazard increments. When k > 0.5,

these terms are all greater than 1, and the increments will be positively correlated

a priori. Correspondingly, for k < 0.5 the hazard increments will have negative

prior correlation.

To show that for k = 0.5 the baseline hazard increments are in fact indepen-

dent, consider the cumulative baseline hazard parameter H0,0 ∼ Ga(a, λ), as in

Section 2.1, and the “top-level” ratio parameter R1,0 = H1,0/H0,0 ∼ Be(a/2, a/2).

Then given that H1,0 = H0,0R1,0 and H1,1 = H0,0(1−R1,0), a change-of-variables

calculation gives that H1,0 and H1,1 are a priori i.i.d. Ga(a/2, λ). Following this

argument recursively, the baseline hazard increments dj will be i.i.d. Ga(a/2M , λ)

in the prior.

For general k, the situation is more complex, although it is still possi-

ble to analyze the marginal prior distribution of the dj ’s. Given that dj ≡

H0,0
∏M

m=1 Bm,pm , these hazard increments are, in the prior, an independent

product of a Gamma variable and M Betas. Consequently, it is easy to establish

E(dn
j ) =

λn〈a〉n
∏M

m=1〈akm〉n
∏M

m=1〈2akm〉n
,

where 〈a〉n ≡ Γ(a + n)/Γ(a) = a(a + 1) . . . (a + n − 1). This formula provides a

very convenient tool for studying the marginal distribution of dj . For example,

it shows that the mean of dj is λa/2M , which is free of k, as it should be. We can

also easily simulate dj and estimate its density with a Gaussian kernel density

estimator, as shown in Figure 1, where M = 3, λ = 1, a follows a ZTP hyperprior

with mean µa, and k has an exponential hyperprior with mean µk. We see, for

example, that for a fixed µk, as µa increases, the right tail of the density for the

dj also increases. For given µa, however, the patterns are much less clear and

therefore more analysis is required to determine the effect of differing µk on the

distribution of the dj .



336 PETER BOUMAN, VANJA DUKIC AND XIAO-LI MENG

PSfrag replacements

0
.0

0.0 0.5

0
.2

0
.4

0
.6

0.7

0
.8

0.9

1
.0

1.0

1.1

1
.2

1.3

1
.4

1
.6

1.8

1.5 2.0 2.5

3.0

3.5

4.0

0

1

2

3

4

5

6

7

8

10

15

20

25

30

35

40

60

80

500

1000

1500

2000

2500

4 Bins

8 Bins

16 Bins

32 Bins

64 Bins

128 Bins

Model 1: 32 Time Bins

Model 1: 16 Time Bins

Model 1: 8 Time Bins

Model 1: 4 Time Bins

Model 1: 2 Time Bins

Time Bin

32 Bins Aggregated to 16

32 Bins Aggregated to 8

16 Bins Aggregated to 8

32 Bins Aggregated to 4

16 Bins Aggregated to 4

8 Bins Aggregated to 4

32 Bins Aggregated to 2

16 Bins Aggregated to 2

8 Bins Aggregated to 2

4 Bins Aggregated to 2

1:16

Shrink Factor

Last Iteration in Segment

1.00

1.01

1.02

1.03

1.04

1.06

1.08

1.10

1.20

Rmax

Rp

2-bin Model

4-bin Model

6-bin Model

8-bin Model

16-bin Model

32-bin Model

ACF

Lag

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 8

Bin 9

Bin 10

Bin 11

Bin 12

Bin 13

Bin 14

Bin 15

Bin 16

Bin 17

Bin 18

Bin 19

Bin 20

Bin 21

Bin 22

Bin 23

Bin 24

Bin 25

Bin 26

Bin 27

Bin 28

Bin 29

Bin 30

Bin 31

Bin 32

Roughness

k Posterior

Quarterly Interval

Time

Survival

Correlation

Bin No.

k=0.5, a=1

k=2.0, a=1

k=0.5, a=5

k=2.0, a=5

HB k, a=1

HB k, a=5

k=0.5, HB a

k=2.0, HB a

HB k, HB a

Ratio

Multiresolution vs. Beta Process Model

Multiresolution vs. NBW Model, C =5

Multiresolution vs. NBW Model, C =1

Multiresolution vs. NBW Model, C =0

Variance Ratio

Bias Sq. Ratio

MSE Ratio

True CHF

Nelson-Aalen

Beta Process Post. Mean

Multiresol. Post. Mean

Cumulative Hazard Function

NBW Post. Mean, C =0

NBW Post. Mean, C =1

NBW Post. Mean, C =5

32 bins

16 bins

8 bins

4 bins

2 bins

Reporting Fraction

alambda

alambda=1, kprior=0.5

alambda=1, kprior=2

alambda=3, kprior=0.5

alambda=3, kprior=2
D

en
si

ty
E

st
im

a
te

Hazard Increment
Log2(1+Reporting Delay), Log2 Months

Figure 1. Density estimates for hazard increment priors under varying hy-

perpriors for a and k; alambda is the rate hyperparameter for a, while kprior

is the mean of the hyperprior for k.

2.7. Combating a pitfall

From expression (8), we see that when k > 0.5, the prior covariance, and hence

correlation, of di and dj is an increasing function of L (since all (2kla + 2k)/ (2kla + 1) >

1). However, since L − 1 is the number of common “splits” di and dj share, and the

splits are arranged according to a binary tree structure, L is not a monotone function of

|i− j|. This implies that nearby increments can have smaller correlation than those that

are further apart. For example, with M = 3, d4 and d5 have L = 1, but d4 and d1 have

L = 2. Consequently, ρ(d4, d5) = 0.07 < ρ(d4, d1) = 0.13, as in Table 1, where a = 1.

Table 1. Correlations for differing L distances, 4-128 bin models with hy-

perprior on k and a = 1; ρi is the correlation for increments with L = i.

4 bins ρ2 = 0.22, ρ1 = 0.12

8 bins ρ3 = 0.18, ρ2 = 0.13, ρ1 = 0.07

16 bins ρ4 = 0.13, ρ3 = 0.10, ρ2 = 0.07, ρ1 = 0.04

32 bins ρ5 = 0.09, ρ4 = 0.07, ρ3 = 0.05, ρ2 = 0.04, ρ1 = 0.02

64 bins ρ6 = 0.06, ρ5 = 0.05, ρ4 = 0.04, ρ3 = 0.03, ρ2 = 0.02, ρ1 = 0.01

128 bins ρ7 = 0.03, ρ6 = 0.03, ρ5 = 0.02, ρ4 = 0.02, ρ3 = 0.01, ρ2 = 0.01, ρ1 = 0.01

Although it is not a mathematical paradox to allow increments further from

each other to have stronger dependence than those that are closer, from the

perspective of prior specification, it is desirable to avoid a model that is generally

against our intuition or actual prior belief.
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Table 1 (where a = 1 and k has an exponential hyperprior with mean µk = 2,

inducing prior correlation) shows that the difference between the correlations for

different L can be quite substantial, especially for M ≤ 4, and thereby the

aforementioned “reversal” can be of practical importance. Whereas this problem

is inherent in the binary tree construction, we can significantly reduce its effect

by mixing over a hyperprior of a. Table 2 is a counterpart of Table 1, but

with a given a ZTP hyperprior with µa = 4 and k given the same exponential

hyperprior with µk = 2. It is evident that the mixing has almost completely

equalized all the correlations. Although this is still less desirable than having

the correlations as monotone decreasing functions of |i − j|, the mixing at least

prevents the correlation from increasing noticeably with |i− j|. We also see from

both Table 2 and Table 1, that the a priori correlations decrease as the resolution

level increases, and therefore the mixing strategy becomes less important when

M is large. For this reason, the analysis in Section 4 is performed with a = 1.

Table 2. Correlations for differing L distances, 4-128 bin models with hy-

perpriors on k and a; ρi is the correlation for increments with L = i.

4 bins ρ2 = 0.28, ρ1 = 0.27

8 bins ρ3 = 0.17, ρ2 = 0.16, ρ1 = 0.16

16 bins ρ4 = 0.10, ρ3 = 0.09, ρ2 = 0.09, ρ1 = 0.09

32 bins ρ5 = 0.06, ρ4 = 0.05, ρ3 = 0.05, ρ2 = 0.05, ρ1 = 0.04
64 bins ρ6 = 0.03, ρ5 = 0.03, ρ4 = 0.03, ρ3 = 0.03, ρ2 = 0.03, ρ1 = 0.03

128 bins ρ7 = 0.02, ρ6 = 0.02, ρ5 = 0.02, ρ4 = 0.02, ρ3 = 0.02, ρ2 = 0.02, ρ1 = 0.02

Other multiresolution applications (e.g., Kolaczyk (1999) and van Dyk, Con-

nors, Esch, Freeman, Kang, Karovska, Kashyap, Siemiginowska and Zezas (2004))

use a “cycle-spinning” algorithm to handle the correlation problem, effectively

assuming that the intensity being estimated is periodic. Because the hazard

function is an aperiodic function of time and we cannot join the ends of the func-

tion together, mixing over hyperparameters appears to be a more satisfactory

approach for our purposes.

3. Empirical Investigations Using Simulated and Textbook Datasets

3.1. Effects of hyperparameters and hyperpriors

In this subsection we investigate the impact of different choices of fixed k and

a on the posterior hazard estimates for relatively small sample sizes. We use the

well-known example of the leukemia dataset analyzed in Cox (1972) to illustrate

the effects of different choices of k and a, comparing the inferences to those

from the hierarchical Bayes models with hyperpriors on k and a. Table 3 gives

leukemia remission times in weeks for two groups under either a drug or placebo;
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with 41 patients, 12 of the drug-group patients have right-censored remission

times. For this example, we assume that the remission times are continuously

observed and use the ungrouped data likelihood as given in Section 2.2.

Table 3. Cox’s Leukemia Data (in weeks).

Group Observed Remission Times (* = Right-Censored)

Drug Group 6*, 6, 6, 6, 7, 9*, 10*, 10, 11*, 13, 16, 17*, 19*, 20*, 22, 23, 25*, 32*, 34*, 35*

Placebo Group 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

We have already demonstrated in Section 2.6 that the prior choices of k and

a influence prior correlations among the hazard increments dj . We now wish

to check the effects of induced correlation in our multiresolution prior upon the

posterior inference for this dataset.
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Figure 2. Posterior Inference of Survival Curves for Cox’ Leukemia Data, under
Differing Values of k and a (Solid Lines are Kaplan-Meier plots, dashed lines
are multiresolution estimates; upper line is drug group, lower line control).

Figure 2 shows mean posterior survival estimates for three choices of k (0.5,

2.0 and hierarchical Bayes), with three choices of a (1.0, 5.0 and hierarchical

Bayes). For hierarchical Bayes, we used a ZTP hyperprior with rate parameter

µa = 4 on a and an exponential hyperprior with mean µk = 2 on k, creating

prior correlation as in the previous section. We placed a hierarchical Bayes

exponential hyperprior on λ with mean 100 in all nine analyses. Kaplan-Meier
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plots of the data are shown in solid lines; dashed lines give survival estimates

from the multiresolution model with eight equal time bins on the interval [0,24].

The hierarchical Bayes model for k and a gives posterior (2.5%, 50%, 97.5%)

quantiles of (0.82, 2.07, 3.38) for k and a 95th sample percentile of 6.0 for a,

indicating substantial posterior uncertainty about these hyperparameters given

the data. As Figure 2 shows, there is very minor impact on the posterior inference

from the choice of hyperparameters.
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Figure 3. Prior (dashed) and posterior (solid) hazard increment correlations
Corr(d1, di), i = 2 . . . 8, Leukemia example.

Figure 3 displays both prior and posterior correlations for hazard increment

1 (that is, Corr(d1, di) for i = 2, . . . , 8) for the nine models, showing the positive

prior correlations for fixed k = 2.0, the zero prior correlation for k = 0.5 and

the correlations induced by the hierarchical Bayes hyperprior on k. Dashed

lines indicate prior correlations for the first hazard increment; solid lines indicate

posterior correlations. Choice of k clearly has a strong impact on both prior and

posterior correlations between bin 1 and bins 2-8; the choice of a has a weaker

impact. However, a more interesting finding is that with the mixture of values

of a given by the hierarchical Bayes model, the prior correlation between hazard

increments remains fairly constant across time bins.

This lack of sensitivity, although not desirable from the perspective of pro-

moting the multiresolution approach, is largely a piece of good news for the
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process of making inferences. We report this investigation to show that in the

case of even a relatively small dataset such as the leukemia data, a very infor-

mative prior on the hazard increments and their correlation would be required

to have an impact on the resulting inference; similar results were obtained in

Nieto-Barajas and Walker (2002).

3.2. Curvature information in the posterior of k

To examine what information is contained in the marginal posterior dis-

tribution for the parameter k, we compared the curvature, as measured by a

“roughness penalty”, of two discretized cumulative hazard functions to the re-

spective modes of the full conditional of k given H0,0 and Rm,p. For a range of

shape parameters, we divided Weibull and Gamma cumulative hazards into 4, 8,

16, 32, 64 and 128 equally spaced discrete hazard increments on the time interval

[0, 1]. For the Weibull distribution with unit scale parameter and shape param-

eter α, the cumulative hazard at time t is tα. For the Gamma distribution with

unit scale and shape α, the cumulative hazard involves an incomplete Gamma

integral: Hα(t) = − log(1 −
∫ t
0 (1/Γ(α))sα−1 exp(−s)ds). We chose the Weibull

cumulative hazard on the interval [0, 1] for the invariance of the cumulative haz-

ard H(1) ≡ 1α ≡ 1 for all shape parameters; by contrast, the Gamma cumulative

hazard exhibits very strong variation in H(1) for the shape parameters consid-

ered.

For each discretized cumulative hazard at a given shape and level of aggre-

gation, we generated 5,000 simulated observations from each distribution and

then fit the six multiresolution models described above for the baseline haz-

ard; we then determined the posterior distribution for k for each of six lev-

els of resolution and multiple Weibull and Gamma shape parameters (Weibull

shapes α = 1, 2, 2.5, 3, 3.5, 5, 7, 9 and Gamma shapes α = 3, 4, 5, 6, 7, 8, 9, 10). As

a measure of smoothness or curvature for the cumulative hazard function, we

used
∫

(d2H(t)/dt2)2dt from the smoothing spline literature (see e.g., Hastie and

Tibshirani (1990)). The curvature of the Weibull cumulative hazard can be de-

termined analytically for given α; the Gamma hazard curvature was computed

using numerical integration. Note that this curvature is a global measure for a

particular curve, while k governs local relationships among the Rm,p.

Figures 4 and 5 show posterior plots, for 4, 8, 16, 32, 64 and 128 bins, of the

k posterior for differing shape values for both Weibull and Gamma distributions.

Solid lines show the posterior medians for k as a function of curvature; dashed

lines give posterior 2.5% and 97.5% quantiles. Interestingly, the posterior shows

three trends: lower variance with an increasing number of bins (or levels M to

the model), decreasing k with increasing integrated squared second derivative,

and increasing k with an increasing number of bins. A larger number of bins
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(particularly 128 time bins) gives an increasingly small variation in k with the

curvature of the underlying cumulative hazard function. Intuitively, for a given

number of bins, as the curvature increases, the correlation among the hazard

increments becomes less and less, thereby driving the posterior distribution of k

more closely around k = 0.5. We conjecture that as the curvature approaches

infinity, all curves in the plots will reach k = 0.5 as their asymptotes, albeit it is

clear that the rate at which this occurs is a monotone function of M , that is, the

larger the M , the larger the curvature it takes to reach the asymptote.
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Figure 4. Posterior (2.5%, 50%, 97.5%) percentiles for k versus cumulative
hazard roughness, Weibull simulation.
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Figure 5. Posterior (2.5%, 50%, 97.5%) percentiles for k versus cumulative

hazard roughness, Gamma simulation.
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3.3. Comparison with estimation using other Bayesian priors

In this section we compare the multiresolution model of the baseline hazard

to two classes of stochastic process priors for the cumulative hazard function H(t).

Beta processes were developed by Hjort (1990), who derived the posterior for a

beta process prior for right-censored survival data without ties. Very recent work

by Kim and Lee (2003) and Lee and Kim (2002) gives an efficient algorithm for

sampling from a beta process posterior, as well as closed-form expressions for the

posterior under left-truncation and right-censoring in the proportional-hazards

model. Nieto-Barajas and Walker (2002) develop a correlated gamma-process

prior on piecewise-constant hazard rates (hereafter the “NBW model”), using

two latent processes to connect adjacent hazard rates. This model is further de-

veloped by Craiu and Duchesne (2004), who add data augmentation techniques

to address competing-risks data with masked failure causes. Here we use a simu-

lation to compare the performance of our semiparametric multiresolution model

to that of these other two. Specifically, we evaluate the relative efficiency of

our approach by the bias and variance we incur when estimating survival at a

sequence of time horizons tj . (A nice introduction to prior processes for the cu-

mulative distribution function (CDF) and the cumulative hazard can be found

in Ghosh and Ramamoorthi (2003).)

For the first model comparison, we use a beta process centered on a unit

exponential cumulative hazard, with prior parameters A0(t) ≡ 1, c(t) ≡ 1, where

A0(t) is the prior mean of the exponential cumulative hazard H(t) and c(t) is a

scaling parameter as a function of time t. Using the notation that Yn(t) is the

number of patients alive and under observation at time t, for our chosen prior

the posterior parameters can be calculated as

cN (t) = 1 + Yn(t), AN (t) =
m+1
∑

i=1

ti − ti−1

N + 2 − i
+
∑

tj≤t

1

N − j + 2
,

where we assume that there are no ties in the observations, and t1, . . . , tm are

the m = Nn(t) failure times before time t and t0 = 0, tm+1 = t. The mean of

this posterior is AN (t); the expression for the posterior variance at time t is

∑

tj≤t

N − j + 1

(N − j + 2)2(N − j + 3)
+

m+1
∑

i=1

ti − ti−1

(N + 2 − i)(N + 3 − i)
.

For our second comparison, we use a simplified version of the NBW model

which Craiu and Duchesne (2004) used as the starting point for their competing-

risks model. Following their notation, we divide the observation time [0, tmax]

into J intervals of constant hazard rate dj . These parameters are accompanied
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by a latent process uj, j = 1, . . . , J−1 taking values on the non-negative integers,

so that the total parameter set has the Markovian dependency graph

d1 → u1 → d2 → . . . → uJ−1 → dJ .

The latent process uj allows correlation to be introduced between adjacent dj .The

parameters are given the prior structure d1 ∼Ga(α1, β1), uj|dj ∼Poisson(cjdj),

dj+1|uj ∼ Ga(αj+1 + uj, βj+1 + cj), j = 1, . . . , J − 1. For simplicity, we take

αj ≡ α = 0.001, βj ≡ β = 0.001, cj ≡ C. Values of C equal to 0, 1 and 5 are used

in the simulation below to represent increasing levels of autocorrelation in the

hazard rate process. (Note that when C = 0, the dj are a priori independent; as

C increases, so does prior correlation.) While we take the cj to be constant, these

hyperparameters may also be given Exponential hyperpriors to allow dependen-

cies to be chosen in a data-driven fashion; see Nieto-Barajas and Walker (2002)

for further details. Under this setup, the conditional posterior distributions for

the tth Gibbs sampler iteration become

d
(t)
1 |d−1 ∼ Ga(α1 + u

(t−1)
1 , β1 + C + e1),

d
(t)
j |d−j ∼ Ga(αj + u

(t−1)
j−1 + u

(t−1)
j + nj, β1 + 2C + ej),

where nj counts the number of failures observed in the jth interval and ej is the

total unit exposure, or the sum over all units of time under observation during

the jth time interval.

For our simulation, 100 uncensored observations were generated from a

Weibull distribution with shape parameter 5 and H(t) = t5. The NBW model

and the multiresolution model were fitted with J = 2M = 16 bins, bin width

∆t = 0.075 and maximum time horizon tJ = 1.2. We then computed poste-

rior mean estimates and variances for each estimator at 48 equally-spaced time

points on the interval [0.025,1.200]. The NBW and multiresolution estimates for

other time points were derived using the piecewise-constant hazards assumption

in computing posterior means and variances.

Figure 6 plots the ratios of the posterior variance, squared bias and MSE

as a function of time for the multiresolution model over the beta process prior

model (first panel) and over the NBW model with three values of C (remaining

panels) in estimating the Weibull cumulative hazard between times 0.6 and 1.2.

(Cumulative hazard estimates earlier than time 0.6 are too small to give stable

ratio estimates.) Analysis shows that while the multiresolution model often has

slightly higher variance than the beta process model, the squared bias, which

drives the MSE for much of the time interval, is slightly lower, giving a slightly

lower MSE between times 0.6 and 1.0. (However, in the region from time 1.1−1.2,

the ratios become very large and numerically unstable due to the fact that the
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bias and variance of the beta process estimator happen to be very near zero.)
At the same time, the multiresolution model depends upon the assumption of a
piecewise-constant hazard rate, which corresponds to linear interpolation for the
cumulative hazard function.

For C = 0, the NBW model is very comparable in performance to the
multiresolution model. For larger values (C = 1 and C = 5), however, the
induced prior correlation creates so much bias that the MSE becomes much
worse than for the multiresolution model. We emphasize that the variance ra-
tio between the multiresolution and the NBW model is high (Figure 6, bottom
panels) because of the NBW model’s overwhelming prior assumptions (under
large C) that overly constrain its estimator’s variability. Figure 7 displays the
posterior mean estimates of the cumulative hazard for all four pairs of models,
along with the true cumulative hazard function and the Nelson-Aalen estimator
Λ̂(t) =

∑

tj≤t 1/(N − j + 1). For this realization, the posterior estimates display
the slight downward bias from the true hazard of all three Bayesian models; for
the NBW model with large C the bias may become overwhelming.
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Figure 6. Ratios of variances, squared Biases and MSEs, Beta process and
16-Bin multiresolution estimators for the Weibull example, evaluated at 48
equally-spaced time points (ratios numerically unstable below t=0.6 due to
low bias of beta process estimator). The variance ratio in the last panel is
outside of range due to the overly strong C and consequently low variability
for the NBW model.
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Figure 7. Comparison of Weibull cumulative hazard and Nelson-Aalen es-

timate with Mean posterior estimates for Beta process prior, 16-bin mul-

tiresolution prior, and NBW prior (based on one simulated sample of 100

uncensored observations). Comparison is performed at 48 equally-spaced

time points.

Incidentally, we can show that the mean of the beta process estimator is

close to the Nelson-Aalen estimator by computing

A′(t) − Λ̂(t) =
m+1
∑

i=1

ti − ti−1

N + 2 − i
+
∑

tj≤t

1

N − j + 2
−
∑

tj≤t

1

N − j + 1

=
m+1
∑

i=1

ti − ti−1

N + 2 − i
−
∑

tj≤t

1

(N − j + 1)(N − j + 2)
≤

t

N + 1 − Nn(t)
,

where the difference is small, bounded by 0.5/97 ≈ 0.005 at t = 0.5 and by

1.0/40 = 0.025 at time t = 1.0.

4. Application: Estimating AIDS Reporting Delay

Our case study in hazard estimation involves the administrative delay be-

tween AIDS diagnosis and case report receipt at the Centers for Disease Control
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and Prevention (CDC). In the AIDS Public Information Dataset (APIDS) both

month and year of each diagnosis and month and year of report receipt are

recorded, giving a reporting delay with two interval-censored endpoints. In any

calculations of AIDS prevalence in larger studies of the epidemic, knowledge of

this reporting delay is necessary to adjust for its biasing deflation of counts of

recent AIDS diagnoses. In an analogous analysis of United States cancer trends

between 1981 and 1998, Clegg, Feuer, Midthune, Fay and Hankey (2002) point

out that reporting delay in the NIH Surveillance, Epidemiology and End Result

(SEER) cancer registries can give rise to significant downward biases in cancer

incidence trends unless properly adjusted for. The results in the following section

illustrate how such a reporting delay distribution can be estimated in a Bayesian

setting using our multiresolution prior, and build (in part) upon the work de-

tailed in Tu, Meng and Pagano (1993), in which a model for the reporting delay

is used to de-bias estimates of AIDS survival.

4.1. Data source and description

The CDC APIDS consists of 816,849 case reports, describing AIDS diagnoses

made between 1981 and 2001 and received by the CDC as of the end of December

2001. Of these cases, we selected a study group by the following criteria: case

meets the 1987 CDC AIDS case definition and was reported in the New York

City metropolitan area, patient was a white male age 40-44 (the median age) and

AIDS was contracted via sexual contact with other men. There were 2,528 cases

that met this definition and reported both month and year of AIDS diagnosis

and case report. A histogram of log2(1+reporting delay times in months) is given

in Figure 8. The discretization at the lower end of the distribution is due to the

delay being interval-censored to an integer number of months. Unadjusted for

interval-censoring and truncation, the histogram displays a modal delay time of

two months, with a maximal time of 146 months (12 years, 2 months), giving

a strongly right-skewed distribution. We analyze the reporting delay by quarter

instead of month, choosing for convenience to estimate its distribution at 32

quarterly intervals for eight years.

As we have noted, the CDC APIDS censors both endpoints of the reporting

delay by not recording either the date of diagnosis or date of report receipt given

month and year. This double interval censoring leads to an uncertainty of up to

two months in the delay time, and we adjust for it via binomial imputation in a

Bayesian missing data analysis. Additionally, the fact that APIDS contains only

complete reports received as of December 2001 implies that some diagnoses made

during the 1981-2001 study period may not have reached the CDC by the file

closure date, biasing our analysis. To adjust for this truncation, we again impute

missing reporting delays using the negative binomial model, as described below,
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for each case report for which (file closure date-diagnosis date) < maximal delay

time. For the conditional distributions in this imputation, we make the approx-

imating assumption that the maximal reporting delay is 33 quarters (99 months

or 8.25 years), retaining 2,522 (99.8%) of the cases in our study sample. Our

estimates of the reporting delay distribution are therefore a slightly truncated

approximation to the full curve.
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Figure 8. Variation in AIDS case reporting delay.

4.2. Example of interval-censoring in AIDS data

To provide a concrete (albeit pedagogical) example of the missing data im-

putation strategy for the CDC APIDS analysis, imagine that our dataset has

only two years of case reports (January 1999-December 2000) to analyze, where

each observation gives month and year of AIDS diagnosis and month and year

of AIDS case report receipt at the CDC, and the file is closed at the end of

December 2000. Our goal for this imaginary dataset is to analyze the hazard for

the reporting delay time–the time taken for an AIDS diagnosis by a doctor or

hospital to reach the CDC. As in Section 4.1, we analyze the reporting delay by

quarter, and assume that the maximum possible reporting delay is one year or

four quarters.

Suppose, for example, that a given patient is diagnosed with AIDS in March

1999 and his case report reaches the CDC in June 1999, for a putative reporting

delay of 3 months. Because of the uncertainty in the exact date of diagnosis

and report receipt, the underlying reporting delay could actually range from two

months (for diagnosis at the end of March and report receipt at the beginning of

June) to four months (for diagnosis at the beginning of March and report receipt
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at the end of June), meaning that we are unsure whether the report receipt falls

in the first or second quarter after diagnosis. For such cases, we use a binomial

imputation model. Let 3Q be the putative number of months of reporting delay

for n case reports with covariates X; then the number of cases imputed to a delay

of Q quarters is

Y ∼ Binom
(

n,
S(3Q − 1 months|X) − S(3Q months|X)

S(3Q − 1 months|X) − S(3Q + 1 months|X)

)

,

and the number imputed to Q+1 quarters is n−Y . To compute the conditional

survival probabilities for delays of a number of months not evenly divisible by

three, we use the piecewise-constant hazards assumption for the baseline hazard

and survival curve.

4.3. Example of truncation in AIDS data

Now suppose (in our pedagogical example) that a cell of patients is diagnosed

with AIDS in March 2000 and their case reports reach the CDC in July 2000.

Since the time between these patients’ diagnoses and the file closure in December

2000 is at most ten months, less than the maximal time of one year, we must

account for the possibility, conditional upon current estimates of covariate effects

and the baseline reporting hazard, that the case report of someone diagnosed in

March 2000 would have reached the CDC after December 2000 and therefore

have not been included in the data we have at hand.

For patients diagnosed in a month and year for which the file closure date

creates the possibility of truncated case report counts, we assume the diagnosis

took place at the middle of the month, and employ the following negative bino-

mial imputation strategy to “re-inflate” the report total. Let tlead = tclose − tdiag

be the “lead time” between case diagnosis and file closure in quarters or fractions

of quarters, and preport = 1− S(tlead|X) be the probability of a diagnosis at tdiag

reaching the CDC before file closure, conditional upon covariates X. Then the

number of additional imputed cases m, estimating the number of truncated re-

ports with the same diagnosis time tdiag and covariates X will be Y −1, where Y

is a geometric random variable with probability parameter preport; if there are k

such patients with parameter preport = 1−S(tlead|X), then m = Y − k, where Y

is negative binomial with parameters (preport, k). Furthermore, the distribution

of the m imputed reporting delay times will be multinomial, with probabilities

(S(tclose|X)−S(tdiag +Qj |X), S(tdiag +Qj|X)−S(tdiag +Qj+1|X), . . . , S(tdiag +

Qn−1|X)− S(tdiag + Qn|X)), where Qj, . . . , Qn are the integer numbers of quar-

ters after diagnosis time, up to the maximal delay time, that follow tclose. Again,

cumulative hazards and survival probabilities for fractional numbers of quarters
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are computed using the piecewise-constant hazards assumption. These m im-

puted reporting delay times are then added to the sufficient statistics used by

the Gibbs sampler in the next MCMC parameter draws.

4.4. Hazard estimation

Five models were estimated for the AIDS reporting delay data, using the

prior structures indicated in Table 4 and the discrete-time proportional-hazards

likelihood from Section 2.2. For all five models, we used a value of a = 1 for the

Gamma prior shape parameter for H0,0, and placed hierarchical Bayes hyperpri-

ors on λ and k as explained in Section 4.1. While the likelihood function involved

estimates of the reporting delay distribution at 32 quarterly intervals, the series

of models considered estimated the delay hazard at resolution of 1, 2, 4, 8 and 16

quarters, using the piecewise-constant hazard assumption to interpolate hazard

values at intermediate times. As Table 4 shows, Models 2−5 are restrictions of

Model 1 which fix “lower-level” subsets of the “split” parameters Rm,p at 0.5,

effectively estimating the hazard function at lower resolution. Pointwise median,

2.5% and 97.5% curves for Models 1−5 are given in Figure 9. Hazard uncertainty

generally increases with increasing time as expected. Models 1-3 describe an ini-

tially high reporting hazard, decreasing significantly during the first two years,

while Models 4-5 incorrectly force the hazard the hazard for the first two years

to be constant.
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Figure 9. Posterior pointwise 95% credible intervals for hazard function,
Models 1−5, AIDS dataset.
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Table 4. Comparing prior structures for AIDS reporting delay example.

Model No. of Bins Bin Width, Quarters Levels M pD DIC

1 32 1 5 15.1 10695

2 16 2 4 10.3 10703

3 8 4 3 6.2 10765
4 4 8 2 3.5 10876

5 2 16 1 1.9 11012

We also performed a sensitivity analysis to choice of scale in the baseline

hazard function, checking for independence of our inferences from the number of

time bins J = 2M . An insightful discussion of model construction and selection

through invariance considerations may be found in Gelman (1996). Our model

can be usefully constrained by requiring invariance to aggregation: our posterior

inference about d1, for example, should be comparable to our inference about

d1+d2 when the number of bins J is doubled and the width of each bin is halved.

Inferences for proportional-hazards covariates should also not be significantly

affected by the choice of time scale. We note that in comparison to the 32-bin

model, for example, using the 16-bin model with the piecewise-constant hazards

assumption is equivalent to assuming that Rm,p ≡ 0.5 for m = 5, because of the

piecewise-constant hazard assumption, or to discarding the highest resolution.

Section 2.1 described the prior self-consistency properties of the multires-

olution model. To check posterior self-consistency, we graphed the effects of

aggregation in Models 1−5. Figure 10 shows posterior inferences for the baseline

cumulative hazard increments for four levels of aggregation: 16 bins, 8 bins, 4

bins and 2 bins. In the first row, for example, we compare the posterior infer-

ence for the 16-bin model to that obtained if we added together adjacent bins

of the 32-bin model posterior; the pointwise median and 2.5%/97.5% posterior

quantiles for the 16-bin model are shown with bold lines, while those for the

32-bin model are shown with regular line width. The graph shows near posterior

invariance under aggregation from 32 to 16 bins, equivalent to marginalizing out

Rm,p,m = 5 from the 32-bin model. Likewise, the second, third and fourth rows

display the results of aggregating “higher-resolution” models to 8 bins, 4 bins

and 2 bins. Notably, the inference for the first time bin in the 4-bin and 2-bin

models does not seem to be invariant under aggregation. We speculate that be-

cause 8-bin, 16-bin and 32-bin models reveal that the baseline hazard declines

during the first two years, the 2-bin and 4-bin models, which assume a constant

hazard over the first two years after diagnosis, begin to provide an incorrect in-

ference about the hazard function during this period. This method of checking

posterior self-consistency provides one way to restrict the choice of bins. Section

4.6 discusses a more formal way of choosing the level of model resolution.
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Figure 10. Results of posterior aggregation of hazard increments, Models

1−5, AIDS dataset.

4.5. MCMC convergence assessment

Section 2.5 notes that we used a combination of diagnostic criteria to em-

pirically monitor convergence of the Monte Carlo sampler to the parameter

posterior distribution for each model. Our primary tool is the multivariate

Brooks-Gelman criterion (Brooks and Gelman (1998)), which compares an es-

timate V̂ of the posterior parameter covariance matrix with an estimate W of

the within-chain parameter covariance matrix, defining a scale reduction factor

Rp = maxa(a
′V̂ a/a′Wa). Convergence is diagnosed when Rp declines to 1 over

a large number of iterations for m chains starting from overdispersed locations

in parameter space. Once convergence has been diagnosed, the first half of each

chain can be discarded as burn-in, and the second halves of the chains pooled

together as a sample from the posterior.

For each of our five models, we ran five chains from random starting positions

for 100,000 iterations, thinning the chains by a factor of 10 to reduce sample au-

tocorrelation to yield five samples of size 10,000 from posterior parameter space.
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Figure 11 displays the Brooks-Gelman plots for, respectively, the 2, 4, 8, 16 and

32-bin models, indicating good convergence for the hazard increments dj in each

case. (Note that Rmax is the maximum Gelman-Rubin convergence diagnostic

(Gelman and Rubin (1992)) across all model parameters. It was shown in Brooks

and Gelman (1998) that Rmax ≤ Rp.) Figure 12 shows the autocorrelation func-

tions (ACFs) for each of the 32 dj for the 32-bin model for one of five chains,

displaying autocorrelation very close to 0 for these parameters after thinning the

chain by a factor of 10. We are therefore reasonably confident that the sampler

has converged for all five models, with nearly uncorrelated draws.

PSfrag replacements

0.0

0.5

0.2

0.4

0.6

0.7

0.8

0.9

1
.0

1
.1

1
.2

1
.3

1.4

1.6

1.8

1.5

2.0

2.5

3.0

3.5

4.0

0

000

1

2

3

4

5

6

7

8

10

15

20

25

30

35

40

60

80

500500

500500500

10001000

100010001000

15001500

150015001500

20002000

200020002000

25002500

250025002500

4 Bins

8 Bins

16 Bins

32 Bins

64 Bins

128 Bins

Model 1: 32 Time Bins

Model 1: 16 Time Bins

Model 1: 8 Time Bins

Model 1: 4 Time Bins

Model 1: 2 Time Bins

Time Bin

32 Bins Aggregated to 16

32 Bins Aggregated to 8

16 Bins Aggregated to 8

32 Bins Aggregated to 4

16 Bins Aggregated to 4

8 Bins Aggregated to 4

32 Bins Aggregated to 2

16 Bins Aggregated to 2

8 Bins Aggregated to 2

4 Bins Aggregated to 2

1:16

S
h
r
in

k
F
a
c
t
o
r

S
h
r
in

k
F
a
c
t
o
r

S
h
r
in

k
F
a
c
t
o
r

S
h
r
in

k
F
a
c
t
o
r

S
h
r
in

k
F
a
c
t
o
r

Last Iteration in SegmentLast Iteration in Segment

Last Iteration in SegmentLast Iteration in SegmentLast Iteration in Segment

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

1

1
.0

1

1
.0

2

1
.0

2

1
.0

2

1
.0

3

1
.0

3

1
.0

4

1
.0

4

1
.0

6
1
.0

8

1
.1

0
1
.2

0

RmaxRmax

RmaxRmaxRmax

RpRp

RpRpRp

2-bin Model 4-bin Model

6-bin Model

8-bin Model

16-bin Model 32-bin Model

ACF

Lag

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 8

Bin 9

Bin 10

Bin 11

Bin 12

Bin 13

Bin 14

Bin 15

Bin 16

Bin 17

Bin 18

Bin 19

Bin 20

Bin 21

Bin 22

Bin 23

Bin 24

Bin 25

Bin 26

Bin 27

Bin 28

Bin 29

Bin 30

Bin 31

Bin 32

Roughness

k Posterior

Quarterly Interval

Time

Survival

Correlation

Bin No.

k=0.5, a=1

k=2.0, a=1

k=0.5, a=5

k=2.0, a=5

HB k, a=1

HB k, a=5

k=0.5, HB a

k=2.0, HB a

HB k, HB a

Ratio

Multiresolution vs. Beta Process Model

Multiresolution vs. NBW Model, C =5

Multiresolution vs. NBW Model, C =1

Multiresolution vs. NBW Model, C =0

Variance Ratio

Bias Sq. Ratio

MSE Ratio

True CHF

Nelson-Aalen

Beta Process Post. Mean

Multiresol. Post. Mean

Cumulative Hazard Function

NBW Post. Mean, C =0

NBW Post. Mean, C =1

NBW Post. Mean, C =5

32 bins

16 bins

8 bins

4 bins

2 bins

Reporting Fraction

alambda

alambda=1, kprior=0.5

alambda=1, kprior=2

alambda=3, kprior=0.5

alambda=3, kprior=2

Density Estimate

Hazard Increment
Log2(1+Reporting Delay), Log2 Months

Hazard Increment

Figure 11. Brooks-Gelman convergence diagnostics.

4.6. Model comparison criteria for number of time bins J

In this section, we investigate the use of model selection criteria to address

the question of how many time “bins” to include in the multiresolution model.

The DIC explored in Spiegelhalter et al. (2002) begins with an estimation of the

effective number of model parameters pD using the formula

pD{y,Θ, θ̃(y)} = Eθ|y[−2 log(p(y|θ))] + 2 log[p(y|θ̃(y))], (9)
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Figure 12. Autocorrelation functions for draws of dj parameters from one

chain, 32 bin-model, AIDS dataset.

where Θ is the set of model parameters which appear directly in the complete

data likelihood and θ̃(y), usually the posterior mean E(θ|y), is the model estimate

of the parameters chosen. This expression intuitively may be thought of as a

reduction in uncertainty due to estimation, and it is argued in Spiegelhalter

and others (2002) that parallels between pD and classical measures of model

complexity make it a good candidate for the effective number of parameters.

Writing D(θ) = −2 log(p(y|θ)), we can use MCMC output to estimate pD =

D(θ) − D(θ), the empirical averages corresponding to (9) above. Regarding

D(θ) as a measure of deviance for the data at the posterior mean, Spiegelhalter

and others (2002) propose 2pD + D(θ) as a model selection criterion, penalizing

the decreasing deviance by twice the effective number of model parameters. In

the case of the AIDS reporting delay analysis, we analyzed the distribution of

failure times at the quarterly level; some of the reporting delays were interval-
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censored or truncated by file closure at the end of December 2001. The complete

data included missing data imputed through binomial and negative binomial

imputation models; the DIC was evaluated as explained above based on observed

and imputed data for each draw from the posterior sample.

Table 4 displays our calculations for the DIC for Models 1−5 in the AIDS ex-

ample. Interestingly, we can see that pD does not fall close to the “true” number

of increments for Models 1-3, implying less than a “full” reduction in uncertainty

due to the model fit. The DIC indicates that the 16-bin and 32-bin models are

possibly comparable fits to the data, as suggested by the hazard posterior plots.

Models with 8, 4 and 2 time bins apparently provide a significantly worse fit to

the data in return for their decreased complexity, possibly because of the bias

associated with the large bin size, a problem that was also revealed partially by

the self-consistency checking in Section 4.4. It seems that combining the adjacent

pairs of bins in the 32-bin model (whose baseline hazard fit is shown in Figure 9)

and the hazard smoothing it implies does not lead to significant problems with

the model. So among the five models investigated here, we can settle for either

32 bins or 16 bins. Figure 13 gives the corresponding reporting fraction (that is,

the cumulative distribution function) by quarter for these models, showing that

in fact the “survival” curves for Models 1 and 2 are not readily distinguishable.
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Figure 13. Results of posterior aggregation of hazard increments, Models

1−5, AIDS dataset (Bold lines indicated unaggregated model, thin lines the
aggregated model.)

5. Summary and Further Work

We believe that the relative simplicity and flexibility of our hazard model,

along with its ability to account for a variety of censoring mechanisms and other
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interesting properties, make it a competitive method when compared to the

greater difficulty of implementation for non-parametric methods like the Beta

process prior. In many applied studies, a discrete-interval estimate of the base-

line hazard, using the piecewise-constant hazards approach, may be completely

sufficient for the needs of the analysis. We have shown in our applied example

the possibility of using model-selection methodology to choose an appropriate

level of resolution in a data-driven manner.

While this paper deals only with the hazard function for a single group

of individuals, the model (as demonstrated in the description of the likelihood

in Section 2.2) can easily incorporate the effects of covariates using standard

proportional- or additive-hazards assumptions. Bouman, Meng, Dignam and

Dukic (2005), for example, use this model to study the variation in disease-free

survival of breast cancer patients treated with either placebo or tamoxifen in a

five-year multicenter clinical trial.

Although we believe our method is useful and convenient, clearly it is not

perfect and more research, both theoretical and methodological, is needed. For

example, additional work will be required to reveal the exact nature of the infor-

mation that the posterior for k and a conveys about the baseline hazard function.

Following the general iterative process of model building, as outlined in the first

chapter of Box and Tiao (1973), we would also like to develop posterior predictive

model checking procedures to suggest further model refinements. Furthermore,

we regard this model as an initial (discrete-time) attempt to construct a prior

on baseline hazard curves while incorporating assumptions about the underlying

curvature of these hazards. We hope in future research to be able to pursue

extensions that come closer to the goal of placing a prior on the space of smooth

curves itself, while at the same time largely maintaining the conceptual and

computational simplicity of the multiresolution approach.
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