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Abstract: We introduce herein a new class of autoregressive models in which the

regression parameters and error variances may undergo changes at unknown time

points while staying constant between adjacent change-points. Assuming conjugate

priors, we derive closed-form recursive Bayes estimates of the regression parame-

ters and error variances. Approximations to the Bayes estimates are developed that

have much lower computational complexity and yet are comparable to the Bayes

estimates in statistical efficiency. We also address the problem of unknown hyper-

parameters and propose two practical methods for simultaneous estimation of the

hyperparameters, regression parameters and error variances.
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1. Introduction

The problem of modeling a time series whose parameters may undergo oc-

casional changes arises in many engineering, econometric and biomedical appli-

cations, and has an extensive literature widely scattered in these fields besides

statistics. In stochastic dynamical systems, if the parameters may change with

time, it is more convenient to regard them as states. However, this requires spec-

ification or modeling of the dynamics of the parameters. A Bayesian approach

to this problem is to take a stochastic process as the prior distribution for the

time-varying parameters, whose posterior distribution then provides an estimate

of the current parameter value given the current and past observations. This

reduces the estimation problem to a filtering problem. Except for the special

case in which the system and parameter dynamics can be represented by a linear

Gaussian state-space model so that Kalman filtering can be applied, the optimal

filter is typically nonlinear and infinite-dimensional. Even for the simple mean

shift model Yt = θt + εt, t = 1, 2, . . ., in which (i) the εt are i.i.d. zero-mean

normal random variables, (ii) the sequence of change-times of {θt} forms a dis-

crete renewal process with geometric interarrival times with parameter p, and

(iii) the post-change values of {θt} are i.i.d. normal, the unknown times of the
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occurrence of the mean shifts leads to great complexity of the Bayes estimate

θ̂n = E(θn|Y1, . . . , Yn). Chernoff and Zacks (1964) gave a closed-form expression

of θ̂n that requires O(2n) operations to compute. Yao (1984) later found another

representation of the estimate that requires only O(n2) operations. By combining

forward and backward (i.e., time-reversed) filters to solve the smoothing problem

of estimating θt from Y1, . . . , Yn for 1 ≤ t ≤ n, he also gave a formula for the

Bayes estimate E(θt | Y1, . . . , Yn) that requires O(n3) operations to compute.

A natural extension of the mean shift model is the regression model Yt =

θT
t Xt + εt, in which the regressors Xt are random vectors that may depend on

the past observations (Xi, Yi), i ≤ t − 1. In this paper we consider the special

case Xt = (1, Yt−1, . . . , Yt−k)
T that corresponds to the AR(k) model in the time

series literature. Motivated by applications to financial econometrics, in which

not only the levels but also the volatilities of asset returns are of basic interest,

we consider a further extension to the case where changes in σ2
t := Var(εt) can

also occur besides changes in θt. These extensions, given in Section 2 for the fil-

tering problem and in Section 3 for the smoothing problem, make use of certain

formulas for Bayesian inference in normal populations, a comprehensive intro-

duction to which can be found in Box and Tiao’s (1973) classic. As pointed out

in Section 3, a major difference between our and Yao’s models is in the dynamics,

which only involve parameter changes in Yao’s model but also include autore-

gressive dynamics in ours. Accordingly some restrictions have to be imposed on

the autoregressive parameters θt to ensure a stationary or non-explosive dynam-

ical system. These restrictions lead to considerably more complicated filters and

smoothers than those in Yao’s (1984) mean shift model.

Even with a Yao-type algorithm in the mean shift case, the complexity of the

Bayes estimates θ̂n becomes unmanageable when n is large, as pointed out by Lai,

Liu and Xing (2004). In Section 4 we develop two recursive approximations to

the Bayes estimates E{(θT
t , σt) | Y1, . . . , Yn} for t ≤ n that can be updated with

a fixed number (not depending on n) of operations. One approximation, called

BCMIX (bounded complexity mixture), uses only a fixed number of filters in

the extensions of Yao’s algorithm in Sections 2 and 3. The other approximation,

called SISR (sequential importance sampling with resampling), is a Monte Carlo

approximation that uses a fixed and relatively small number of trajectories that

are recursively simulated by importance sampling. Numerical results showing

the efficiency of these approximations are provided.

Sections 2-4 assume p, the hyperparameter of the Bayesian model, to be

correctly specified. Without assuming p to be known, Section 5 describes some

computationally convenient (when used in conjunction with BCMIX or SISR)

estimators of p that have good statistical performance. In practice the assumed

change-point autoregressive model is only an approximation to the actual data
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generating mechanism of the observed time series, and the purpose of fitting the

model is to derive forecasts of future values that are yet to be observed. The

AR(k) model provides simple forecasts of future observations, and allowing the

regression coefficients to change over time yields flexible non-linear predictors.

Allowing also σt to change over time can account for relatively calm periods

punctuated by highly volatile periods observed in stock price movements and

other econometric time series. By using normal mixtures, the change-point model

can also adapt to various distributional forms of Yt. Markets respond to policy

changes, announcements of companies’ earnings and a myriad of perceived or

real changes of the economy, so it is useful to incorporate uncertain (random)

change-points in modeling econometric time series. Box and Tiao’s (1975) sem-

inal work on intervention analysis represents one of the major directions in this

kind of modeling. Section 6 compares intervention analysis with change-point

autoregression and gives some concluding remarks.

2. A Bayesian Change-point Model and Filters Estimating θt and σt

An autoregressive model with piecewise constant volatility and regression

parameters has the form

Yt = µt + α1,tYt−1 + · · · + αk,tYt−k + σtεt, t > k, (2.1)

where the εt are i.i.d. unobservable random disturbances with mean 0 and vari-

ance 1, and θt = (µt, α1,t, . . . , αk,t)
T and σt are piecewise constant parameters.

A Bayesian modeling approach requires also specification of the distributions of

εt and {(θT
t , σt), t > k}. Following Yao (1984), we assume that the sequence of

change-times of (θT
t , σt) forms a discrete renewal process with parameter p or,

equivalently,

It :=1
{(θ

T

t ,σt)6=(θ
T

t−1,σt−1)}
are i.i.d. Bernoulli random variables with P (It = 1)=p

(2.2)

for t ≥ k + 2 and Ik+1 = 1. Another assumption underlying Yao’s closed-form

expressions for Bayes estimates in the mean shift model is normal εt and θt,

resulting in normal mixtures for the posterior distributions of the conjugate prior.

We generalize this idea by assuming at change-times an inverse gamma prior

distribution for σ2
t and a normal prior distribution for θt given σt. Specifically,

letting τt = (2σ2
t )−1, we assume that

(θT
t , τt) = (1 − It)(θ

T
t−1, τt−1) + It(Z

T
t , γt),

where (ZT
1 , γ1), (Z

T
2 , γ2), . . . are i.i.d. random vectors such that

γt ∼ Gamma(g, λ), Zt | γt ∼ Normal(z,V/(2γt)). (2.3)
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When there is no change-point (i.e., p = 0), the posterior distribution of τt is

still gamma while that of θt given τt is multivariate normal, and there are simple

formulas for updating the shape and scale parameters of the gamma distribution

and the normal mean and covariance matrices; see Section 2.7 of Box and Tiao

(1973). In the presence of change-points, the posterior distribution of (θT
t , τt)

is a mixture of gamma-normal distributions and we now extend Yao’s (1984)

algorithm to evaluate the parameters of the posterior distribution.

As in Yao’s algorithm, the most recent change-time Jn := max{t ≤ n : It =

1} plays a basic role in computing the Bayes estimate E{(θT
n , σ2

n) | Y1, . . . , Yn}.
Let Yt,n = (1, Yn, . . . , Yt)

T . Recalling that τn = (2σ2
n)−1, the conditional distri-

bution of (θT
n , τn) given (Jn,YJn,n) can be described by

τn ∼ Gamma
(
g +

n − Jn + 1

2
,

1

aJn,n

)
, θn | τn ∼ Normal

(
zJn,n,

1

2τn
VJn,n

)
,

(2.4)

where for k < j ≤ n,

Vj,n =
(
V−1 +

n∑

t=j

Yt−k,t−1Y
T
t−k,t−1

)−1
, zj,n = Vj,n

(
V−1z +

n∑

t=j

Yt−k,t−1Yt

)
,

aj,n = λ−1 + zT V−1z +
n∑

t=j

Y 2
t − zT

j,nV
−1
j,nzj,n. (2.5)

Note that if (2X)−1 has a Gamma(g̃, λ̃) distribution, then X has the inverse

gamma IG(g, λ) distribution with g = g̃, λ = 2λ̃, and that EX = λ−1(g − 1)−1

when g > 1 and E
√

X = λ−1/2Γ(g − (1/2))/Γ(g). It then follows from (2.4) that

E(θT
n , σ2

n | Y1,n) =
n∑

j=k+1

pj,nE(θT
n , σ2

n | Y1,n, Jn = j)

=
n∑

j=k+1

pj,n

(
zT

j,n,
aj,n

2g + n − j − 1

)
, (2.6)

where pj,n = P (Jn = j | Y1,n). Moreover, E(σn | Y1,n) = Σn
j=k+1pj,n(aj,n/2)1/2

Γn−j, where Γi = Γ(g + i/2)/Γ(g + (i + 1)/2).

The next step is to derive a recursive formula for pj,n, as in Yao (1984) for

the mean shift problem. Denoting conditional densities by f(· | ·), note that

with the arrival of the new observation Yn at time n, we can update the posterior

density of (θT
n , τn) by

f(θT
n , τn | Y1,n)=pn,nf(θT

n , τn | Y1,n, Jn = n)+
n−1∑

j=k+1

pj,nf(θT
n , τn | Y1,n, Jn =j),
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where

pj,n ∝ p∗j,n :=

{
pf(Yn | In = 1) if j = n,

(1 − p)pj,n−1f(Yn | Yj,n−1, Jn = j) if j ≤ n − 1.
(2.7)

Since
∑n

i=k+1 pi,n = 1, pj,n is given explicitly by pj,n = p∗j,n/
∑n

i=k+1 p∗i,n. More-

over, noting that Yn = θT
nYn−k,n−1 +σnεn, we can apply the following lemma to

obtain an explicit formula for the conditional density function of Yn given Jn = j

and Yj,n−1.

Lemma 1. (i) Suppose that the conditional distribution of Y given θ and τ is

Normal(θT φ, (2τ)−1), τ ∼ Gamma(g̃, λ̃) and that the conditional distribution of

θ given τ is Normal(z,V/(2τ)). Then

(Yt − zT φ)/{(1 + φTVφ)/(2g̃λ̃)} 1
2 (2.7)

has a Student-t distribution with 2g̃ degrees of freedom.

(ii) Given Jn = j and Yj,n−1, the conditional distribution of (θT
n , γn) is

τn∼Gamma(g+
n−j

2
,

1

aj,n−1
),θn | τn∼Normal(zj,n−1,

Vj,n−1

2τn
) if j <n;

τn∼ Gamma (g, λ), θn | τn ∼ Normal(z,
V

2τn
) if j = n.

Proof. (i) follows from f(y) =
∫∫

f(y | θ, τ)f(θ | τ)f(τ)dθdτ and using a change

of variables to perform the integration. To prove(ii), apply (2.4) with n replaced

by n − 1 in the case Jn < n (so that Jn = Jn−1). When Jn = n, (θT
n , τn) has a

jump at time n and its distribution follows (2.3).

3. Bayesian Smoothers for θt and σt

For the simple mean shift model described in Section 1 (which corresponds

to k = 0 and σt = σ known), Yao’s (1984) algorithm for computing the Bayes

estimate E(θt | Y1, . . . , Yn) with 1 ≤ t ≤ n is based on combining the forward

filter involving the posterior distribution of θt given Y1, . . . , Yt and the backward

filter involving the conditional distribution of θt given Yt+1, . . . , Yn. In view of the

reversibility property that (Y1, . . . , Yn) has the same distribution as (Yn, . . . , Y1),

the backward filter has the same structure as the forward predictor of θt based

on the past n− t observations. For the change-point autoregressive model (2.1),

reversibility cannot hold because the normal distribution for θ t gives positive

probability to the explosive region {θ = (µ, α1, . . . , αk)
T : 1 − α1z − · · · − αkz

k

has roots inside the unit circle}. On the other hand, if we replace the normal
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distribution in (2.3) by a truncated normal distribution that has support in some

stability region C such that

inf
|z|≤1

|1 − α1z − · · · − αkz
k| > 0 if θ = (µ, α1, . . . , αk)

T ∈ C, (3.1)

then the following theorem shows that the Markov chain (τt,θ
T
t ,Yt−k+1,t) has

a stationary distribution and is reversible if it is initialized at the stationary

distribution. We use the prefix TC to denote truncation of a distribution within

the region C. In particular, TCNormal(z,V) denotes the conditional distribution

of Z given Z ∈ C, where Z is Normal(z,V).

Theorem 1. Suppose (2.3) is modified as

γt ∼ Gamma(g, λ), Zt | γt ∼ TCNormal(z,V/(2γt)), (3.2)

with the region C satisfying the stability condition (3.1). Then (τt,θ
T
t ,Yt−k+1,t)

has a stationary distribution under which (θT
t , τt) has the same distribution as

(ZT
t , γt) in (3.2) and

Yt | (θT
t , τt) ∼ Normal (µt/(1 − α1,t − . . . − αk,t), (2τt)

−1vt),

where vt =
∑∞

j=0 β2
j,t and βj,t are the coefficients in the power series represen-

tation of 1/(1 − α1,tz − · · · − αk,tz
k) =

∑∞
j=0 βj,tz

j for |z| ≤ 1. Moreover, the

Markov chain (τt,θ
T
t ,Yt−k+1,t) is reversible if it is initialized at the stationary

distribution.

The proof of Theorem 1 is given in Appendix A. Since (τt,θ
T
t , Yt) is reversible,

the backward filter of (τt,θ
T
t ) based on Yn, . . . , Yt+1 has the same structure as

the forward predictor based on the past n − t observations prior to t. As in

Proposition 4.2 of Yao (1984), we can apply Bayes’ theorem to combine the

forward and backward filters, yielding

f(τt,θt | Y1,n) ∝ f(τt,θt | Y1,t)f(τt,θt | Yt+1,n)/π(τt,θt), (3.3)

where π denotes the stationary density function, which is the same as that of

(γt,Zt) given in (3.2).

Because the truncated normal is used in lieu of the normal prior distribu-

tion in (3.1), the filtering formulas in Section 2 need to be modified somewhat.

Specifically, the conditional distribution of θn given τn needs to be replaced by

θn | τn ∼ TCNormal(zJn,n,VJn,n/(2τn)), while (2.5) defining Vj,n, zj,n and aj,n

remains unchanged. Moreover, Lemma 1 that gives the conditional density of

Yn given Jn and YJn,n−1 (which is used in the updating formula (2.7) for the

weights pj,n) needs to be modified as follows.
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Lemma 2. (i) Suppose that the conditional distribution of Y given θ and τ is

Normal(θT φ, (2τ)−1), τ ∼ Gamma(g̃, λ̃) and that the conditional distribution of

θ given τ is TCNormal(z,V/(2τ)). Then (2.8) has density function fC which

approaches the Student-t density with 2g̃ degrees of freedom as the truncation

region C approaches the support Rk+1 of the normal distribution.

(ii) Given Jn = j and Yj,n−1, the conditional distribution of (θT
n , τn) is

τn ∼ Gamma(g +
n−j

2
,

1

aj,n−1
),θn | τn ∼ TCNormal(zj,n−1,

Vj,n−1

2τn
) if j < n;

τn ∼ Gamma(g, λ), θn | τn ∼ TCNormal(z,
V

2τn
) if j = n.

4. Bounded Complexity Approximations

For the mean shift model described in Section 1, Lai, Liu and Xing

(2004) introduced a bounded complexity mixture (BCMIX) approximation to

the Bayesian filter E(θt | Y1,t), while Chen and Lai (2004) developed sequential

Monte Carlo approximations to E(θt | Y1,t) that involve a fixed and relatively

small number of trajectories simulated by sequential importance sampling with

resampling (SISR). In this section, we show how bounded complexity estimates of

θt and σt can be developed by extending BCMIX and SISR to the change-point

model (2.1).

4.1. BCMIX filters

Although the Bayes filter uses a recursive updating formula (2.7) for the

weights pj,n (k < j ≤ n), the number of weights increases with n, resulting in

unbounded computational complexity and memory requirements in estimating

σn and θn as n keeps increasing. A simple idea to maintain bounded complexity

is to keep only a fixed number np of weights at every stage n (which is tantamount

to setting the other weights to be 0). Lai, Liu and Xing (2004) proposed to keep

the most recent mp weights pj,n (with n − mp < j ≤ n) and the largest np − mp

of the remaining weights, where 1 ≤ mp < np. Specifically, the updating formula

(2.7) for the weights pj,n is modified as follows. Let Kn−1 denote the set of indices

j so that pj,n−1 is kept at stage n−1; thus Kn−1 ⊃ {n−1, . . . , n−mp}. At stage

n, define p∗j,n by (2.7) for j ∈ {n} ∪ Kn−1 and let in be the index not belonging

to {n, n − 1, . . . , n − mp + 1} such that

p∗in,n = min{p∗j,n : j ∈ Kn−1 and j ≤ n − mp}, (4.1)

choosing in to be the one farthest from n if the minimizing set in (4.1) has more

than one element. Define Kn = {n}∪(Kn−1−{in}) and let pj,n = p∗j,n/
∑

i∈Kn
p∗j,n

for j ∈ Kn.
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When the prior distribution of θt is a truncated normal instead of normal,

the conditional density functions f in (2.7) do not have simple closed-form ex-

pressions and the optimal filter can be implemented via Lemma 2 by numerical

integration. Since the constraint set C only serves to generate non-explosive ob-

servations, but has little effect on the values of the weights pj,n and on the per-

formance of the BCMIX estimates that compute the posterior means via (2.6),

we propose to ignore the truncation and simply apply the formulas in Lemma 1

that are derived under the normal prior assumption (instead of Lemma 2 that

entails computation of multivariate integrals). In this connection, we also use

some fast algorithms to compute the Student-t density by taking logarithms and

applying saddlepoint approximations when the number of degrees of freedom is

large. Moreover, in view of (2.5), Vj,n, zj,n and aj,n (j ≤ n) can be updated re-

cursively (in n) by making use of the matrix inversion lemma (cf., Caines (1988,

p.824)):

Vj,n = Vj,n−1 −
Vj,n−1Yn−k,n−1Y

T
n−k,n−1Vj,n−1

1 + YT
n−k,n−1Vj,n−1Yn−k,n−1

, if j < n,

Vn,n = V −
VYn−k,n−1Y

T
n−k,n−1V

1 + YT
n−k,n−1VYn−k,n−1

,

(4.2)

zj,n = zj,n−1 +
Vj,n−1Yn−k,n−1(Yn −YT

n−k,n−1zj,n−1)

1 + YT
n−k,n−1Vj,n−1Yn−k,n−1

,

aj,n = aj,n−1 +
(Yn −YT

n−k,n−1zj,n−1)
2

1 + YT
n−k,n−1Vj,n−1Yn−k,n−1

.

4.2. SISR filters

The Bayes estimate (2.6) can be rewritten in the form

E(θT
n , σ2

n | Y1,n) = E{zT
Jn ,n, aJn,n/(2g + n − Jn − 1) | Y1,n}, (4.3)

which can be computed by Monte Carlo simulations using the conditional distri-

bution of Jn given Y1,n. Let It = (Ik+1, . . . , It). It is difficult to sample In directly

from its conditional distribution given Y1,n. A basic idea behind sequential im-

portance sampling is to sample I1, . . . , In sequentially from an alternative distri-

bution Q under which It | It−1 has the same distribution as P (It = · | It−1,Y1,t),

which is Bernoulli assuming the values 1 and 0 with probabilities in the propor-

tion

pf(Yt | It = 1) : (1 − p)f(Yt | YJt−1,t−1, It = 0), (4.4)
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in which the conditional densities are Student-t densities given by Lemma 1. Let-

ting at(p) and bt(p) denote the two terms in (4.4), note that f(Yt | It−1,Yt−1) =

at(p) + bt(p). As in Chen and Lai (2004), we can rewrite (4.3) as

E(θT
n , σ2

n | Y1,n) = EQ{wn(zT
Jn,n, aJn,n/(2g + n − Jn − 1))}/EQ(wn), (4.5)

where the importance weights can be generated recursively by

wt = wt−1{at(p) + bt(p)}, t ≥ k + 2; wk+1 = 1. (4.6)

When p is small, change-points occur very infrequently. We can use impor-

tance sampling to generate more change-points by sampling instead from Q′ in

which p in (4.4) is replaced by p′ > p. With Q replaced by Q′ in (4.5), the weights

wt in (4.6) are changed to

wt =

{
wt−1{at(p

′) + bt(p
′)}at(p)/at(p

′) if It = 1,

wt−1{at(p
′) + bt(p

′)}bt(p)/bt(p
′) if It = 0.

(4.7)

The weight wn defined recursively by (4.6) (or (4.7) if Q′ is used in lieu of Q)

tends to have a large coefficient of variation for large n. To overcome this diffi-

culty, the SISR filter also incorporates occasional resampling (hence the symbol

R) to keep the coefficient of variation (cv) within certain bounds. Specifically it

draws m samples I
(i)
n sequentially from the proposal distribution Q and updates

the importance weights w
(i)
t , i = 1, . . . , n, by the following procedure, starting

with m samples I
(1)
t−1, . . . , I

(m)
t−1 having weights w

(1)
t−1, . . . , w

(m)
t−1 at time t − 1.

(a) Draw Î
(j)

t from (4.4) and update the weight w
(j)
t by (4.6), j = 1, . . . ,m.

If Q′ is used as the proposal distribution instead, replace p in (4.4) by p′ and

(4.6) by (4.7).

(b) If the cv of {w(1)
t , . . . , w

(m)
t } exceeds or equals a certain bound, resam-

ple from {Î (1)
t , . . . , Î

(m)
t } with probabilities proportional to {w(1)

t , . . . , w
(m)

t }
to produce a random sample {I (1)

t , . . . , I
(m)
t } with equal weights. Otherwise let

{I(1)
t , . . . , I

(m)
t } = {Î (1)

t , . . . , Î
(m)

t } and return to step (a).

4.3. Bounded complexity smoothers

As pointed out in Section 3, if the prior normal distribution for θ t is truncated

within a stability region C, then (τt,θ
T
t ,Yt−k+1,t) is reversible and we can form

the Bayesian smoother by combining the forward and backward filters. We ignore

the truncation in implementing these forward and backward filters. Specifically,

let Ĩn = 1, Ĩt = 1
{(θ

T

t ,σt)6=(θ
T

t+1,σt+1)}
and J̃t = min{j > t | Ĩj = 1}. Let pi,t =

P (Jt = i | Y1,t), p̃j,t = P (J̃t = j | Yt+1,n), and note that
∑t

i=k+1 pi,t = 1 =
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∑n+1
j=t+1 p̃j,t. The backward weights p̃j,t can be determined by backward induction

on t using an analog of (2.7).

Analogous to (2.4)-(2.5), it is shown in Appendix B that for i ≤ t < j ≤ n,

the conditional distribution of (θt, τt) given Jt = i, J̃t = j and Yi,j can be

described by

τt ∼ Gamma
(
g +

j − i + 1

2
,

1

ai,j,t

)
, θt | τt ∼ Normal

(
zi,j,t,

1

2τt
Vi,j,t

)
(4.8)

if we ignore the truncation in the truncated normal distribution in (3.2), where

Vi,j,t = (V−1
i,t + Ṽ−1

j,t −V−1)−1,

zi,j,t = Vi,j,t(V
−1
i,t zi,t + Ṽ−1

j,t z̃j,t+1 −V−1z),

ai,j,t = ai,t+ãj,t+1−λ−1+zT
i,tV

−1
i,t zi,t+z̃T

j,t+1Ṽ
−1
j,t z̃j,t+1−zT V−1z−zT

i,j,tV
−1
i,j,tzi,j,t

= λ−1 + zT V−1z +
j∑

l=i

Y 2
l − zT

i,j,tV
−1
i,j,tzi,j,t,

in which Vi,t, zi,t and ai,t are defined in (2.5) and Ṽj,t, z̃j,t and ãj,t are defined

similarly by reversing time. Let | · | denote the determinant of a matrix,

bi,j,t =
( |Vi,t||Ṽj,t|
|V||Vi,j,t|

)− 1
2
{ Γ(g)Γ(g + 1

2(j − i + 1))

Γ(g + 1
2(t−i+1))Γ(g+ 1

2(j−t))

}a
g+(t−i+1)/2
i,t ã

g+(j−t)/2
j,t

aga
g+(j−i+1)/2
i,j,t

,

Bt = p + (1 − p)
∑

k+1≤i≤t<j≤n

pi,tp̃j,tbi,j,t.

Using (3.3) and (4.8), it is shown in Appendix B that analogous to (2.6),

E(σ2
t | Y1,n) =̇

p

Bt

t∑

i=k+1

pi,tai,t

2g+t−i−1
+

1−p

Bt

∑

k+1≤i≤t<j≤n

pi,tp̃j,tbi,j,t
ai,j,t

2g+j−i+1
,

(4.9)

E(θt | Y1,n) =̇
p

Bt

t∑

i=k+1

pi,tzi,t +
1−p

Bt

∑

k+1≤i≤t<j≤n

pi,tp̃j,tbi,j,tzi,j,t,

in which the approximation ignores truncation within C. The BCMIX smoother

further approximates (4.7) by allowing at most np weights pi,t and np weights

p̃j,t to be nonzero.

The SISR smoother can be formed in a similar way. Define It and Q as in

Section 4.2. Let Ĩt = (Ĩt, . . . , Ĩn) and define Q̃ similarly so that It | Ĩt+1 has

the Bernoulli distribution assuming the value 1 and 0 with probabilities in the

proportion

pf(Yt | Ĩt = 1) : (1 − p)f(Yt | Yt+1,J̃t
, Ĩt = 0). (4.10)
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The SISR forward filter is sampled from Q and the backward filter from Q̃, yield-
ing importance weights wt defined recursively by (4.6) and w̃t defined similarly

by backward induction, with occasional resampling to keep the coefficients of
variation of wt and w̃t within certain bounds. With m forward and m back-
ward trajectories simulated in this way, the SISR smoother for (θT

t , σ2
t ) can be

expressed as

m∑

i=1

ζi,t

(
z

J
(i)
t ,t

,
a

J
(i)
t ,t

2g + t − J
(i)
t − 1

)
+

m∑

i,j=1

βi,j,t

(
z

J
(i)
t ,J̃

(j)
t ,t

,
a

J
(i)
t ,J̃

(j)
t ,t

2g + J̃
(j)
t − J

(i)
t + 1

)
,

(4.11)

where ζi,t = pw
(i)
t /At, βi,j,t = (1 − p)w

(i)
t w̃

(j)
t b

J
(i)
t ,J̃

(j)
t ,t

/At and

At = p
m∑

i=1

w
(i)
t + (1 − p)

m∑

i,j=1

w
(i)
t w

(j)
t b

J
(i)
t ,J̃

(j)
t ,t

;

see Appendix B for the derivation. Note the analogy of (4.11) to (4.9).

4.4. Simulation studies

The top panel of Figure 1 plots a time series of n = 3, 000 observations
generated from the change-point AR(2) model with

p = 0.001, γt ∼ Gamma (3, 4), Zt | γt ∼ TC Normal (0, I), (4.12)

where C = {(µ, α1, α2)
T : |α1| + |α2| < 1}. There are two change-times in the

dataset and the piecewise constant parameter values are

(µt, σt, α1,t, α2,t) =





(0.5019, −0.2171, −0.8360, 0.0629) if 1 ≤ t < 943,

(0.8723, 1.0373, −0.0328, 0.2855) if 943 ≤ t < 1, 623,

(0.5970, 0.1043, −0.1115, 0.4333) if 1, 623 ≤ t ≤ 3, 000.
(4.13)

The Bayes estimates, E(σ2
t | Y1,t) and E(µt + α1,tYt−1 + α2,tYt−2 | Y1,t), of the

variance and regression function are also plotted in the middle and bottom panels,
together with the corresponding BCMIX estimates (with np = 25, mp = 10) and

SISR estimates (based on m = 100 SISR trajectories).
Table 1(a) reports simulation results on the sum of squared errors

SSE :=
n∑

t=3

{(1, Yt−1, Yt−2)(θ̂t − θt)}2 (4.14)

and the Kullback-Leibler divergence between the true and estimated parameter
values, defined by

KL =
n∑

t=3

{ [(1, Yt−1, Yt−2)(θ̂t − θt)]
2

σ̂2
t

+
(σ2

t

σ̂2
t

− 1 − log
σ2

t

σ̂2
t

)}
, (4.15)
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Figure 1. Top panel: time series of 3,000 observations generated from a
change-point AR(2) model. Middle panel: true and estimated vlaues of σ2

t .
Bottom panel: true value of µt +α1,tYt−1 +α2,tYt−2 and its Bayes estimate,
which are visually indistinguishable at most places where only the Bayes
estimates is shown. Not shown in the bottom panel are the BCMIX and
SISR estimates which are visually indistingushable from the Bayes estimate.

with (θ̂t, σ̂t) being the Bayes, BCMIX and SISR filters in the respective columns.
Note that the quantity inside the curly brackets of (4.15) is E[log{fθt,σt

(Y ∗
t )/

fˆθt,σ̂t

(Y ∗
t )}], where the expectation is conditional on (θ̂t, σ̂t) and taken under the

true parameter (θt, σt), and Y ∗
t has density function fθt,σt

and is independent

of (θ̂t, σ̂t). Each result in Table 1(a) is based on 100 simulations generated from
the change-point AR(2) model whose parameters are given in (4.12), and also for
several other values of p listed in the table. For p = 0.0005 we choose n = 10, 000,
whereas for the larger values of p we take n = 5, 000, noting that the expected
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number of change-points in each simulated sequence is np. Note that although

SSE for BCMIX can be more then twice that for the Bayes filter, the KL for

BCMIX remains within 1.2 of that for the Bayes filter. Moreover, the SISR filter

has a smaller SSE but larger KL than BCMIX. Whereas the Bayes filter at time t

consists of a mixture of t components and t can increase up to 5,000 (or 10,000),

the BCMIX filter involves a mixture of only np = 25 components. It is also worth

noting that when the SSE of BCMIX exceeds twice that of the Bayes filter in

Table 1, the SSE values for both the Bayes and BCMIX filters are small (< 0.15)

when divided by n − 2 (yielding SSE per observation).

Table 1. Sum of squared errors (SSE) and Kullback-Leibler divergence (KL)

for Bayes, BCMIX and SISR filters. Standard errors are given in parentheses.

SSE KL

n p Bayes BCMIX SISR Bayes BCMIX SISR

(a) Bayesian setting

10,000 .0005 137.6 233.4 397.9 94.4 108.9 262.6

(7.72) (43.83) (24.90) (3.67) (4.75) (10.60)

5,000 0.001 122.4 305.8 213.0 84.6 97.0 146.6

(7.10) (104.00) (13.59) (3.29) (4.23) (7.30)

5,000 0.003 290.3 746.8 432.3 190.6 216.8 283.7

(11.29) (260.47) (16.71) (4.25) (5.00) (6.38)

5,000 0.01 659.3 1,082.0 812.0 437.1 493.3 524.7

(12.22) (98.91) (15.26) (5.46) (6.37) (6.28)

5,000 0.02 1,044.7 1614.1 1319.8 693.2 761.9 842.5
(15.64) (75.04) (19.88) (6.57) (6.41) (8.40)

(b) Frequentist setting (n = 3, 000)

Case 1 32.6 34.2 54.8 41.2 42.7 70.4

(0.72) (0.77) (1.62) (0.77) (0.83) (2.02)

Case 2 27.5 82.6 39.05 36.5 47.4 48.7

(0.89) (6.95) (3.61) (0.94) (0.98) (2.53)

Case 3 32.2 34.2 77.02 41.4 43.6 99.43

(0.70) (0.73) (4.86) (0.77) (0.85) (6.15)

While Table 1(a) considers the Bayes risks of various estimators of θ t and

σ2
t and generates each simulation from the Bayesian model, Table 1(b) considers

the frequentist risks for three fixed piecewise constant specifications of (θ t, σt).

The first specification, called Case 1, is the same as that in Figure 1; see (4.13).

The other two specifications allow unit-root nonstationarity in the AR(2) model.
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Specifically, Case 2 (or 3) has the same (θt, σt) values as in Case 1 except that

(µt, α1,t, α2,t) takes the value (0, 1, 0) for 943 ≤ t < 1, 623 in Case 2 (or for

t ≥ 1, 623 in Case 3). The KL of BCMIX ranges between 1.05 to 1.30 times that

of the Bayes filter, although BCMIX has a markedly larger SSE. For Case 3, both

the KL and the SSE of SISR are over two times those of the Bayes filter. To

handle the unit-root nonstationarity for t ≥ 1, 623, it seems necessary to increase

the number of simulated SISR trajectories by ten or more times the number 100

used in Table 1.

We next consider the performance of the bounded complexity smoothers.

For n of the size considered in Table 1, it is difficult to compute the Bayesian

smoother E(θT
t , σ2

t | Y1,n) of Section 3. Instead of this computationally pro-

hibitive benchmark for comparison with BCMIX smoothers, we consider a much

simpler benchmark in which the change-points are known so that the Bayes esti-

mates of (θt, σ
2
t ) between two change-points are given by the standard Bayesian

formulas for normal populations (cf. Section 2.7 of Box and Tiao (1973)). Table

2 compares this “fictitious Bayes” smoother with the BCMIX smoother in terms

of the SSE and KL (for which the sums in (4.14) and (4.15) are now replaced by

Σn−2
t=3 to allow for backward filtering). Comparison of Table 2 with Table 1 shows

the substantially smaller SSE and KL for BCMIX smoothers than the BCMIX

filters.

Table 2. Sum of squared errors (SSE) and Kullback-Leibler divergence (KL)
for “fictitious Bayes” (fBayes) and BCMIX smoothers. Standard errors are
given in parentheses.

SSE KL

n p fBayes BCMIX fBayes BCMIX

10,000 0.0005 77.7 164.7 44.4 55.8

(30.55) (41.96) (7.96) (4.34)

5,000 0.001 80.8 158.6 65.7 47.7

(31.96) (32.67) (16.76) (3.61)

5,000 0.003 229.7 661.6 142.1 130.3

(49.12) (194.39) (24.26) (4.70)

5,000 0.01 526.2 1390.7 304.0 372.4
(36.05) (126.4) (12.89) (5.97)

5,000 0.02 1347.5 2382.0 467.0 641.0

(528.36) (419.14) (9.58) (8.10)

We have not included SISR smoothers in the simulation study of Table 2 be-
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cause of the computational cost of many simulated replicates of such smoothers,

which involve another layer of SISR simulations. Simulating SISR smoothers

for some particular cases yields results similar to those for BCMIX smoothers.

For the simulated data in Figure 1, we evaluated the BCMIX smoother and the

results for the estimates of σ2
t are shown in Figure 2.
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Figure 2. True value of σ2
t and its BCMIX estimate based on 3,000 obser-

vations.

5. Choice of Hyperparameters

In practice the frequency of change-points in an observed time series is un-

known and one has to estimate the hyperparameter p, and possibly also other hy-

perparameters of the Bayesian change-point autoregressive model, from the data.

For the mean shift model in Section 1, Yao (1984) considered the maximum like-

lihood approach. He developed an algorithm to compute the likelihood function

with O(n2) operations but found it impractical to use in conjunction with an iter-

ative search for the maximum likelihood estimate. Accordingly he developed an

approximation to the likelihood function by collapsing the mixture distribution

for θt | Y1,t−1 to a single normal and maximized this pseudo-likelihood instead.

In this section we describe two methods to estimate the hyperparameters, one

based on the accumulated prediction error (APE) criterion to be used in con-

junction with the BCMIX algorithm, and the other assuming a prior distribution

on the hyperparameters to be used in conjunction with the SISR estimates.

5.1. APE criterion and BCMIX estimates

The accumulated prediction error (APE) criterion was introduced by Rissa-

nen (1986) and applied to order determination in classical time series models by

Hemerly and Davis (1989), Wei (1992) and Lai and Lee (1997). Because APE(ν)

can be computed recursively, it is well suited to recursive estimators in time series

models that involve an unspecified order ν to be determined from the data, and
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to BCMIX filters in change-point autoregressive models involving an unspecified

hyperparameter ν that consists of p, g, λ, z and V.

For the change-point AR(k) model, the accumulated prediction error at time

n is defined by

APEn(ν) =
n∑

t=k+1

{Yt − Ŷt|t−1(ν)}2, (5.1)

where Ŷt|t−1(ν) is the one-step-ahead predictor of Yt given by

Ŷt|t−1(ν) = {(1 − p)θ̂t−1(ν) + pz}T Yt−k,t−1, (5.2)

in which θ̂i(ν) is the BCMIX estimate (assuming the hyperparameter ν) of θ

based on Y1, . . . , Yi. Following Lai, Liu and Xing (2004), we use the APE criterion

to choose the hyperparameter at every stage n from a given set H of possible

values. Specifically, let ν̂n be the minimizer of APEn(ν) over ν ∈ H, and estimate

θt and σ2
t by θ̂t(ν̂t−1) and σ̂2

t (ν̂t−1). These estimates are called BCMIX-APE and

Table 3 compares them with BCMIX(ν) that assumes the hyperparameter ν to

be known.

When H is a finite set with h elements, we can compute BCMIX-APE by

h parallel recursions. Specifically, for each ν ∈ H, θ̂t−1(ν) and σ̂2
t−1(ν) can

be updated recursively in view of (2.7) and (4.2), and therefore we can easily

update APEt(ν) by APEt(ν) = APEt−1(ν) + {Yt − Ŷt|t−1(ν)}2. To choose a

finite H, one can start by using prior information to come up with a range

(0 <)p′ ≤ p ≤ p′′(< 1). Typically one has an upper bound (horizon) N for the

length of past and future observations to be considered and can take p′ ≥ 1/(2N),

noting that the expected number of change-points for the series is Np. As will

be explained in Appendix C, we propose to replace the interval [p′, p′′] by a finite

set of points

2`p′ (0 ≤ ` ≤ L), where L = max{` : 2`p′ ≤ p′′}. (5.3)

Whereas the relative frequency p of change-points is an essential feature of our

Bayesian model, the other hyperparameters g, λ, z and V become significant only

around change-points, where one does not have enough post-change observations

and relies on prior information to estimate θt and σt. Accordingly, including

a few plausible values of (g, λ, z,V) should suffice. In particular, estimates of

baseline values of θ and σ2 (assumed not to be time-varying) from some historical

data prior to t ≥ 0 can provide estimated values of (g, λ, z,V) via the method of

moments. Thus the set H chosen in this way typically has manageable cardinality

h for the implementation of parallel recursions.



AUTOREGRESSIVE MODELS 295

As an illustration, we consider the change-point AR(2) model whose hyper-

parameters are given in (4.12) and also for several other values of p, as in Table

1(a). For each value of p, we let p′ = p/10 and p′′ = 10p and define H with

cardinality 2L, where L is defined above and each (p, g, λ, z,V) ∈ H has the

following form: p = 2`p′ and either (i) g = 4, λ = 1/10, z = (1/2)1,V = (3/2)I,

or (ii) g = 5/2, λ = 1/3, z = −(1/2)1, V = 2I, where I is the identity matrix and

1 is a vector of 1’s. Note that σ2
t has a prior mean of 5/3 under (i) and 1 under

(ii). The BCMIX-APE estimate of (θT
t , σ2

t ) constructed in this way is compared

with BCMIX(ν) in terms of the Kullback-Leibler divergence (4.15) in Table 3,

each result of which is based on 100 simulations.

Table 3. Kullback-Leibler divergence of BCMIX(ν) and BCMIX-APE filters

with np = 35. Standard errors are given in parentheses.

mp = 5 mp = 0

p BCMIX(ν) BCMIX-APE BCMIX(ν) BCMIX-APE

0.0005 96.0 (3.68) 105.8 (4.24) 96.1 (3.68) 106.8 (4.56)

0.001 86.1 (3.33) 94.6 (3.52) 86.2 (3.34) 97.8 (4.03)
0.003 192.0 (4.30) 209.8 (4.51) 192.2 (4.31) 210.4 (4.51)

0.01 439.2 (5.51) 478.1 (6.09) 439.3 (5.50) 478.3 (6.12)

0.02 696.1 (6.57) 770.5 (7.25) 696.2 (6.57) 770.9 (7.25)

Extending the APE criterion to the smoothing problem yields the usual cross

validation criterion

CV(ν) =
n−2∑

t=3

{Yt − Ŷt,n(ν)}2, (5.4)

where Ŷt,n(ν) is a predictor of Yt based on (Y1,t−1,Yt+1,n) obtained by combining

the forward and backward BCMIX estimates in a way similar to that in Section

4.3; see Appendix D for details. The hyperparameter ν can be estimated for

BCMIX smoothers by ν̃n that minimizes CV(ν) over ν ∈ H.

5.2. Conjugate hyperprior distributions and SISR estimates

Suppose that in the change-point AR(k) model the probability p of change is

unknown and is specified by a prior Beta(a, b) distribution with mean a/(a + b),

where a and b are positive integers. Using the proposal distribution Q for which

It | It−1 has the same distribution as P (It = · | It−1,Y1,t), it can be shown

that It | It−1 is Bernoulli assuming the values 1 and 0 with probabilities in the

proportion

(nt−1,1 + a)f(Yt | It = 1) : (nt−1,0 + b)f(Yt | YJt−1,t−1, It = 0), (5.5)
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where the conditional densities are Student-t densities given by Lemma 1, and

nt−1,1 and nt−1,0 are the number of 1’s and 0’s in {I1, . . . , It−1}. Letting at and

bt denote the two terms in (5.5), note that f(Yt | It−1,Yt−1) = at + bt and that

the importance weights can be generated recursively by wt = wt−1(at + bt), as

in (4.6). By combining these adaptive forward filters with the corresponding

backward filters, we obtain adaptive smoothers.

6. Conclusion

The change-point AR(k) model introduced herein is a simple Bayesian model

that captures structural changes in both the volatility and regression parameters.

It is a hidden Markov model (HMM), with the unknown regression and volatility

parameters θt and σt undergoing Markovian jump dynamics, so that estimation of

θt and σt can be treated as filtering and smoothing problems in the HMM. Making

use of the special structure of the HMM that involves gamma-normal conjugate

priors, we have been able to develop two approximations, with relatively low

computational complexity, to the Bayesian filters and smoothers. The first is

the simulation-based SISR which uses recent advances in sequential Monte Carlo

methods. The second is BCMIX, which is developed from explicit formulas for

the Bayesian filters.

The Bayesian model has certain hyperparameters among which is the relative

frequency p of change-points in the time series. We have described two general

approaches to determining hyperparameters from the data. Omitted from the

discussion in the preceding sections is that one often has for a particular appli-

cation some external information, and the strength of Bayesian modeling is that

one can conveniently incorporate it into the Bayesian model. For example, since

p is a hyperparameter that is sequentially determined from the data in Section

5, we can incorporate external information besides using a criterion like APE

(which depends solely on the observed time series) to determine p. Such exter-

nal information plays a fundamental role in the intervention analysis of Box and

Tiao (1975). They noted that certain external events (e.g., the diversion of traffic

by the opening of a new freeway, or a new law on the allowable proportion of

reactive hydrocarbons in gasoline) might produce structural changes in an ob-

served time series (such as hourly readings of oxidant pollution level in a town).

Their approach is to model a known intervention at a certain time point t0 by an

input of the form 1{t≥t0} in an ARMAX model. The ARMAX model, however,

only involves the dynamics of the level of Yt but not its volatility. If we use the

change-point AR(k) model instead to model both the level and volatility, we can

adjust the hyperparameter p at different time points to incorporate knowledge

of external events such as interventions at these times.
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Appendix A. Proof of Theorem 1

Lemma 3. (i) If {Yt, 1 ≤ t ≤ n} is a stationary Gaussian sequence, then

it is reversible, i.e., it has the same distribution as the time-reversed sequence

Ỹt := Yn+1−t.

(ii) Let Yt = µ + α1Yt−1 + · · · + αkYt−k + σεt, t > k, in which the εt are

i.i.d. standard normal and (α1, α2, . . . , αk) satisfies the stability assumption (3.1).

Then {Yt−k,t−1, t > k} is a geometrically ergodic Markov chain having a normal

stationary distribution. In particular, Yn has a limiting normal distribution with

mean µ/(1 − α1 − · · · − αk) and variance v = σ2 ∑∞
j=0 β2

j , where βj are the

coefficients in the power series representation of 1/(1 − α1z − · · · − αkz
k) =∑∞

j=0 βjz
j for |z| ≤ 1.

(iii) For the AR(k) model in (ii), if Y1,k is initialized at the stationary dis-

tribution, then {Yt, k < t < n − k} is reversible.

Proof. (i) follows easily from the covariance function of the stationary Gaussian

sequence. To prove (ii), note that Yt−k+1,t = AYt−k,t−1 + (0, µ + σεt, 0, . . . , 0)
T ,

where the first row of A is (1, 0, . . . , 0), the second row is (0, α1, . . . , αk), the third

row is (0, 1, 0, . . . , 0), etc. It is a geometrically ergodic Markov chain (cf. Meyn

and Tweedie (1993)). If the chain is initialized at its stationary distribution,

then Yn can be written as an infinite moving average
∑∞

j=0 βj(µ+σεn−j), so (iii)

follows from (i).

Proof of Theorem 1. First note that the probability measure Q, under which

(τk+2,θ
T
k+2) has the same distribution as (3.2) and is independent of the Bernoulli

random variable Ik+2, is an invariant measure (stationary distribution) for the

Markov chain {(τt,θ
T
t , It), t ≥ k+2}. Moreover, the chain clearly satisfies the ge-

ometric drift condition (V4) of Meyn and Tweedie (1993, p.367) and is reversible

(since the It are i.i.d.). Combining this with parts (ii) and (iii) of the preceding

lemma gives the desired conclusion.

Appendix B. Proof of (4.8), (4.9) and (4.11)

From (3.3) it follows that

f(θT
t , σ2

t | Y1,n)

∝ f(θT
t , σ2

t | Y1,t)f(θT
t , σ2

t | Yt+1,n)

f(θT
t , σ2

t )

∝ f(θT
t , σ2

t | Y1,t)

f(θT
t , σ2

t )
[f(θT

t , σ2
t | Ĩt =1)P (Ĩt =1)+f(θT

t , σ2
t | Yt+1,n, Ĩt =0)P (Ĩt =0)]
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∝ pf(θT
t , σ2

t | Y1,t) + (1 − p)
f(θT

t , σ2
t | Y1,t)f(θT

t , σ2
t | Yt+1,n, Ĩt = 0)

f(θT
t , σ2

t )
. (B.1)

Note that given Jt = i and Yi,t, the conditional distribution of (θT
t , σ2

t ) can be

described by

τt ∼ Gamma
(
g +

t − i + 1

2
,

1

ai,t

)
, θt | τt ∼ Normal

(
zi,t,

1

2τt
Vi,t

)
.

Similarly, given J̃t = j ≥ t+1 and Yt+1,j , the conditonal distribution of (θT
t , σ2

t )

can be described by

τt ∼ Gamma
(
g +

j − t

2
,

1

ãj,t

)
, θt | τt ∼ Normal

(
z̃j,t,

1

2τt
Ṽj,t

)
.

Hence we can write the last term in (B.1) as (1 − p)
∑t

i=k+1

∑n
j=t+1 pi,tp̃j,tei,j,t,

where for i ≤ t < j ≤ n,

ei,j,t =
f(θT

t , σ2
t | Y1,t, Jt = i)f(θT

t , σ2
t | Yt+1,n, J̃t = j)

f(θT
t , σ2

t )

=
Normal(zi,t,Vi,t/(2τt))Normal(z̃j,t, Ṽj,t/(2τt))

Normal(z,V/(2τt))
(B.2)

×Gamma(g + (t − i + 1)/2, 1/ai,t)Gamma(g + (j − t)/2, 1/ãj,t)

Gamma(g, λ)

= bi,j,tNormal(zi,j,t,Vi,j,t/(2τt)) × Gamma(g +
j − i + 1

2
,

1

ai,j,t
).

In (B.2), we have used Gamma(·, ·) to denote the gamma density function of

τt := (2σ2
t )−1, with the indicated shape and scale parameters, and Normal(·, ·)

to denote the normal density function of θt given τt, with the indicated mean

and convariance matrices. Note that by Bayes’ theorem, (B.1) also gives the

conditional distribution of (θt, τt) given Jt = i, J̃t = j and Yi,j, thus proving

(4.8). Combining (B.1) with (B.2) and (2.6) yields (4.9). For the SISR smoother,

changing pi,t and p̃j,t to w
(i)
t and w̃

(j)
t in (4.9) gives (4.11).

Appendix C. Rationale behind the choice (5.3) for H
For the case α1,t = · · · = αk,t = 0, Lai, Liu and Xing (2004) proposed to use

(5.3) as the candidate set for the hyperparameter p to be chosen sequentially via

the APE criterion. They based their choice on the following asymptotic property

of hierarchical Bayes estimators that put a prior distribution on the unknown

hyperparameter p. Take β > 1 and let G be any probability distribution with
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support [β−1p0, βp0]. This includes the prior disribution that is degenerate at

p0, corresponding to the case of a known hyperparameter. Let (µ̂t(G), σ̂2
t (G))

be the Bayes estimate of (µt, σ
2
t ) assuming the hyperprior G on the unknown

p. Lai, Liu and Xing (2004) have shown that as n → ∞ and p0 → 0 such that

np0/| log p0| → ∞,

EG{
n∑

t=1

[(µ̂t(G) − µt)
2 + (σ̂2

t (G) − σ2
t )

2]} ∼ Anp0| log p0|

for some constant A that does not depend on G. Note that this result also covers

the case of a known hyperparameter (corresponding to degenerate G at p0). With

β = 2, this suggests that specifying the hyperparameter p only within a range

from 50% to 200% of its exact value yields Bayes estimates of (µt, σ
2
t ) that are

asymptotically as efficient, for small p, as those that assume exact knowledge of

p. Simulation studies confirm this and show that misspecifying p within a factor

of 2 does not lead to substantial proportional increase in the cumulative mean

squared error even when p is not small, not only in the special case considered by

Lai, Liu and Xing (2004) but also more generally in change-point autoregressive

models (2.1) in which the autoregressive parameters α1,t, . . . , αk,t are restricted

to some stability region.

Appendix D. Derivation of Ŷt,n(ν) in (5.4)

Anaolgous to (3.3), Bayes’ theorem yields

f(Yt | Y1,t−1,Yt+1,n) ∝ f(Yt | Y1,t−1)f(Yt | Yt+1,n)/f(Yt). (D.1)

Let Ỹt = Yn+1−t,

µi,t =





zT
i,t−1Yt−k,t−1 if i ≤ t − 1,

zTYt−k,t−1 if i = t,

µ̃j,t =





z̃T
j,tỸn−t−k+1,n−t if j ≥ t + 1,

zT Ỹn−t−k+1,n−t if j = t,

σ2
i,t =





ai,t−1(1 + YT
t−k,t−1Vi,t−1Yt−k,t−1)/(2g + t − i) if i ≤ t − 1,

(1+YT
t−k,t−1VYt−k,t−1)/(2gλ) if i= t,

σ̃2
j,t =





ãj,t+1(1+ỸT
n−t−k+1,n−tṼj,t+1Ỹn−t−k+1,n−t)/(2g+n−t−j) if j≥ t+1,

(1 + ỸT
n−t−k+1,n−tVỸn−t−k+1,n−t)/(2gλ) if j = t.

Then by Lemma 1(i), conditional on Jt = i and Yi,t−1.

(Yt − µi,t)/σi,t ∼ Student-t (2g + t − i), (D.2)
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in which the quantity 2g + t − i in parentheses denotes the degrees of freedom.

Using time reversal, it follows similarly from Lemma 1(i) that, conditional on

J̃t = j and Yt+1,j,

(Yt − µ̃j,t)/σ̃j,t ∼ Student-t (2g + n − t − j). (D.3)

Although both factors in the numerator of (D.1) have the simple forms (D.2)

and (D.3), the denominator is considerably more complicated. We ignore the

denominator as our goal is to combine the forward and backward predictors of

Yt in (D.2) and (D.3) in a simple way. Using this approximation in (D.1), we can

regard Y1,t−1 and Yt+1,n as two independent scources of information on Yt since

the numerator in the right hand side of (D.1) factors into these two components.

Accordingly we weight the forward and backward predictors given by (D.2) and

(D.3) by their respective variances, leading to the estimate

Ê(Yt | Jt = i, J̃t = j,Yi,t−1,Yt+1,j) = {µi,t

σ2
i,t

+
µ̃j,t

σ̃2
j,t

}/{ 1

σ2
i,t

+
1

σ̃2
j,t

}. (D.4)

There is little loss of information in ignoring the denominator in (D.1) unless

max(t − i, j − t) is small, but (i, j) pairs with both i and j near t do not have

much predictive value for Yt. We therefore have for any fixed value of the hyper-

parameter ν = (p, g, λ, z,V) the estimate

Ŷt,n(ν) =
t∑

i=1

n∑

j=t

pi,tp̃j,t{
µi,t

σ2
i,t

+
µ̃j,t

σ̃2
j,t

}/{ 1

σ2
i,t

+
1

σ̃2
j,t

}.
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