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Abstract: We propose a method for finding optimal designs when there are po-
tentially failing trials in the experiment. Examples are presented for polynomial

models using different types of response probability functions, including situations
when these response probability functions are only partially specified. Some prop-

erties of the proposed optimal designs are discussed.
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1. Introduction

Almost all work in the field of optimal design assumes that all trials of the
experiment will result in observations of the response variable. In practice, how-
ever, it is conceivable that not all responses of the trials are realized when the
experiment is carried out. There are several ways, often outside the control of
the experimenter, that can cause non-response. For example, in industrial ex-
periments, instruments may be more likely to malfunction at high temperatures
or pressures than under normal conditions. Missing values also tend to occur
more frequently in a long term clinical trial for a slow acting disease such as
rheumatoid arthritis where patients are less likely to show up for scheduled ap-
pointments as time progresses. This means that in both cases some trials do not
result in observations. In these situations, designs which assume all observations
are available at the end of the experiment can perform poorly. If we have prior
knowledge about potentially failing trials, it is therefore desirable to incorporate
such information in the design of the experiment.

To fix ideas, consider the straight-line homoscedastic regression model on
the interval [0, 1] and suppose that 100 observations are to be taken. The usual
D-optimal design for estimating the two parameters requires that half the obser-
vations be taken at each of the end-points. When there are failing trials, fewer
than 100 observations are available at the end of the experiment. If the response
probabilities at 0 and 1 are different and low, the design will be unbalanced
with many missing observations at x = 0 and x = 1. Consequently, the usual
D-optimal design can be inefficient for estimating the model parameters.



1146 LORENS A. IMHOF, DALE SONG AND WENG KEE WONG

There is very little work in the literature that addresses the design problem
for experiments with potentially failing trials. An early work is Herzberg and
Andrews (1976) where they proposed three criteria to assess a design in a failing
trial situation. They considered a setting where experiments are allowed to have
only 3 or 4 observations. Under this constraint, optimal designs were found
for the simple linear and quadratic regression models. No general method was
provided to construct optimal designs. Akhtar and Prescott (1986) considered
central composite designs of a second order and proposed criteria robust to one or
two missing observations. Recently, Hackl (1995) found exact D-optimal designs
for estimating coefficients in a quadratic model when there are failing trials. He
assumed the design space consists of equally spaced points and the sample size is
small, with no replications allowed. The optimal design was found by comparing
all possible design candidates assuming the probability of having a response is
monotonic. Closed-form formulae and properties of the optimal designs were not
provided because of the complexity of the problem.

The aim of this paper is to provide a general method for constructing efficient
designs when there are varying probabilities of realizing responses. The method
is flexible and applies to both linear and non-linear models, and different design
criteria. In Section 3, we discuss D-optimal designs for polynomial models and
describe how the optimal designs behave when the response probabilities change.
Section 4 relaxes the earlier assumption that the response probabilities have to
be completely specified. Instead it is only assumed that the response probability
function belongs to a known set of plausible functions. For this situation, we
propose a maximin design criterion and provide closed-form maximin D-optimal
designs for a class of partially specified response probability functions. Section 5
contains a summary and a discussion of the possibility that the optimal design
does not provide estimates for all the model parameters.

2. Optimality Criterion

We consider statistical models of the form

y(x) = f(x, γ) + ε, x ∈ X , (2.1)

where y(x) is the response at x and the function f is assumed known apart from
the model parameters γ. The error term ε is normally distributed with mean zero
and constant variance. The design space X is a given compact set; in applications,
it is usually an interval. Additionally, we assume that we have resources to
take n independent observations in the experiment. The main interest here is to
determine an optimal allocation scheme for these n observations in X to efficiently
estimate γ when it is known in advance that some trials might result in non-
responses.
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Suppose ξ is a design which takes nj observations at xj , j = 1, . . . , k, and∑k
j=1 nj = n. Following convention, the worth of this design is judged by its

Fisher information matrix. If every response is observed, this matrix is propor-
tional to

I(ξ, γ) =
k∑

j=1

nj

n

∂f(xj , γ)
∂γ

∂f(xj, γ)T

∂γ
.

If all data are observed, the covariance matrix of the maximum likelihood esti-
mate of γ is proportional to I(ξ, γ)−1 and optimal designs for estimating γ can be
found by maximizing an appropriate function of I(ξ, γ). For instance, D-optimal
designs for estimating γ are found by maximizing det I(ξ, γ) over the set of de-
signs on X , see for example the design monographs by Fedorov (1972) or Silvey
(1980).

In experiments with potentially failing trials, the actual observed sample size
may vary from experiment to experiment even for the same design. Our assump-
tion is that at every point x in the design space, there is a known probability
p(x) of observing a response in a trial at x. If Nj responses are actually observed
out of nj trials at xj , j = 1, . . . , k, the observed Fisher information matrix is

IO(ξ, γ) =
k∑

j=1

Nj

n

∂f(xj , γ)
∂γ

∂f(xj, γ)T

∂γ
,

ignoring an unimportant multiplicative constant. The covariance matrix of the
maximum likelihood estimate of γ is proportional to IO(ξ, γ)−1 and we are led
to finding a design that optimizes IO(ξ, γ) in some sense. However, because Nj

is random, IO(ξ, γ) is also random. Consequently, we compare designs using the
expected information matrix

J(ξ, γ) = E
{
IO(ξ, γ)

}
,

where the expectation is taken with respect to the response probabilities at the
support points of ξ. If p(x) = 1 for all x ∈ X , so that all observations will be
realized, the expected information matrix coincides with the usual information
matrix. In practice, we expect that the response probability function p(x) is
usually monotonic. For instance, in a chemical experiment, instruments are more
likely to malfunction or fail as experimental conditions become more extreme.

Following Herzberg and Andrews (1976) and Hackl (1995), we assume that
the individual trials succeed or fail independently of each other. Then, for each j,
Nj is a binomial random variable with parameters nj and p(xj). Thus E(Nj) =
njp(xj) and it follows that

J(ξ, γ) =
∫
p(x)

∂f(x, γ)
∂γ

∂f(x, γ)T

∂γ
dξ(x). (2.2)
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In what is to follow, we adopt Kiefer’s approach (1959) and consider approximate
designs only. This means that a design is an arbitrary probability measure on X
with finite support and nj = nξ(xj) is not required to be an integer. We then
define the expected information matrix with respect to p(x) by (2.2).

Now suppose that Φ is a user-selected optimality criterion and Φ is a pos-
itively homogeneous, concave, increasing and upper semicontinuous function
on the set of non-negative matrices, cf. Pukelsheim (1993, Chap.5). The Φ-
optimal design for (2.1) with potentially failing trials is the design that maximizes
Φ(J(ξ, γ)). If the regression model is linear, J(ξ, γ) does not depend on γ and we
write simply J(ξ). If the model is non-linear, the optimality criterion contains
the unknown parameters γ and the designs are locally optimal (Chernoff (1953)).
This feature also occurs when there are no failing trials. Locally optimal designs
are useful as a first step in designing an experiment for non-linear models, see
Ford, Torsney and Wu (1992). In the present situation, locally Φ-optimal de-
signs are found by maximizing Φ(J(ξ, γ)) for a nominal value of γ. If there are
unknown parameters in the response probability function, one may also specify
nominal values for these parameters, and then use a local optimality approach.
Alternatively, one may follow a maximin approach to overcome the dependence
of the optimal design on the unknown parameters. This is discussed more fully
in Section 4.

In the next few sections, we construct optimal designs under various assump-
tions. Some of these designs are optimal in the sense that the optimal design is
found among all designs on X , and others are optimal only among all designs
on X with m points. To distinguish between the two types of optimal designs,
the latter designs are called optimal m-point designs. The issue of determining
whether these two types of optimal designs are the same is a difficult one; see
Dette and Wong (1998). In general, the optimal designs have to be determined
using numerical optimization routines. For certain design criteria, standard de-
sign algorithms, such as those described in Silvey (1980, Chap.4) can be modified
to generate the desired optimal designs. The following sections describe some
situations where analytical optimal designs can be found for experiments with
potentially failing trials.

3. Optimal Designs for Polynomial Regression

Consider the polynomial model

y(x) = γ0 + γ1x+ · · ·+ γmx
m + ε, x ∈ X , (3.1)

where X ⊂ R is a compact interval. Our goal is to determine D-optimal de-
signs for this model when there are potentially failing trials and the response
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probability function p(x) is given. We assume p(x) has the form

p(x) =
κ

|x− θ| , (3.2)

where θ ∈ R \ X and κ > 0 is so small that p(x) ≤ 1 for all x ∈ X . This class
of response probability functions is flexible because depending on the value of θ,
p(x) can be monotonic increasing or decreasing. There is no loss of generality in
assuming that X = [0, b] and θ lies to the left of the regression interval.

Theorem 3.1. Consider the polynomial regression model (3.1) with X = [0, b]
and response probability given by (3.2) for some θ < 0. Then the D-optimal
design for experiments with potentially failing trials puts equal masses 1

m+1 at
the zeros of the polynomial

x(b− x)
m−1∑
k=0

ckx
k, (3.3)

where the coefficients are given by

ck = (−1)k
∏k

j=0(m
2 − j2)

k!(k + 1)!bk

{
2(m2 − k − 1) +

kb

θ
− k

θ

√
b2 + 4m2θ(θ − b)

}
.

Sketch of Proof. Using the theory of oscillatory matrices one may show as in
Imhof, Krafft and Schaefer (1998) that the zeros of (3.3) are the sought design
points if (c0, . . . , cm−1) is a characteristic vector of the matrix




r0 s0 0 · · · 0 0
q1 r1 s1 · · · 0 0
0 q2 r2 · · · 0 0
...

...
...

...
...

0 0 0 · · · qm−1 rm−1



, where

qk = k2 −m2,

rk = −k(kb+ kθ + 3θ),
sk = (k + 1)(k + 2)θb.

That this is indeed the case can be verified by a simple but lengthy calcu-
lation. The corresponding characteristic value is λ = (2 − m2)θ − b

2 +
1
2

√
b2 + 4m2θ(θ − b).
It is intuitively reasonable and obvious from Theorem 3.1 that the optimal

designs do not depend on κ but do depend on θ. If θ < 0, the response probability
is decreasing on [0, b], and if θ is close to zero, then the probability of having a
response is much larger at 0 than at b. This suggests that if θ moves towards
zero, the design points should move to where the response probability becomes
large, that is, to the left. The next theorem confirms this and describes the limit
behavior of the design when θ approaches −∞ or 0−.
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Let Gk(µ, ν, x) denote the kth monic Jacobi polynomial orthogonal with
respect to (1− x)µ−νxν−1, x ∈ [0, 1]; see Abramowitz and Stegun (1965, p.775).

Theorem 3.2. Every interior support point of the optimal design given in The-
orem 3.1 moves to the left when θ(< 0) moves to the right. They converge to the
zeros of Gm−1(3, 2, x/b) when θ → −∞, and they converge to the zeros of

2Gm−1
(
3, 2,

x

b

)
+ (m− 1)

x

b
Gm−2

(
4, 3,

x

b

)

when θ → 0−.

The proof is given in the appendix. Note that the zeros of Gm−1(3, 2, x/b) are
just the interior support points of the D-optimal design for polynomial regression
on [0, b] without failing trials.

4. Maximin Optimal Designs for Partially Specified Response Proba-

bilities

In this section we extend the concepts in Section 2 to situations where the
response probability p(x) is not completely known. We limit our discussion to
linear models of the form y(x) = fT (x)γ + ε, x ∈ X . We assume only that p(x)
belongs to a given class {pθ(x) : θ ∈ Θ} with a known parameter set Θ. The
expected Fisher information matrix Jθ(ξ) =

∫
pθ(x)f(x)fT (x) dξ(x) depends now

on θ. Let Φ be the underlying optimality criterion. The standardized (cf. Dette
(1997)) maximin Φ-optimal design is the design that maximizes

min
θ∈Θ

Φ(Jθ(ξ))
maxη Φ(Jθ(η))

. (4.1)

When Θ consists of two points, this optimization problem falls within the geo-
metric framework developed by Imhof and Wong (2000), see also Haines (1995).

To illustrate this optimality concept we consider (3.1) with X = [−1, 1] and
assume, as Herzberg and Andrews (1976) did, a symmetric response probability
function. Specifically, we suppose that the response probabilities have the form

pθ(x) = (1− x2)θ, θ1 ≤ θ ≤ θ2, (4.2)

where θ1 < θ2 are fixed known positive numbers. This means that at x = 0
a response is certain, and near the end-points of X the response probability
decreases to zero. How fast it decreases, however, is only roughly known. We
are interested in estimating all the parameters γ0, . . . , γm and choose the D-
optimality criterion Φ(Jθ(ξ)) = {det Jθ(ξ)}1/(m+1). Then maximizing (4.1) is
equivalent to maximizing

min
θ1≤θ≤θ2

detJθ(ξ)
maxη detJθ(η)

,
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where, according to Karlin and Studden (1966, p.330),

max
η

det Jθ(η) = 2(m+1)(m+2θ)
m∏

k=1

kk
m∏

k=0

(k + θ)2k+2θ

(m+ k + 2θ)m+k+2θ
. (4.3)

In the next theorem, we present optimal (m+1)-point designs for this setup. The
justifications are deferred to the appendix. Investigations in a related context
(Dette and Wong (1998), Imhof (2001)) suggest that these designs should be
optimal or close to the optimal designs, when the range of θ is not too large.

Theorem 4.1. The standardized maximin D-optimal (m + 1)-point design for
model (3.1) with X = [−1, 1] and response probability structure (4.2) puts equal
masses at the zeros of the ultraspherical polynomial P (λ

∗)
m+1(x), where λ∗ > −1/2

is uniquely determined by the equation(
m∏

k=0

m+ k + 2λ∗ + 1
k + λ∗ + 1/2

)θ2−θ1

=
m∏

k=0

(k + θ2)k+θ2

(k + θ1)k+θ1

(m+ k + 2θ1)
m+k

2
+θ1

(m+ k + 2θ2)
m+k

2
+θ2

. (4.4)

5. Discussion

When there are potentially failing trials in an experiment, the usual optimal-
ity concepts are inappropriate because they provide meaningful comparison only
among designs with the same number of valid observations. For a given design
criterion Φ, our optimal design maximizes Φ(J(ξ, γ)), where J is the expected in-
formation matrix with respect to the response probabilities at the support points
of the design ξ. In this paper, we have used the D-optimality criterion to illus-
trate the concepts but the technique can be applied to find other types of optimal
designs. For example, E-optimal designs can be similarly derived by combining
the ideas of Section 2 with the general theorem on E-optimal designs for Cheby-
shev systems of Imhof and Studden (2001). The results in Section 4 can also be
extended to Bayesian optimality criteria. If we assume that a prior distribution
ψ on the parameter θ in the response probability function is available, we may
wish to find a Bayesian Φ-optimal design with respect to ψ, which maximizes∫ Φ(Jθ(ξ))

maxη Φ(Jθ(η))
dψ(θ).

Our experience with several numerical examples, not reported here, suggests
that ignoring the possibility of missing observations in the trials can result in a
substantial loss of efficiency of the usual optimal design. The gain in efficiency
of the D-optimal design proposed here over the usual D-optimal design depends
on the model, and generally is not affected by the magnitude of the response
probability, but is influenced by the heterogeneity of the non-response structure.
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We conclude with a note that in experiments with possibly failing trials, it is
possible that the observed information matrix IO(ξ, γ) is singular, even if ξ is so
chosen that the ordinary information matrix I(ξ, γ) is non-singular. In this case,
not all the parameters in γ are estimable and it is interesting to compare the
probability of this occurrence using the proposed design and the usual optimal
design. To do this, we first fix a nominal value of γ and assume that nξ(xj) is
again an integer for each design point xj , j = 1, . . . , k. We also assume that the
entries of the vector ∂f(x, γ)/∂γ form a Chebyshev system on X , see Karlin and
Studden (1966). Then IO(ξ, γ) is singular if and only if the number of design
points with at least one valid response is less thanm, the dimension of γ. Because
the N ′

is are independent binomial random variables with parameters nξ(xi) and
p(xi), it now follows that

P
{
IO(ξ, γ) is singular

}
=

m−1∑
j=0

∑
S⊂{1,...,k}

|S|=j

P (Ni > 0 if i ∈ S;Ni = 0 if i 
∈ S)

=
m−1∑
j=0

∑
S⊂{1,...,k}

|S|=j

∏
i∈S

[
1−{1−p(xi)}nξ(xi)

]∏
i�∈S

{1−p(xi)}nξ(xi).

(5.1)

Note that the last expression makes sense even if nξ(xi) is not an integer. Given
any design ξ, we use (5.1) to calculate the minimal value of n which ensures that
the probability of observing a singular information matrix is below a prescribed
level. If the entries of ∂f(x, γ)/∂γ do not form a Chebyshev system, the right-
hand side of (5.1) still gives a lower bound for the probability that IO(ξ, γ) is
singular, because the matrix may, then, be singular even if responses at m or
more different points in X have been obtained.

The optimal designs proposed here tend to have smaller probabilities that
their observed information matrices are singular when compared with those from
the usual optimal designs. Table 1 gives an example of the results obtained when
we compare the probabilities that the usual optimal design and our proposed op-
timal design each has a non-singular information matrix. The probabilities are
computed using the D-optimal designs found in Section 3 for the cubic model
on [0, 1] assuming different nominal values in the response probability function.
The sample size is 80 and the usual D-optimal design ξ∗ for the cubic model is
supported at 0.0, 0.276, 0.724 and 1.0. The table shows that our optimal designs
consistently have a higher probability of producing a non-singular observed infor-
mation matrix than the usual optimal design. That this is in fact always the case
for the present model follows from Theorem 3.2. This suggests that our designs
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may have an additional advantage over the usual optimal designs in experiments
with potentially failing trials. Further research in this direction is underway.

Table 1. Support of the D-optimal design ξ for cubic regression on [0, 1] with
p(x) = κ/|x − θ|. The last two columns list the probabilities of obtaining
a non-singular observed information matrix using ξ and the usual optimal
design ξ∗, respectively.

θ κ supp(ξ) P (IO(ξ) non-s.) P (IO(ξ∗) non-s.)

−0.1 0.10 {0.0, 0.197, 0.665, 1.0} 0.799 0.786
−0.5 0.25 {0.0, 0.238, 0.691, 1.0} 0.965 0.963
−1.0 0.30 {0.0, 0.252, 0.702, 1.0} 0.937 0.935
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Appendix

Proof of Theorem 3.2. Let ck = ck(θ) be as in Theorem 3.1. Then

m−1∑
k=0

ck(θ)xk = (−1)m+1
(2m− 1)!

(m− 1)!(m − 2)!
h(x, θ),

h(x, θ) = 4mGm−1
(
3, 2,

x

b

)
+
x

b

{
−2m+

b

θ
−
√
b2 + 4m2θ(θ − b)

θ

}
Gm−2

(
4, 3,

x

b

)
.

The term in braces converges to 0 as θ → −∞ and to −2m + 2m2 as θ → 0−.
This proves the limit assertions.

Now let x1(θ) < · · · < xm−1(θ) be the interior design points, i.e., the zeros
of h(x, θ). By the Implicit Function Theorem, each xk(θ) is differentiable and

dxk(θ)
dθ

= −h2(xk(θ), θ)
h1(xk(θ), θ)

=
xk(θ)
θ2

{
1− b− 2m2θ√

b2 + 4m2θ(θ − b)

}
Gm−2(4, 3, xk(θ)/b)

h1(xk(θ), θ)
.

The term in braces is seen to be negative and sgnh1(xk(θ), θ) = (−1)m+k−1. To
determine sgnGm−2(4, 3, xk(θ)/b), let ξ1 < · · · < ξm−2 and η1 < · · · < ηm−1
denote the zeros of Gm−2(4, 3, x/b) and Gm−1(3, 2, x/b), respectively. Let ξ0 = 0,
ξm−1 = b. An application of Sturm’s comparison theorem (Szegö (1975, p.19)) to
the differential equation (4.24.2) in Szegö (1975, p.67) shows that ξ0 < η1 < ξ1 <
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· · · < ηm−1 < ξm−1. Therefore, sgnh(ξk, θ) = sgnGm−1(3, 2, ξk/b) = (−1)m+k−1

for k = 0, . . . ,m − 1. Thus xk(θ) ∈ (ξk−1, ξk), so that sgnGm−2(4, 3, xk(θ)/b) =
(−1)m+k−1. Hence dxk(θ)/(dθ) < 0.

Proof of Theorem 4.1. A standard design argument (see, e.g., Silvey (1980,
p.43) shows that we can restrict attention to designs which put equal masses
on their m + 1 support points. Thus let ξ be a design with support points
x0 < · · · < xm in (−1, 1) and let ξ(xi) = 1/(m+ 1) for i = 0, . . . ,m. Then

detJθ(ξ) =
1

(m+ 1)m+1

m∏
k=0

(1− x2k)
θ
∏
i<j

(xj − xi)2

for all θ ∈ Θ. Now define the function

H(λ) =

(
m+1∏
k=1

2k + 2λ− 1
m+ k + 2λ

)2
, −1

2
≤ λ.

This function is strictly increasing on [−1
2 ,∞ ) with H(−1

2 ) = 0 and
limλ→∞H(λ) = 1. There exists, therefore, a unique λξ > −1

2 such that H(λξ) =∏m
k=0(1 − x2k). Using Theorem 3.2 in Karlin and Studden (1966, p.330) and

formulas (4.7.3) and (4.7.9) in Szegö (1975, p.80f) one may show that

detJθ(ξ) ≤ 2m(m+1){H(λξ)}θ
m∏

k=1

kk
m+1∏
k=1

(k + λ− 1/2)2k−2

(m+ k + 2λ)m+k−1 .

Thus, by (4.3),

detJθ(ξ)
maxη detJθ(η)

≤
m∏

k=0

(
k+λξ+1/2

k+θ

)2k+2θ( m+ k + 2θ
m+ k + 2λξ+1

)m+k+2θ

, (A.1)

and there is equality if and only if x0, . . . , xm are the zeros P (λξ)
m+1(x). Let K(θ, λ)

denote the expression on the right side of (A.1) with λξ replaced by λ. As
a function of θ, K(θ, λ) is strictly increasing for 0 < θ ≤ λ + 1

2 and strictly
decreasing for θ ≥ λ+ 1

2 . Thus

min
θ1≤θ≤θ2

detJθ(ξ)
maxη det Jθ(η)

≤ min
θ1≤θ≤θ2

K(θ, λξ) = min{K(θ1, λξ),K(θ2, λξ)}.

Since K
(
θ1, θ1− 1

2

)
= 1 > K

(
θ2, θ1− 1

2

)
and K

(
θ2, θ2− 1

2

)
= 1 > K

(
θ1, θ2− 1

2

)
,

there is some λ ∈ (θ1 − 1
2 , θ2 − 1

2) such that K(θ1, λ) = K(θ2, λ) =: K∗, say.
This λ is just λ∗, which in particular ensures that (4.4) has indeed a solution.
Moreover, min {K(θ1, λ),K(θ2, λ)} < K∗ if λ 
= λ∗. It therefore follows that ξ is

the optimal design if and only if x0, . . . , xm are the zeros of P (λ
∗)

m+1(x).
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