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Abstract: A Cumulative Sum (CUSUM) control chart capable of detecting changes

in both the mean and the standard deviation for autocorrelated data, referred to

as the Max-CUSUM chart for Autocorrelated Process chart (MCAP chart), is pro-

posed. This chart is based on fitting a time series model to the data, and then

calculating the residuals. The observations are represented as a first-order autore-

gressive process plus a random error term. The Average Run Lengths (ARL’s) for

fixed decision intervals and reference values, (h, k) are calculated. The proposed

chart is compared with the combined Shewhart-EWMA chart for autocorrelated

data proposed by Lu and Reynolds (1999). Comparisons are based on the out-of-

control ARL’s. The MCAP chart detects small shifts in the mean and standard

deviation at both low and high levels of autocorrelation more quickly than the

combined Shewhart-EWMA chart. This makes the MCAP chart useful to modern

production processes where high quality goods are produced with a low fraction of

nonconforming products.

Key words and phrases: AR(1) model, autocorrelation, autoregressive, Markov
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1. Introduction

Statistical process control (SPC) charts such as the Shewhart chart proposed

by Shewhart (1924), the cumulative sum chart by Page (1956), and the expo-

nentially weighted moving average chart by Roberts (1959), are used to monitor

product quality and detect special events that may be indicators of out-of-control

situations. These charts are based on the assumption that a process being moni-

tored will produce measurements that are independent and identically distributed

over time when only the inherent sources of variability are present in the system.

However, in some applications the dynamics of the process will induce correla-

tions in observations that are closely spaced in time. If the sampling interval

used for process monitoring in these applications is short enough for the process

dynamics to produce significant correlation, this can have a serious effect on the

properties of standard control charts, (see VanBrackle and Reynolds (1997), Lu

and Reynolds (1999, 2001) and Runger, Willemain and Prabhu (1995)).
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Positive autocorrelation in observations can result in severe negative bias in

traditional estimators of the standard deviation. This bias produces control limits
for standard control charts that are much tighter than desired. Lu and Reynolds

(2001) observed that tight control limits, combined with autocorrelation in the

observations plotted, could result in an average false alarm rate much higher

than expected. This results in effort being wasted searching for unavailable
special causes of variation in the process. It can also result in loss of confidence

in control charts and practitioners may abandon their use. Furthermore, when

using control charts for residuals, if observations are positively autocorrelated

when there is a shift in the process mean, only a fraction of the shift will be
transferred to the residual means, resulting in the chart not quickly detecting

the shift. This is an undesirable situation in process monitoring. It is therefore

important to take autocorrelation among observations into consideration when

designing a process-monitoring scheme, in particular control charts, in order to
achieve full benefit.

Recently, new control charts have been proposed along two lines for dealing

with autocorrelated data. The first approach uses standard control charts on
original observations, but adjusts the control limits and methods of estimating

parameters to account for the autocorrelation in the observations (see VanBackle

and Reynolds (1997) and Lu and Reynolds (1999)). This approach is particularly

applicable when the level of autocorrelation is not high.
A second approach for dealing with autocorrelation fits time series model

to the process observations. The procedure forecasts observations from previ-

ous values and then computes the forecast errors or residuals. These residuals

are then plotted on standard control charts because when the fitted time series
model is the same as the true process model, and the parameters are estimated

without error, the residuals are independent and identically distributed normal

random variables when the process is in control. (See Alwan and Roberts (1988),

Montgomery and Mastrangelo (1991), Wadell, Moskowitz, and Plante (1994), Lu
and Reynolds (1999) and Runger, Willemain and Prabhu (1995)).

Yashchin (1993) recommends charting raw data directly when the level of

autocorrelation is low and, at high level of autocorrelation, recommends some

transformation procedures that create residuals. An allowance is made for au-
tocorrelation in the residuals due to model misspecification. If a shift in the

mean and/or standard deviation of the process occurs, this will cause a shift in

the mean and/or standard deviation of the residuals. Control charts based on

residuals seem to work well when the level of correlation is high. When the level
of correlation is low, forecasting is more difficult and residual charts are not very

effective in detecting process changes.

The studies mentioned above used several methods, such as simulation,

asymptotic approximation and direct calculation to evaluate properties of the
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control charts. Their simplest message is that correlation between observations

has a significant effect on the properties of the control charts. In particular, con-

trol charts run for a long time before detecting shifts in the process parameters

from in-control values when the autocorrelations are large.

Here we propose a cumulative sum (CUSUM) control chart for autocorrelated

data that can simultaneously monitor shifts in the mean and standard deviation

using a single plotting variable. This investigation is done for the case of pro-

cesses that can be modeled as a first order autoregressive AR(1) process plus an

additional random error which can correspond to sampling or measurement error.

This model has been used in several charts dealing with autocorrelated data. It

allows relatively accurate numerical techniques to be used to evaluate properties

of the charts. Lu and Reynolds (1999) proposed a simultaneous EWMA chart

that uses two charts concurrently.

Markov chain methods are used to evaluate the ARL for different levels of

correlation. Our proposed chart monitors the process by simultaneously mon-

itoring the residual means and standard deviations. The results show that by

adjusting the reference value of the standard CUSUM chart to take the auto-

correlation structure into consideration, the CUSUM chart can effectively detect

small shifts in the process mean and/or spread.

2. The AR(1) Process with an Additional Random Error

This model has been used previously in a number of contexts and can ac-

count for correlations between observations that are close together in time, for

variability in the process mean over time, and for additional variability due to

sampling or measurement error.

Suppose the observations are taken from a process at regularly spaced times,

and let Xt represent the observation taken at sampling time t. The properties of

control charts are usually investigated under the assumption that the observa-

tions are independent normal random variables with constant mean and variance.

When the observations are independent identically distributed normal random

variables, we write Xt = µ + εt, t = 1, 2, . . ., where µ is the process mean and

the εt’s are independent normal random variables with mean 0 and variance σ2
ε .

It is assumed that µ is at a target value when the process is in control, but can

change to some value given cause.

To model observations from an autocorrelated process, we use a model that

has been discussed previously in quality control by authors such as Lu and

Reynolds (1999, 2001) and VanBackle and Reynolds (1997). Here

Xt = µt + εt, t = 1, 2, . . . , (1)
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where µt is the random process mean at sampling time t, and the εt’s are inde-
pendent normal random errors with mean 0 and variance σ2

ε . It is assumed that

µt is an AR(1) process:

µt = (1 − φ)ξ + φµt−1 + αt, t = 1, 2, . . . , (2)

where ξ is the overall process mean, the α’s are independent normal random

variables with mean 0 and variance σ2
α, and φ is the autoregressive parameter

satisfying |φ| < 1 so that the process is stationary. We assume that the starting

value µ0 follows a normal distribution with mean ξ and variance σ2
µ = σ2

α/(1−φ2).
The distribution of Xt is therefore constant with mean ξ and variance given by

σ2
X

= σ2
µ + σ2

ε =
σ2

α

1 − φ2
+ σ2

ε . (3)

In this case σ2
µ represents long-term variability and σ2

ε represents a combination

of short-term variability and the variability associated with measurement error.
When assessing processes following models (1) and (2), it is often convenient to
consider the portion of total process variability that is due to variation in µt and

the portion due to error variability. The portion of the process variability due to
variation in µt is ψ = σ2

µ/(σ
2
µ + σ2

ε), and the proportion of the variance due to εt

is 1−ψ. The covariance between two observations that are i units apart is φiσ2
µ,

and the correlation between two adjacent observations is ρ = φψ.
Autocorrelation in the process may at times be assigned to causes that can

be eliminated; this will reduce variability in the process. In other processes,
the autocorrelations are inherent characteristics of the process and cannot be

removed in the short-run. In these situations, the process is said to be in control
when the process mean continuously wanders around the target value but within
the acceptable region. Thus the process mean is not constant as in the case of

independent observations.
The AR(1) process with an additional random error is equivalent to a first or-

der autoregressive moving average, ARMA(1,1) process (Box, Jenkins and Rein-
sel (1994)):

(1 − φB)Xt = (1 − φ)ξ + (1 − θB)γt, (4)

where γ’s are independent normal random variables with mean 0 and variance

σ2
γ , θ is the moving average parameter, φ is the autoregressive parameter defined

in (2), and B is a backshift operator such that BXt = Xt−1. If θ > 0, Koons and

Foutz (1990) derived θ and σ2
γ as

θ =
σ2

α + (1 − φ2)σ2
ε

2φσ2
ε

− 1

2

√

(σ2
α + (1 − φ2)σ2

ε

φσ2
ε

)2
− 4, (5)

σ2
γ =

φσ2
ε

θ
. (6)
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Standard time series estimation techniques can be used to estimate the parame-

ters in the ARMA(1,1) model.

In some production processes, a large number of items is produced in a single

lot. In this situation, more than one observation is sampled each time. Let Xti be

the ith observation at sampling time t. We assume that Xti can be represented

as

Xti = µt + ε′ti, (7)

where the ε′ti’s are independent and identically distributed normal random vari-

ables with mean 0 and variance σ2
ε′ , and µt follows model (2). Lu and Reynolds

(1999) show that the sample means from this process follow (1) and (2) with

σ2
ε = σ2

ε′/n.

Here we monitor the process mean and standard deviation by monitoring

the residuals from a forecast. To do this, we first determine the distribution of

the residuals when the process is in control. When the process is in control, the

residual at observation t from the minimum mean square error forecast made at

observation t− 1 is

et = Xt − ξ0 − φ(Xt−1 − ξ0) + θet−1, (8)

where φ and θ are parameters in the ARMA(1,1) model given at (4). That is the

residual at time t is the difference between Xt and the prediction of Xt based on

the previous data.

If the fitted time series model is the same as the true process model and the

parameters are estimated without error, then the residuals are independent and

identically distributed normal random variables when the process is in control.

We can then monitor the process by using standard control charts for indepen-

dent observations using these residuals. If there is a step change in the process

mean from the in-control value ξ0 to ξ1 between time t = τ − 1 and t = τ the

expectations of the residuals for various times are (see Lu and Reynolds (1999))

E(et) = 0 for t < τ ,

E(et) =
1 − φ+ φl(φ− θ)

1 − θ
(ξ1 − ξ0), t = τ + 1, l = 0, 1, . . . . (9)

The asymptotic mean of these residuals is

1 − φ

1 − θ
(ξ1 − ξ0). (10)

These residuals are independent and normally distributed with variance σ2
γ . The

expectation of the residuals after the shift occurs is a decreasing function of time.

As φ increases, a smaller fraction of shift in the process mean is transferred to
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the mean of the residuals. When the process mean shift, only a fraction of this

shift is transferred to the means of the residuals. As a result the chart for the

residuals’ ability to detect the mean shift is reduced. On the other hand, the

residuals chart is theoretically appealing because it takes serial correlation into

account, and it reduces the problem to the well-known case of a shift in the

process mean for independent observations.

A change in the process variance can be attributed to changes in the au-

toregressive parameter φ, the individual observation random shock variance σ2
ε

and/or change in variability of the random shocks associated with the means σ2
α.

If σ2
α increases from its nominal value of σ2

α0 to σ2
α1 and σ2

ε increases from its

nominal value σ2
ε0 to σ2

ε1 the residual variances increase to

Var (et) = α2
γ0 +

φ2 − 2φθ0 + 1

1 − θ2
0

(σ2
ε1 − σ2

ε0) +
σ2

α1 − σ2
α0

1 − θ2
0

. (11)

The residuals after these shifts are correlated normal random variables with

asymptotic mean at (10) and asymptotic variance at (11). From (11), we can

see that changes in σ2
α and σ2

ε have different impact on the variability of the

residuals. Given the parameters in the ARMA(1,1) model, for φ > 0, σ2
α and σ2

ε

are (see Reynolds, Arnold and Baik (1996))

σ2
α =

σ2
γ(φ− θ)(1 − φθ)

φ
, (12)

σ2
ε =

θσ2
γ

φ
. (13)

We can then fit the AR(1) plus random error model in (1) and (2), which is the

model considered in this paper. We consider the more prevalent case of positive

autocorrelation. The objective of monitoring the process is to detect the situation

in which one or more process parameters has changed from its target values.

3. The New Control Chart

Let Xi = Xi1, . . . , Xin, i = 1, 2, . . ., denote a sequence of samples of size n

taken on a quality characteristic X. It is assumed that, for each i, Xi1, . . . , Xin

are autocorrelated and satisfy (7). We monitor the process by first fitting the

time series model the process observations and then compute residuals. Let ξ0

and σγ0 be the nominal process mean and standard deviation of the residuals

for this fitted model. Assume that the process residual parameters ξ and σγ can

be expressed as ξ = ξ0 + aσγ0 and σγ = bσγ0, where a = 0 and b = 1 when the

process is in-control; otherwise, the process has changed due to some assignable

cause. Then a represents the shift in the process mean and b represents the shift

in the process standard deviation.
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Let ξi = (ξi1 + · · · + ξini
)/ni and MSEi =

∑ni

j=1(ξij − ξi)
2/ni be the mean

and variance for the ith sample residuals respectively. These statistics are inde-

pendently distributed, as are the sample residual values when the process is in-

control. These two statistics follow different distributions. The CUSUM charts

for the mean and standard deviation are based on ξ i and MSEi, respectively.

To develop a CUSUM chart for the process mean and process standard de-

viation using residuals, we carry out the following transformations:

Zi =
√
n

(ξi − ξ0)

σγ0
, (14)

Yi = Φ−1
{

H
[ (ni)MSE i

σ2
γ0

;ni

]}

, (15)

where Φ(z) = P (Z ≤ z), for Z ∼ N(0, 1). Φ−1(·) is the inverse function of

the cumulative distribution function of N(0, 1), and H(w; p) = P (W ≤ w|p) for

W ∼ χ2
p, the chi-square distribution with p degrees of freedom.

Zi and Yi are independent and, when a = 0 and b = 1, they follow the

standard normal distribution. The CUSUM statistics based on Zi and Yi are

C+
i = max[0, Zi − k +C+

i−1], (16)

C−

i = max[0,−Zi − k + C−

i−1], (17)

S+
i = max[0, Yi − k + S+

i−1], (18)

S−

i = max[0,−Yi − k + S−

i−1], (19)

where C0 and S0 are starting points. Because Zi and Yi follow the same distri-

bution, a new statistic for the single control chart can be defined as

Mi = max[C+
i , C

−

i , S
+
i , S

−

i ]. (20)

If the process has gone out of control, the Mi’s will be plotted outside the control

limits, otherwise the Mi values are within the limits. Since Mi > 0, we plot only

the upper control limit for this chart, and consider the process to be out of control

if an Mi value is plotted above the upper control limit.

In SPC, we use the ARL or the average time to signal (ATS) of the chart to

assess the performance of the scheme. This is the expected number of samples

(or observations if we take a single observation each time) required by the chart

to signal an out-of-control situation. For a change in variability, we consider the

effects of changes in σ2
α and σ2

ε separately to calculate the ARL. This is because

the two parameters have different impact on the level of variability of the process

as shown in equation (11). The shifts in these parameters are considered for

different values of φ the correlation between µi and µt−1.
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4. Design of a Max-CUSUM Chart for Autocorrelated Process

(MCAP Chart)

Because Mi is the maximum of four statistics, we call this new chart the

Maximum Cumulative Sum chart for Autocorrelated Process (MCAP chart).

Lucas (1982) showed that a CUSUM chart for independent normal data is tuned

to be most sensitive to a shift of magnitude δ by choosing k = δ/2. Runger,

Willemain and Prabhu (1995) proposed a modified procedure that takes into

consideration the autocorrelation structure of the data; they proposed k = δ(1−
φ)/2 for the AR(1) process.

To calculate the ARL of the new chart, we make use of the modified Markov

chain procedure proposed by Runger, Willemain and Prabhu (1995). For the

AR(1) plus random error model investigated here for shifts in mean and/or stan-

dard deviation, we use the asymptotic mean given at (10). The expected residual

mean after the shift is δ(1 − φ)/(1 − θ). For a given in-control ARL and a shift

of the mean and/or standard deviation intended to be detected by the chart,

the reference value (k) is (δ/2)(1 − φ)/(1 − θ). This guideline takes into consid-

eration the autocorrelation structure between the variables. For values (ARL,

k), the value of the decision interval (h) is chosen to achieve the specified ARL.

Then we use the procedure for a CUSUM chart with standard (h, k) values for a

normal distribution with mean (10) and variance (11) to calculate the ARL’s.

Table 1 and Table 2 give the optimal combinations of h and k for an in-

control ARL fixed at 370 and the autoregressive parameter φ = 0.25, with 80%

of process variability due to variation in µt and the correlation between adjacent

observations ρ = 0.2. Without loss of generality, we take ξ0 = 0 and σγ0 = 1.

We calculate the out-of-control ARL for the effect of changes in the standard

deviation that is due to changes in σε and σα. The smallest value of an out-

of-control ARL is calculated with respect to a pair of specified shifts in both

mean and standard deviation using the optimal in-control ARL CUSUM chart

parameters. We assume that the process starts in an in-control state and thus

the initial value of the CUSUM statistic is set at zero. For example, if one wants

to have an in-control ARL of 370, and to guard against a 3σγ0 increase in the

process mean and a 2σγ0 increase in the process standard deviation due to an

increase in σε, i.e., a = 3 and b = 2, the optimal in-control chart parameter values

are h = 1.359 and k = 1.187. The ARL is approximately two, which means that

these shifts can be detected, on average, on the second sample inspection.

Table 3 and Table 4 give the optimal combinations of h and k for an in-

control ARL fixed at 370 and an autoregressive parameter φ = 0.75, with 80%

of process variability due to variation in µt and the correlation between adjacent

observations equal to 0.6. We use the same procedure to calculate the ARL for

these tables as for Tables 1 and 2. Tables 1 and 3 show the chart’s performance
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for different shifts in the process mean and/or standard deviation, with shifts in

the standard deviation due to shifts in σα; Tables 2 and 4 corresponds to changes

in these parameters with shifts in standard deviation due to shifts in σε.

Table 1. (k, h) combinations and the corresponding ARL’s for the MCAP

chart, with φ = 0.25 and ψ = 0.8 for shifts in the process standard deviation

due to shifts in σα.

ARL0 = 370

a

b Parameter 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

1.00 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 370.27 34.31 13.31 4.59 2.75 2.26 1.56 1.38

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359
1.25 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 26.44 30.93 12.49 4.39 2.59 2.14 1.48 1.41

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

1.50 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 18.50 27.54 11.59 4.09 2.45 2.03 1.42 1.33

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

2.00 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 11.46 21.74 9.87 3.64 2.22 1.84 1.33 1.21

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359
2.50 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 8.39 17.45 8.42 3.27 2.05 1.70 1.27 1.18

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

3.00 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 6.74 14.38 7.26 2.99 1.92 1.60 1.23 1.02

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

4.00 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 5.04 10.45 5.65 2.58 1.75 1.47 1.18 1.02

Comparing these tables, it can be seen that at a low level of autocorrelation,

the chart more quickly detects small shifts in the parameters than at a high level.

The scheme is slightly more sensitive to small shifts in the standard deviation due

to shifts in σε than it is to shifts in the process standard deviation resulting from

shifts in σα. At a high level of autocorrelation, the chart is also more sensitive

to small shifts in σε than in σα, and more sensitive to large shifts in the process

mean and σα than shifts in the process mean and σε. When only the process

variability shifts, the scheme is more sensitive to shift in σε than it is to shifts

in the process variability due to changes in σα. This is due to the fact that an
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increase in σα increases the level of correlation between observations since, as
the variance of µt increases, the proportion of total process variability due to the
variation of the autocorrelated mean µt increases.

Table 2. (k, h) combinations and the corresponding ARL’s for the MCAP
chart, with φ = 0.25 and ψ = 0.8 for shifts in the process standard deviation
due to shifts in σε.

ARL0 = 370

a

b Parameter 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

1.00 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187
ARL 370.27 34.31 13.31 4.59 2.75 2.26 1.56 1.38

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359
1.25 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 27.43 31.27 12.63 4.75 2.73 2.19 1.49 1.41

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

1.50 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 19.46 28.15 11.87 4.61 2.71 2.11 1.42 1.33

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

2.00 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187
ARL 12.13 22.60 10.33 4.31 2.66 1.98 1.33 1.21

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

2.50 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 8.87 18.37 8.98 4.02 2.35 1.75 1.30 1.18

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

3.00 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187

ARL 7.09 15.62 7.88 3.77 2.10 1.60 1.23 1.02

h 4.097 9.755 6.712 4.097 2.894 2.176 1.710 1.359

4.00 k 0.396 0.099 0.198 0.396 0.593 0.791 0.989 1.187
ARL 5.24 11.22 6.30 3.38 1.85 1.34 1.18 1.02

An increase in σε decreases the level of correlation between observations.
This is particularly evident at higher levels of autocorrelations. This improves
the performance of the MCAP chart. Overall, the scheme is more sensitive at low
levels of autocorrelation than at higher levels for shifts in both mean and standard
deviation. In the next section, we compare this scheme with simultaneous control
charts for autocorrelated processes discussed in the literature.

5. Comparison with Other Charts

The performance of control charts for monitoring a process is usually assessed
using the ARL. The chart that has low ARL when the process has shifted and high
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ARL when the process is running at the target value is considered better than

the one that has high out-of-control ARL and low in-control ARL. Most of the

charts discussed in the literature are for monitoring shifts in the process mean and

variability for autocorrelated observations using separate charts. We compare

the MCAP chart with the combined Shewhart-EWMA chart for autocorrelated

data proposed by Lu and Reynolds (1999). The combined Shewhart-EWMA

chart’s ARL were obtained from Table 3 and Table 4 of Lu and Reynolds (1999).

The combined Shewhart-EWMA charts were run by simultaneously running the

two charts: one chart designed primarily to detect shifts in the mean, and the

other designed primarily to detect shifts in the process variability. The decision

rule is that a signal is given if one of the two charts signals. The value of φ, the

correlation between µt and µt−1, were taken to be 0.4 and 0.8 and the proportions

of variation in the process attributed to variation in µt, ψ, are 0.1 and 0.9.

Table 3. (k, h) combinations and the corresponding ARL’s for the MCAP

chart, with φ = 0.75 and ψ = 0.8 for shifts in the process standard deviation

due to shift in σα.

ARL0 = 370

a

b Parameter 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

1.00 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 370.33 34.37 13.41 4.99 2.90 2.39 2.03 1.80

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

1.25 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493
ARL 33.42 32.81 13.06 4.93 2.89 2.38 2.02 1.64

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

1.50 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 26.27 31.05 12.66 4.86 2.87 2.38 2.02 1.60

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

2.00 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 17.64 27.28 11.71 4.68 2.83 2.37 2.01 1.52

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359
2.50 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 13.00 23.69 10.71 4.48 2.79 2.36 1.98 1.47

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

3.00 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 10.24 20.58 9.75 4.27 2.74 2.34 1.96 1.34

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

4.00 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 7.27 15.84 8.13 3.89 2.64 2.31 1.82 1.33
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Table 4. (k, h) combinations and the corresponding ARL’s for the MCAP

chart, with φ = 0.75 and ψ = 0.8 for shifts in the process standard deviation

due to shift in σε.

ARL0 = 370

a

b Parameter 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

1.00 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 370.33 34.37 13.41 4.99 2.90 2.39 2.03 1.80

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

1.25 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493
ARL 30.32 31.23 12.78 4.69 2.66 2.36 2.02 1.64

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359
1.50 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 23.88 30.03 12.33 4.31 2.55 2.36 2.02 1.60

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

2.00 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 15.98 25.76 10.83 4.01 2.41 2.34 2.01 1.52

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

2.50 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493
ARL 11.54 20.00 10.00 3.79 2.27 2.34 1.98 1.47

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

3.00 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 8.70 18.96 9.24 3.33 2.06 2.34 1.96 1.34

h 4.098 9.754 6.712 4.098 2.886 2.181 1.710 1.359

4.00 k 0.164 0.041 0.082 0.164 0.246 0.329 0.411 0.493

ARL 6.95 13.88 7.92 3.19 2.00 2.30 1.82 1.33

Comparison of ARL’s of these charts are listed in Tables 5−8. The two charts

are compatible, with the MCAP chart performing better than the combined

Shewhart-EWMA chart for small shifts in the process mean and/or variability.

This is particularly evident at high levels of correlations where the combined

Shewhart-EWMA chart is negatively affected by the level of autocorrelation while

the effect of autocorrelation is not very strong for the MCAP chart. For very

larger shifts in the process mean and standard deviation, the combined Shewhart-

EWMA chart perform slightly better than the MCAP chart, particularly at high

level of correlations.

We recommend the use of our MCAP chart for detecting small shifts in the

process mean and/or variability. For detecting large shifts, we can use a combined

Shewhart-MCAP chart, as the Shewhart chart is very effective in detecting large

shifts in the process parameters even in the presence of autocorrelation.
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Table 5. Comparison of the MCAP chart, with a combined Shewhart-
EWMA chart, with φ = 0.4 and ψ = 0.1.

a

0 1 2 3

b Parameter MCAP S-EW MCAP S-EW MCAP S-EW MCAP S-EW

1 σ2
ε

367.0 367.9 5.0 12.0 2.8 3.7 2.0 2.0

σ2
α

367.0 365.8 5.0 12.1 2.8 3.8 2.2 2.0

2 σ2
ε

12.0 30.1 4.3 8.7 2.9 3.4 2.1 2.0

σ2
α

12.0 25.8 4.4 9.3 2.9 3.8 2.1 2.1

3 σ2
ε

7.0 12.6 3.8 6.6 2.8 3.3 2.2 2.0

σ2
α

7.1 12.0 3.8 7.4 2.8 3.7 2.8 2.2

10 σ2
ε

2.9 3.1 2.5 2.8 2.3 2.4 2.1 2.0

σ2
α

2.9 3.3 2.5 3.1 2.3 2.6 2.1 2.2

MCAP: Max-CUSUM chart for autocorrelated process. S-EW: Combined Shewhart-EWMA charts of residual.

Table 6. Comparison of the MCAP chart, with a combined Shewhart-
EWMA chart, with φ = 0.8 and ψ = 0.1.

a

0 1 2 3

b Parameter MCAP S-EW MCAP S-EW MCAP S-EW MCAP S-EW

1 σ2
ε

367.6 364.4 5.6 16.8 3.1 4.4 2.3 2.2
σ2

α
367.6 367.0 5.6 16.9 3.1 4.1 2.3 2.2

2 σ2
ε

12.9 30.7 4.7 10.2 3.1 3.7 2.4 2.0

σ2
α

15.3 24.9 4.9 13.3 3.1 4.9 2.3 2.2

3 σ2
ε

7.2 12.3 4.0 7.2 3.0 3.4 2.4 2.0

σ2
α

8.3 13.9 4.2 10.4 3.0 5.0 2.4 2.5

10 σ2
ε

2.9 3.0 2.6 2.8 2.4 2.4 2.2 1.9

σ2
α

3.1 5.0 2.7 4.6 2.4 3.7 2.2 2.7

MCAP: Max-CUSUM chart for autocorrelated process. S-EW: Combined Shewhart-EWMA charts of residual.

Table 7. Comparison of the MCAP chart, with a combined Shewhart-
EWMA chart, with φ = 0.4 and ψ = 0.9.

a

0 1 2 3

b Parameter MCAP S-EW MCAP S-EW MCAP S-EW MCAP S-EW

1 σ2
ε

370.8 368.9 6.0 23.3 3.2 5.4 2.4 2.3
σ2

α
370.8 370.9 6.0 22.8 3.2 5.4 2.4 2.3

2 σ2
ε

12.6 26.0 4.9 11.2 3.2 4.2 2.5 2.1
σ2

α
15.2 31.2 5.1 12.5 3.3 4.8 2.5 2.3

3 σ2
ε

6.9 10.6 4.1 7.0 3.1 3.6 2.5 2.1
σ2

α
8.1 12.9 4.3 8.3 3.1 4.2 2.5 2.3

10 σ2
ε

2.9 2.9 2.6 2.6 2.4 2.3 2.2 1.9
σ2

α
3.0 3.2 2.7 3.0 2.7 2.6 2.3 2.1

MCAP: Max-CUSUM chart for autocorrelated process. S-EW: Combined Shewhart-EWMA charts of residual.
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Table 8. Comparison of the MCAP chart, with a combined Shewhart-
EWMA chart, with φ = 0.8 and ψ = 0.9.

a

0 1 2 3

b Parameter MCAP S-EW MCAP S-EW MCAP S-EW MCAP S-EW

1 σ2
ε

374.5 374.4 7.7 82.1 3.8 12.1 2.8 1.8
σ2

α
374.5 375.5 7.7 83.4 3.8 12.1 2.8 1.8

2 σ2
ε

12.5 10.1 5.6 7.6 3.7 3.7 2.8 1.7

σ2
α

37.2 38.5 6.9 22.4 3.8 7.6 2.9 2.1

3 σ2
ε

6.5 5.0 4.3 4.2 3.3 2.7 2.8 1.7

σ2
α

16.5 16.1 6.0 12.1 3.7 5.8 2.9 2.3

10 σ2
ε

2.8 2.1 2.6 2.0 2.4 1.8 2.3 1.5

σ2
α

3.8 3.7 3.2 3.4 2.8 2.7 2.6 2.1

MCAP: Max-CUSUM chart for autocorrelated process. S-EW: Combined Shewhart-EWMA charts of residual.

6. Charting Procedures

Since the residuals are independent normal random variables when the pro-

cess is in control, the charting procedure for the MCAP chart is similar to that

of the chart for uncorrelated data. The successive CUSUM values, Mi , are

plotted against the sample numbers. If a point plots below the decision interval,

the process is said to be in control and the point is plotted as a dot point. An

out-of-control signal is given if any point plots above the decision interval and is

plotted as one of the characters defined below. The MCAP chart is a combina-

tion of two two-sided standard CUSUM charts. Use the following procedure to

construct this chart.

1. Fit the time series model to the data.

2. Specify the in-control or target value of the mean ξ0, and the in-control or

target value of the standard deviation σγ0.

3. If ξ0 is not known, use the sample grand average ξ = (ξ1 + · · · + ξm)/m to

estimate it. If σγ0 is unknown, use R/d2, where R = (R1 + · · · + Rm)/m

is the average of the sample ranges. We can also use S/c4 to estimate σγ0,

where S = (S1 + · · · + Sm)/m is the average of the sample standard errors,

Si =
√

MSE i and d2 and c4 are statistically determined constants.

4. For each sample, compute Zi and Yi.

5. To detect specified changes in the process mean and standard deviation,

choose an optimal (h, k) combination and calculate C+
i , C

−

i , S
+
i and S−

i .

6. Compute the Mi’s and compare them with h, the decision interval.

7. Denote the sample points with a dot and plot them against the sample number

if Mi ≤ h.

8. If any of the Mi’s is greater than the decision interval h, the following plotting

characters may be used to show the direction as well as the statistic that is
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plotting above the interval. (i) If C+
i > h, plot C+. (ii) If C−

i > h, plot C−.
(iii) If S+

i > h, plot S+. (iv) If S−

i > h, plot S−. (v) If both C+
i > h and

S+
i > h, plot B++. (vi) If C+

i > h and S−

i > h, plot B+−. (vii) If C−

i > h
and S+

i > h, plot B−+. (viii) If C−

i > h and S−

i > h, plot B−−.
9. Investigate the cause(s) of shift for each out-of-control point in the chart and

carry out the remedial measure(s) needed to bring the process back to an
in-control state.

7. An example

To provide a visual picture of how the MCAP chart responds to various kinds
of process changes, a set of simulated data is used. Specific process changes are
introduced into the data, and the chart is plotted to monitor these changes in
the parameters. The data set was generated using the first order autoregressive

models in equations (1) and (2). The data were simulated by simulating sequences
of αt’s and εt’s, using Matlab.

For a fixed sequence of αt’s and εt’s, a shift in σα can be introduced by
multiplying αt in (2) by a constant. A change in σε can be introduced by multi-
plying εt in (1) by a constant, and a change in the mean is introduced by adding
a constant to the generated observations. This approach is discussed by Lu and
Reynolds (1999). And allows different types of process changes to be investi-
gated on the same basic sequence of αt’s and εt’s. In this example, we assume
the autoregressive parameter φ remains constant.

We simulated 100 observations with the following parameters: ξ = 0, φ =
0.75, σα = 0.59 and σε = 0.5. This give σ

X
= 1.02 and ψ = 0.76, and implies

that 76% of variability in the process is due to variation in µt, and that the
correlation between the adjacent observations is ρ = φψ = 0.57. Using (5) and
(6), the corresponding parameters in the ARMA(1,1) model in (4) are θ = 0.27
and σγ = 0.83.

The MCAP chart for these simulated observations is drawn in Figure 1.
All points fall within the acceptable region, thus the simulated process is in
control. This chart is designed to detect a 1σγ shift in the mean with an in-
control ARL= 370.

Figure 2 shows the performance of this chart for a shift in the process stan-
dard deviation that is due to an increase in σα. Suppose that, due to a special
cause immediately after observation 60, σα increases from 0.59 to 0.97 and stays
at this value for the next 40 observations. We assume that other parameters in
the model remain at their in-control values. This increase in σα results in an
increase in the process standard deviation, σ

X
, from 1.02 to 1.56. This leads to

an increase in ψ from 0.76 to 0.90 and an increase in the correlation between ad-
jacent observations from 0.57 to 0.68. Therefore 90% of variation in the process

is due to variation in µt.
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Figure 1. The MCAP chart for in-control simulated values.
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Figure 2. The MCAP chart for shift in the variability due to shift σα.

When applied to the simulated data, this shift in the standard deviation was

signaled for the first time on the 86th observation. The delay in detecting this

increase is caused by an increase in the correlation between observations, caused

by an increase in σα as discussed above.

Figure 3 shows the performance of the MCAP chart for an increase in the

process variability due to an increase in σε. If σε increases from its in-control

value of 0.5 to 1.00 immediately after observation 60 and remains there for the

rest of the process, and the rest of the process parameters remain at their in-

control values, one has an increase in the process standard deviation from 1.02

to 1.34. Unlike the increase in σα, the increase in σε results in a decrease in the

correlation between observations from 0.57 to 0.33, the value of the proportion

of total process variability that is due to the variability in µt also decreases from

56% to 44%. This increase in the process standard deviation is detected for

the first time on the 64th observation. Though this corresponds to only a 30%
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increase in the process standard deviation, it is more quickly detected than the

increase in σα, which had the standard deviation increased by 52%.
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Figure 3. The MCAP chart for shift the variability due to shift in σε.
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Figure 4. The MCAP chart for shift in the process mean.

A shift in the mean of the last 40 observations is shown in Figure 4. We

assume the process standard deviation remained at its in-control value. This

increase in the mean is signaled for the first time on the 68th observation.

Next we consider a simultaneous increase in the process mean and standard

deviation. In Figure 5, we apply the MCAP chart to investigate an increase in

the mean from 0 to 1 and an increase in σα from 0.59 to 0.97. This is for an

increase in the mean and σα of the last 40 observations. These shifts are signaled

for the first time on the 73rd observation, an increase in the mean only, and the

76th observation, an increase in both the mean and the standard deviation.
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An increase in both the mean and σε is shown in Figure 6. We consider an

increase in mean from 0 to 1 and an increase in σε from 0.5 to 1. Assume that

these shifts occur immediately after the 60th observation and remain in effect

for the rest of the process. The chart signals a shift for the first time on the

63th observation for an increase in the mean, and on the 64th observation for an

increase in the standard deviation. It signals an increase in both parameters for

the first time on the 67th observation. Therefore a combination of shifts in the

mean and σε is more quickly detected than a combination of shifts in the mean

and σα, due to the variance components’ effect on the level of autocorrelation.
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Figure 5. The MCAP chart for shift the mean and variability due to shift in σα.
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Figure 6. The MCAP chart for shift the mean and variability due to shift in σε.

8. Conclusions

Although it is difficult to draw general conclusions based on one set of data
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corresponding to one set of process parameters, the ARL results, together with

the charts plotted in Figures 1 to 6, allow some conclusions to be drawn.

Correlation among observations from a process can indeed have significant

effect on the performance of the cumulative sum control charts. Computer sim-

ulation of individual data from an AR(1) plus random error model can be used

to show a pictorial display of the MCAP chart. The monitoring problem for this

model is complicated, as it requires more parameters than for the case when the

observations are independent. We have shown how a change in any one of the

two components of residual variance, coupled with a change in the process mean,

has an impact on the overall process performance.

In many applications, a change in the process may be due to a combination

of changes in these parameters. Then it becomes difficult to diagnose the vari-

ance component that has caused the process variability to change. It might be

necessary to estimate the residual variance at the point of the shift to see which

component has shifted.

The MCAP chart that simultaneously monitors both process mean and stan-

dard deviation performs better than its competitors at low to moderate shifts

in the process parameters. The chart for residuals uses the standard CUSUM

chart parameters, as residuals are independent when the process is in-control,

we recommend this chart for autocorrelated data. The only adjustment to be

made is to modify the reference value when calculating the out-of-control ARL in

order to take autocorrelation into consideration. Standard time series procedure

discussed in Box, Jenkins and Reinsel (1994) can be used to fit the model and

calculate the residuals.
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