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Abstract: This article proposes an automatic smoothing method for recovering dis-

continuous regression functions. The method models the target regression function

with a series of disconnected cubic regression splines which partition the function’s

domain. In this way discontinuity points can be incorporated in a fitted curve

simply as the boundary points between adjacent splines. Three objective criteria

are constructed and compared for choosing the number and placement of these dis-

continuity points as well as the amount of smoothing. These criteria are derived

from three fundamentally different model selection methods: AIC, GCV and the

MDL principle. Practical optimization of these criteria is done by genetic algo-

rithms. Simulation results show that the proposed method is superior to many

existing smoothing methods when the target function is non-smooth. The method

is further made robust by using a Gaussian mixture approach to model outliers.

Key words and phrases: Akaike’s information criterion, Discontinuity-Preserving,

Generalized Cross-Validation, Genetic algorithms, Minimum Description Length,

Regression Spline, Robust curve estimation.

1. Introduction

This article considers the problem of nonparametric curve estimation (part
of the material has been presented in Lee (1999)). Popular approaches to this
problem include kernel/local polynomial regression, smoothing spline methods,
regression spline smoothing and wavelet techniques.

We follow the regression spline approach. Our main contribution is the pro-
posal of a new regression spline-based smoothing procedure capable of recovering
curves with discontinuities. This procedure models an unknown curve by a se-
ries of disconnected cubic regression splines that partition the curve’s domain.
In this way boundary points between adjacent splines of a fitted curve serve as
discontinuity points. The main problem with estimating an unknown curve by
this strategy is the choice of the number and placement of (i) the discontinuity
points between splines, and (ii) the knots within each individual spline. This can
be posed as a model selection problem, and three objective criteria for choos-
ing a “best” fitting curve model are discussed and compared. The criteria are
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constructed using different model selection principles: Akaike’s information crite-
rion (AIC; e.g., see Burnham and Anderson (1998)), generalized cross-validation
(GCV; e.g., see Wahba (1990)) and the minimum description length principle
(MDL; e.g., see Rissanen (1989)). Finally, the procedure is made robust by using
a Gaussian mixture approach to model outliers.

Finding the best fitting curve defined by any of the three model selection
criteria often involves solving a hard, large scale minimization problem. We use
genetic algorithms for solving such problems. Simulation results suggest that the
use of genetic algorithms is very promising in the present context.

1.1. Previous work

Many regression spline based smoothing procedures have been proposed in
the literature. These include Friedman and Silverman (1989), Friedman (1991),
Smith and Kohn (1996), Koo (1997), Denison, Mallick and Smith (1998) and
Lee (2000). In particular the procedures of Koo (1997) and Denison, Mallick and
Smith (1998) are also capable of preserving discontinuity points in the regression
functions. The common strategy of these authors has been to handle discontinu-
ity points by introducing additional interior knots so that additional “intercepts”
can be added between adjacent segments of a spline. However, none of these pro-
cedures has considered the issue of simultaneously handling discontinuities and
outliers.

Another strategy for preserving discontinuity points is to first apply three
different smoothers, left, right, and central, to smooth the data, then compare the
three resulting smoothed curves; see McDonald and Owen (1986) and Hall and
Titterington (1992). When estimating the function value at location x, a central
smoother uses information from both sides of x, while a left or right smoother
only uses information from the left or right of x, respectively.

We also remark that a problem that is related to the present context is
change-point analysis; an excellent reference list is provided by Wang (1995).
However, as noted in Koo (1997) since change-point analysis and the smoothing
of discontinuous functions have different aims, we do not discuss the problem of
change-point detection further.

Lastly we highlight the contributions beyond those in Lee (2000). The cur-
rent work (i) investigates, in addition to MDL, the use of AIC and GCV for
selecting a “best” fitting curve; (ii) handles discontinuity points; (iii) considers
robust smoothing; and (iv) uses a different (and better) optimization method,
genetic algorithms, for obtaining “best” fitting curves.

The rest of this article is organized as follows. Section 2 presents the curve
model and poses the problem of smoothing discontinuous curves as a model
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selection problem. Section 3 discusses three different solutions to this model se-
lection problem, and in Section 4 a genetic algorithm is developed to numerically
compute these solutions. Section 5 shows how to make the proposed smooth-
ing procedures robust to outliers using a Gaussian mixture approach. Section 6
reports simulation results. Section 7 offers concluding remarks and technical de-
tails are deferred to the appendices. Finally, additional simulation results and
further details regarding the implementation of the genetic algorithm are given
in the separate document Lee (2002), obtainable over the internet.

2. Curve Model: Disconnected Regression Splines

Suppose n pairs of noisy measurements (xi, yi) are observed, with

yi = f(xi) + ei, x1 < · · · < xn, ei ∼ independent N(0, σ2), i = 1, . . . , n.

The aim is to estimate f . It is anticipated that f may possess a few discontinuity
points but is otherwise smooth. In Section 5 the assumption of Gaussian ei’s will
be relaxed so as to allow outliers.

Suppose it is known that there are B − 1 discontinuity points in f and
that these discontinuity points are located at b1, . . . , bB−1. For convenience let
b0 = x1 and bB = xn, and assume b0 < · · · < bB. Then one way to estimate
f is to fit a separate cubic regression spline to each of the B disjoint segments
[bj−1, bj), j = 1, . . . , B. If IE is the indicator function for the event E, then such
a disconnected regression spline model for f can be expressed as

f(x) = f1(x)I{b0≤x<b1} + f2(x)I{b1≤x<b2} + · · · + fB(x)I{bB−1≤x≤bB}, (1)

where each of the fj’s is a cubic regression spline having mj knots located at
kj1, . . . , kjmj . Furthermore,

fj(x)=αj0+αj1x+αj2x
2+αj3x

3+
mj∑
r=1

βjr(x−kjr)3+, bj−1≤x<bj, j =1, . . . , B, (2)

where αj = {αj0, . . . , αj3} and βj = {βj1, . . . , βjmj} are model parameters, j =
1, . . . , B, with (a)+ = max(0, a). To simplify notation, let b = {b1, . . . , bB−1},
m = {m1, . . . ,mB} and kj = {kj1, . . . , kjmj} for j = 1, . . . , B. For com-
putational convenience it is assumed that {bj , kjr; for all j, r} is a subset of
{x1, . . . , xn} and that b0 < k11 < · · · < k1m1 < b1 < · · · < bj−1 < kj1 < · · · <

kjmj < bj < · · · < bB. Of course, in most situations the number and locations of
the discontinuity points and knots are not known and need to be estimated.

If f is modelled by (1) and (2), then an estimate f̂ of f can be obtained
by first estimating θ =

{
B, b,m, {kj ,αj ,βj}B

j=1

}
and then plugging the result-

ing estimate θ̂ =
{
B̂, b̂, m̂, {k̂j , α̂j , β̂j}B̂

j=1

}
into (1) and (2). Hence using the
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disconnected regression spline approach, our original curve estimation problem
can be posed as a model selection problem with each candidate model specified
by a θ̂. The goal, then, is to select a “best” θ̂. Notice that different θ̂’s may
have different dimensions, but once B̂, b̂, m̂ and {k̂j}B̂

j=1 are specified, natural

maximum likelihood estimates of {α̂j , β̂j}B̂
j=1 can be computed by least-squares

regression.

3. Three Model Selection Methods

This section presents three different methods for selecting a “best” fitting
model θ̂: the MDL principle, GCV and AIC.

3.1. Minimum description length principle

The MDL principle defines the best fitting model as the one that produces
the shortest code length of the data; see Rissanen (1989) and references given
therein. In this context the code length of an object is treated as the amount
of memory space that is required to store the object. Of course comparing code
lengths is neither the only nor the best approach for defining a best fitting model,
but it is a sensible one. This is because a common feature of a good encoding (or
compression) scheme and a good statistical model is the ability to capture the
regularities, or patterns, present in the data. An MDL principle tutorial targeted
at a statistical audience can be found in Lee (2001).

When applying the MDL principle, it is common to split the code length for
a set of data into two parts: (i) a fitted model plus (ii) the data “conditioned
on” the fitted model; i.e., the residuals. For the present case, the data are
y = (y1, . . . , yn)T and a fitted model can be simply specified by θ̂. We write the
residual vector as ê = (ê1, . . . , ên)T , where êi = yi − f̂(xi) for i = 1, . . . , n. In
words, one splits y into θ̂ plus ê.

If L(z) denotes the code length of object z, we have L(y) = L(θ̂) + L(ê|θ̂).
Note that in this expression it is stressed that ê is conditional on θ̂. Now the
task is to find an expression for L(y) so that the best MDL θ̂ can be defined
and obtained as its minimizer. It is shown in Appendix A that L(y) can be well
approximated by

MDL(f̂)=L(y)

=log B̂+
B̂∑

j=1

log m̂j+
B̂∑

j=1

(
3+

m̂j

2

)
log l̂j+

n

2
log

[
1
n

n∑
i=1

{
yi−f̂(xi)

}2
]

, (3)

where l̂j is the number of xi’s in the jth fitted disconnected spline f̂j(x). We
propose to select the minimizer of MDL(f̂) as our MDL-based curve estimate.
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3.2. Modified GCV of Friedman and Silverman

One interpretation of GCV is that it attempts to construct an asymptotically
unbiased estimator for the risk E[

∫ {f(x) − f̂(x)}2dx] and then selects the best
fitting model as the one that minimizes this risk estimator (e.g., see Wahba (1990,
Chap. 4)). In Friedman and Silverman (1989), the following GCV criterion is
applied to choose a best curve estimate for an adaptive knot-locating piecewise
linear fitting procedure:

GCV(f̂) =
1
n

n∑
i=1

{
yi − f̂(xi)

}2 / {
1 − d(K)

n

}2

. (4)

Here d(K) is an increasing function of the number of the knots K. In order to
penalize the additional flexibility inherited by the free choice of knot locations, the
authors suggested using d(K) = 3K + 1 instead of the conventional GCV choice
d(K) = K + 1. That is, they proposed taking the penalty for each additional
free parameter as 3 degrees of freedom instead of 1.

We apply this “3 degrees of freedom” rule to construct a GCV-based selection
criterion for our fitting procedure. In addition to the knots (there are

∑
m̂j of

them), we also count all those α’s in the second to last piecewise disconnected
splines as free parameters (there are 4(B̂ − 1) of them). Thus we choose the f̂

(or θ̂) to minimize the GCV(f̂) with d(K) given by 3{4(B̂ − 1) +
∑

m̂j} + 1.

3.3. Modified AIC of Koo (1997)

With AIC the best fitting model is chosen as the one that minimizes an
estimator of the Kullback-Leibler (KL) distance measure between a fitted model
and the “true” model (e.g., see Burnham and Anderson (1998)). If p is the
number of parameters that need to be estimated in a fitted model, then under
some mild regularity conditions one can show that such a KL distance estimator
is −2×“maximized log likelihood” +2p. For our Gaussian-noise curve estimation
problem this distance estimator amounts to

AIC(f̂) =

[
n log

n∑
i=1

{
yi − f̂(xi)

}2
+ γp

]
γ=2

. (5)

Koo (1997) studied the use of AIC(f̂) as a selection criterion for the fitting
of linear regression splines. He indicated that AIC(f̂) with γ = 2 is not a good
selection criterion; based on empirical experience, he suggested using γ = log n.

We follow Koo’s advice to reach our AIC-based model selection criterion:
select the f̂ that minimizes AIC(f̂) with γ = log n. Note that for our regression
model, p = 4B̂ +

∑
m̂j.
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3.4. Which criterion to use?

Of the three criteria discussed above, MDL(f̂) is an attractive choice for the
following reasons. First, the “3 degrees of freedom” rule of GCV(f̂) and the
choice of γ = log n in AIC(f̂) seem somewhat arbitrary. Second, MDL(f̂) can
be extended in a straightforward and consistent manner to handle the presence
of outliers, see Section 5. Furthermore, simulation results to be reported in
Section 6 suggest that the three criteria perform roughly the same.

4. Optimization by Genetic Algorithms

When the number of data points is large, finding the best estimate according
to any of the above criteria involves solving a hard, large scale minimization
problem. We recommend genetic algorithms for this, for a general introduction,
see Davis (1991) for example.

4.1. General description

Genetic algorithms for solving optimization problems can be briefly described
as follows. An initial set, or population, of possible solutions to an optimization
problem is obtained and represented in vector form. These vectors are often called
chromosomes and are free to “evolve” in the following way. Parent chromosomes
are randomly chosen from the initial population and chromosomes having lower
(higher) values of the objective criterion to be minimized (maximized) would have
a higher chance of being chosen; offspring are produced by applying a crossover
or a mutation operation to the chosen parents; once a sufficient number of such
second generation offspring are produced, third generation offspring are further
produced from these second generation offspring; this process continues for a
number of generations. If one believes in Darwin’s Natural Selection, the expec-
tation is that objective criterion values of the offspring will gradually improve
over generations and approach the optimal value.

In a crossover operation, one child chromosome is produced from “mixing”
two parent chromosomes. The aim is to allow the possibility that the child
receives different best parts from its parents. A typical “mixing” strategy is that
every child gene location has an equal chance of receiving either the corresponding
father gene or the corresponding mother gene. This crossover operation is the
distinct feature that makes genetic algorithms different from other optimization
methods. For possible variants of the crossover operation, consult Davis (1991).

In a mutation operation one child chromosome is produced from one parent
chromosome. The child is essentially the same as its parent except for a small
number of genes where randomness is introduced to alter the types of these genes.
Such a mutation operation prevents the algorithm being trapped in local optima.
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4.2. Chromosome representation

The performance of a genetic algorithm certainly depends on how a possible
solution is represented as a chromosome. In traditional applications, solutions
are often represented as binary vectors; that is, chromosomes with two types of
genes. However we use a “three-gene-types” representation.

First recall that for our curve fitting problem, a possible solution θ̂ can
be uniquely specified by B̂, b̂, m̂ and {k̂j}B̂

j=1. Once these are specified, the

corresponding maximum likelihood estimates for {α̂j, β̂j}B̂
j=1 can be uniquely

calculated. Thus for our problem a chromosome only needs to carry information
about B̂, b̂, m̂ and {k̂j}B̂

j=1. A simple example will be used to illustrate this
representation scheme. Suppose n = 20, B̂ = 2, b̂ = {12}, m̂ = {2, 1}, k̂ =
{k̂1, k̂2}, k̂1 = {6, 10} and k̂2 = {17}. That is, the curve estimate is composed
of two disconnected splines separated at x12, and there are two and one knots
in the first and the second spline, respectively. These knots are located at x6,
x10 and x17. If we use “�” to denote a discontinuity gene, “�” to denote a knot
gene and “·” to denote a normal gene, then the chromosome for this example is
composed of n = 20 genes arranged as: · · · · · � · · · � · � · · · · � · ·· .

Empirical evidence suggests that this representation scheme is extremely ef-
fective for the purpose of using genetic algorithms to minimize any of the three
selection criteria discussed previously. It is most likely due to the fact that the
location information of the discontinuity points and the knots of a θ̂ are explic-
itly represented. Further details regarding the implementation of our genetic
algorithm are given in Section B of the supporting document Lee (2002).

4.3. Previous use of genetic algorithms for curve fitting

After the completion of this work in 1999, the author was made aware of the
recent work of Pittman (1999) and Pittman and Murthy (2000), in which genetic
algorithms are also applied to the problem of regression spline fitting. However,
the works are quite different. A major difference is that, in the current work,
the basic units for constructing a chromosome are the design points x’s, while
the previous authors used the knots kjr’s as the basic units. Consequently the
definitions for the crossover and mutation operations are necessary different. An
advantage of using the design points as the basic units is that it can be extended
naturally to handle outliers; see Section 5.

In Liang and Wong (2000) a new Markov chain Monte Carlo algorithm,
termed Evolutionary Monte Carlo (EMC), is proposed. This algorithm incorpo-
rates many attractive features of both genetic algorithms and simulated anneal-
ing. In that paper the authors also demonstrate how the EMC algorithm can be
applied to change point detection problems. A planned research is to apply this
EMC algorithm to the present setting and see if it improves the current genetic
algorithm.
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5. Robust Fitting

This section extends the proposed MDL-based smoothing procedure by using
Gaussian mixtures to model outliers. It assumes that the noise ei’s are indepen-
dent with density function

(1 − w)p(e; 0, σ2) + wp(e; 0, c2σ2), 0 ≤ w < 0.5, c > 1, (6)

where p(·;µ, σ2) is the Gaussian density with mean µ and variance σ2. The
percentage of outliers w is assumed to be small and will be estimated, while
the variance inflation factor c is fixed a priori; see below for more comments on
this. Model (6) is often known as the inflated-variance model for outliers; see
Titterington, Smith and Makov (1985, Chap.4) and references given therein.

Suppose that B̂, b̂, m̂ and {k̂j}B̂
j=1 are specified and that an initial guess of

which yi’s are contaminated by outliers is made. Such initial guesses are made
randomly by the genetic algorithms to form the first generation of chromosomes.
Now, for a particular guess, if there are n̂

OUT
of these “suspected outliers”, then

w can be estimated by ŵ = n̂OUT/n, and estimates of αir’s and βir’s (hence f̂ and
ê) can be obtained by performing weighted regressions, with small weights (e.g.,
c−1) attached to those “outlying yi’s”. Recall that for the MDL principle the goal
is to find an expression for L(y) and use its minimizer as the final estimate. It is
outlined in Appendix B that, when using (6) to model outliers, the corresponding
L(y) can be approximated by

RMDL(f̂) = log B̂ +
B̂∑

j=1

log m̂j +
B̂∑

j=1

(
3 +

m̂j

2

)
log l̂j

+log
[{ 1 − ŵ√

2πσ̂2
exp

−1
2σ̂2

+
ŵ√

2πc2σ̂2
exp

−1
2c2σ̂2

} n∑
i=1

{
yi−f̂(xi)

}2]
. (7)

Here σ̂2 =
∑{yi − f̂(xi)}2/(n − n̂

OUT
), where the sum does not include outlying

yi’s. Our robust version of the MDL-based smoothing procedure is to define the
best estimate as the minimizer of RMDL(f̂). Note that when ŵ = 0, RMDL(f̂)
reduces to MDL(f̂) up to an additive constant.

For the minimization of RMDL(f̂), in addition to θ̂, the number and loca-
tions of the suspected outliers are also arguments. Such a minimization problem
appears difficult, but the genetic algorithm approach discussed in the previous
section can be extended to incorporate the outliers: simply introduce an addi-
tional type of genes, outlier genes, into the algorithm.

We have the following remarks about the variance inflation factor c. In
theory one does not have to fix it a priori, as one can estimate σ2

OUT
= c2σ2 by a

normalized outlier residual sum of squares. However, as the number of outliers is
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usually small, a stable estimate of σ2
OUT

is hard to obtain. Such instability would
almost certainly be carried over to RMDL(f̂), and hence it was decided to choose
c a priori. As the main focus of this section is to perform robust fitting and not
outlier detection, the penalty for misclassifying a yi as an outlier is not usually
severe. Since a small value of c would allow more yi’s to be classified as outliers,
as long as the choice of c is not too small, one would not expect the quality of f̂

to be severely affected. In our work we have chosen c = 7.

6. Simulation Results

This section reports results of four numerical experiments. These experi-
ments were designed for assessing and comparing the practical performances of
various aspects of the proposed approach with some popular approaches found
in the literature.

6.1. Smooth curves

In the first experiment all three test functions are smooth. They have been
used by other authors and are listed as Test Functions 1 to 3 in Table 1. Al-
together eight smoothing procedures were tested. For easy referencing, we shall
label these procedures in the sans serif font. Upper case letters are reserved
for author initials, otherwise lower case letters are used. The eight procedures
are:
1. mdl: the proposed approach with MDL(f̂) as the target,
2. aic: the proposed approach with AIC(f̂) as the target,
3. gcv: the proposed approach with GCV(f̂) as the target,
4. rmdl: the proposed robust procedure with RMDL(f̂) as the target,
5. DMS: the Bayesian curve fitting procedure of Denison, Mallick and Smith

(1998) with λ = 1 — codes downloaded from http://www.ma.ic.ac.uk/∼dgtd,
6. SK: the Bayesian regression spline smoothing procedure of Smith and Kohn

(1996) with modal estimate — codes downloaded from
http://www.agsm.unsw.edu.au/∼mikes,

7. RSW: local linear regression with the direct bandwidth plug-in choice of Rup-
pert, Sheather and Wand (1995) — codes downloaded from
http://biosun1.harvard.edu/∼mwand (see also Wand (1998)),

8. HST: nearest neighbour local polynomial estimator LOESS (Cleveland and
Devlin (1988)) with the AICc choice of smoothing parameter proposed by
Hurvich, Simonoff and Tsai (1998) — codes downloaded from
http://www.stern.nyu.edu/∼jsimonof.
Unless stated otherwise, for procedures DMS, SK, RSW and HST, default

values supplied by the downloaded codes were used for all the parameters and/or
priors that are required to be pre-selected.
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Table 1. Test functions.

Test Function Formula
1 (4x − 2) + 2 exp{−16(4x− 2)2}, 0 ≤ x ≤ 1
2 sin3(2πx3), 0 ≤ x ≤ 1
3 sin(5πx), 0 ≤ x ≤ 1
4 2x − I{0.5≤x}, 0 ≤ x ≤ 1
5 4x2(3 − 4x)I{x≤0.5} + { 4

3x(4x2 − 10x + 7) − 3
2}I{0.5<x≤0.75}+

16
3 x(x − 1)2I{0.75<x}, 0 ≤ x ≤ 1

6 2−2|x−0.26|1/5I{x≤0.26}−2|x−0.26|3/5I{x>0.26}+I{x≥0.78}, 0≤x≤1

Signal-to-noise ratios (snrs) are defined as snr = {var(f)/σ2} 1
2 , as in Donoho

and Johnstone (1995). Three snr levels were used: 2, 4 and 6. For each com-
bination of test function and snr, 50 sets of noisy observations were simulated
with U [0, 1] as the design density for xi. Only one n was used: n = 200 (n
and snr are interchangeable when both of them are not too small). Only results
corresponding to the case when snr=4 are reported here, results from the other
two snrs are similar.

For each simulated data set, the eight smoothing procedures listed above were
applied to estimate the test function. The numerical measure used to evaluate
the quality of an estimated curve was MSE(f̂) =

∑{f(xi) − f̂(xi)}2. For each
test function, boxplots of the log of the MSE(f̂) values of all f̂ are plotted in
Figure 1.

Test Function 1 Test Function 2 Test Function 3

lo
g
(M

S
E
)

lo
g
(M

S
E
)

lo
g
(M

S
E
)
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Figure 1. Boxplots of log{MSE(f̂)} values of various smoothing procedures
for Test Functions 1 to 3.

To visually evaluate and compare the performances of the eight smoothing
procedures, the following was done. For Test Function 2, the 50 f̂ ’s obtained
by mdl were ranked according to their values of MSE(f̂). The 25th best f̂ ,
together with the corresponding simulated noisy data, are plotted in Figure 2.
Curve estimates obtained by applying the remaining seven smoothing procedures
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to this same simulated noisy data set are also plotted in Figure 2. The same
procedure was then repeated for the remaining two test functions, and the results
are displayed in a similar manner in Figures 1 and 2 of Lee (2002).
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Figure 2. Test Function 2. Solid lines: estimates; broken lines: true curves.

Some empirical conclusions can be drawn. When the curves are smooth, SK
seems to be the best procedure. Also, mdl, gcv, aic and rmdl performed roughly
the same, and are at least as good as DMS, RSW and HST.

The following numerical values are provided for the purposes of speed com-
parison. These values are based on a Sun Ultra-60 machine. The computational
times required for the non-robust procedures mdl, aic and gcv were very similar
and dependent on the structure of the target curve: they ranged from 6 to 30
seconds. The robust procedure rmdl, for most cases, was about 3 to 5 seconds
slower than its non-robust counterpart. DMS typically took 2 to 3 seconds, while
SK, RSW and HST took less than 1 second. Obviously the four proposed pro-
cedures are more computationally expensive, but acceptably so in view of their
good performance.

6.2. Discontinuous curves

The above experiment was repeated with three discontinuous test functions.
These test functions have been used by other authors, and are listed in Table 1
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as Test Functions 4 to 6. Observe that SK, RSW and HST are not expected to
perform well, as these procedures were not designed for recovering non-smooth
curves.

Boxplots analogous to those in Figure 1, are given in Figure 3, while plots
of various function estimates for Test Function 5 are given in Figure 4 Similar
function estimate plots for Test Functions 4 and 6 are provided respectively in
Figure 3 and 4 of Lee (2002). From these plots one concludes that, for the cases
of discontinuous curves, mdl, gcv, aic and rmdl give similar, and overall best,
results.

Test Function 4 Test Function 5 Test Function 6
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Figure 3. Boxplots of log{MSE(f̂)} values of various smoothing procedures
for Test Functions 4 to 6.
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Figure 4. Test Function 5. Solid lines: estimates; broken lines: true curves.
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6.3. Highly spatial inhomogeneous curves

The experiment described in Section 6.1 was repeated again but with the
following changes: the test functions were the four highly spatial inhomogeneous
curves advocated by Donoho and Johnstone (1995); the SureShrink procedure
(sure) of Donoho and Johnstone (1995) and the BayesShrink procedure (Bayes)
of Abramovich, Sapatinas and Silverman (1998) were added; the parameter λ in
DMS was changed from 1 to 5; the snrs used were 5, 7 and 9, but only those
results associated with snr=7 are reported; the design points xi’s were regularly-
spaced and n = 512. Here all wavelet computations are performed using the
wavethresh package of S-Plus codes for sure and Bayes were adopted from Luo
and Wahba (1997) and provided by Dr. Fanis Sapatinas respectively. As in the
previous subsection, it is expected that SK, RSW and HST would not perform
well.

Plots analogous to those in Section 6.1 are provided; see Figures 5 and 6,
and Figure 5 to 7 of Lee (2002). These plots suggest that mdl has the smallest
MSE, and that the performance of rmdl depends heavily on the structures of
the underlying curves. The latter is not surprising, as the highly oscillating
structures in Doppler and Bumps could be easily mistaken as outliers by rmdl. A
more elaborate discussion on this issue is in Section 7.
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noisy data mdl estimate gcv estimate aic estimate

rmdl estimate DMS estimate
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sure estimate Bayes estimate
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Figure 6. Test Functions Blocks. Solid lines: estimates; broken lines: true curves.

6.4. Data with outliers

The main focus of this last experiment was to assess the performance of
rmdl when outliers are present. One hundred data sets were generated from Test
Function 1, with snr=4, n = 200 and U [0, 1] as the design density. Then for
each simulated data set nOUT outliers were introduced, where nOUT is discrete
uniform on [0, . . . , 5]. The size of each outlier was generated from (5+U [0, 15])σ,
with equal probability of being positive or negative. Finally four smoothing
procedures, mdl, rmdl, SK and the robust version rSK of SK, were applied to
smooth the data sets. The whole process was repeated with Test Functions 2
to 6.

Boxplots for log(MSE) are given in Figure 7, and noisy data and various
curve estimates corresponding to the “50th smallest MSE rmdl estimates” are
given in Figure 8, and Figures 8 and 9 of Lee (2002). From these plots one can
conclude that, when the data are contaminated by outliers, rmdl outperforms
mdl. Also, when the target curves are smooth rSK is superior to rmdl, and the
converse is true if the target curves are non-smooth.
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Test Function 1 Test Function 2 Test Function 3

lo
g
(M

S
E
)

lo
g
(M

S
E
)

lo
g
(M

S
E
)

mdlmdlmdl rmdlrmdlrmdl SKSKSK rSKrSKrSK

-3

-2

-2

-1

-1

-1

0

0

0

1

1

1

2

2

2

3

3

3
4

5

Test Function 4 Test Function 5 Test Function 6

lo
g
(M

S
E
)

lo
g
(M

S
E
)

lo
g
(M

S
E
)

mdlmdlmdl rmdlrmdlrmdl SKSKSK rSKrSKrSK

-4-4

-3-3

-2

-2-2

-1

-1-1 0

00 1

11

2

22

Figure 7. Boxplots of log{MSE(f̂)} values of various smoothing procedures
when data were contaminated by outliers.

7. Concluding Remarks

7.1. Summary

In this article three automatic smoothing procedures, mdl, gcv and aic, for re-
covering discontinuous curves are proposed. Simulation results show that, when
the target function is non-smooth, these proposed procedures are superior to
many existing smoothing methods, including Bayesian approaches, local poly-
nomial smoothing and wavelet techniques. The procedure mdl is further made
robust by using a Gaussian mixture approach to model outliers, and the re-
sulting robust procedure, rmdl, performs very well, with or without outliers, for
regression functions that do not contain many rapid-changing structures.

7.2. Use mdl or rmdl?

Given a noisy data set, should one use mdl, or rmdl? A definite answer is
hard to give, as the presence of both outliers and rapid-changing structures in
the regression function can produce nearly indistinguishable noisy observations
(especially when the number of data points is small). However, given the simu-
lation results, some guidelines can be offered. We first summarize the simulation
results: when there are no outliers, mdl and rmdl gave very similar results for
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functions that do not contain many rapid-changing structures; when there are
no outliers, mdl gave better results then rmdl for functions that contain many
rapid-changing structures; when there are outliers, rmdl gave better results then
mdl for functions that do not contain many rapid-changing structures.
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Figure 8. Various estimates of Test Functions 2 (top two rows) and 5 (bottom
two rows) when data were contaminated by outliers. Solid lines: estimates;
broken lines: true curves.

Therefore, if it is reasonable to assume that there are no outliers (regardless
of the existence of any rapid-changing structures), use mdl. If it is reasonable
to belief that the regression function does not contain rapid-changing structures
(regardless of the presence of any outliers), use rmdl. Otherwise, one may want
to apply both procedures to the same data set and visually compare the two
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estimated curves. It is very likely that two different estimated curves can re-
veal different hidden structures of the unknown regression function. This idea
of inspecting more than one estimated curve is in the same spirit as the SiZer
approach of Chaudhuri and Marron (1999) for performing (non-robust) nonpara-
metric regression. In SiZer one first obtains many estimated curves by applying
different amount of smoothing to the same data set, and then performs tests of
significance for the existence of structures in the regression function.
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Appendix A. Derivation of MDL(f̂)

This appendix outlines the derivation of MDL(f̂) = L(ŷ). It follows, but
also extends, a similar derivation in Lee (2000). Our first step is to decompose
L(θ̂) and obtain

L(ŷ) = L(θ̂) + L(ê|θ̂)

= L
(
B̂, b̂, m̂, {k̂j , α̂j , β̂j}B̂

j=1

)
+ L(ê|θ̂)

= L(B̂) + L(b̂|B̂) + L(m̂|B̂, b̂) + L
(
{k̂j}B̂

j=1|B̂, b̂, m̂
)

+L
(
{α̂j , β̂j}B̂

j=1|B̂, b̂, m̂, {k̂j}B̂
j=1

)
+ L(ê|θ̂). (8)

Derivation of L(B̂) and L(b̂|B̂). Since the code length for encoding an in-
teger N is approximately log2 N , L(B̂) = log2 B̂. Now as b̂ = {b̂1, . . . , b̂B̂−1}
is restricted to be a subset of {x1, . . . , xn}, b̂ can be specified by the indices of
those xi’s where a discontinuity point is located. Such a set of indices can be
compactly specified by their successive differences. To simplify notation, let l̂j
be the number of xi’s that satisfy b̂j−1 ≤ xi < b̂j, j = 1, . . . , B̂. That is, l̂j is the
jth successive “index difference”. By noting that these l̂j’s are integers, we have

L(B̂) + L(b̂|B̂) = L(B̂) + L(l̂1, . . . , l̂B̂ |B̂) = log2 B̂ +
B̂∑

j=1

log2 l̂j . (9)

Derivation of L(m̂|B̂, b̂) and L
(
{k̂j}B̂

j=1|B̂, b̂, m̂
)
. Recall that the jth element

m̂j of m̂ = {m̂1, . . . , m̂B̂} is the estimated number of knots of the jth fitted
regression spline, and that these m̂j knots are located at k̂j = {k̂j1, . . . , k̂jm̂j

}.
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Thus the encoding for each pair of (m̂j , k̂j) can be done in a similar fashion to
the encoding of (B̂, b̂) described above. Analogous to l̂j , define d̂jr as the “index
difference” between k̂j,r−1 and k̂jr. Using similar arguments as before, it can be
shown that the code length for m̂j and k̂j is log2 m̂j + log2 d̂j1 + · · · + log2 d̂jm̂j

.
Hence

L(m̂|B̂, b̂) + L
(
{k̂j}B̂

j=1|B̂, b̂, m̂
)

=
B̂∑

j=1

log2 m̂j +
B̂∑

j=1

m̂j∑
r=1

log2 d̂jr. (10)

Derivation of L
(
{α̂j, β̂j}B̂

j=1|B̂, b̂, m̂, {k̂j}B̂
j=1

)
. Once B̂, b̂, m̂ and {k̂j}B̂

j=1

are specified, (conditional) maximum likelihood estimates of {α̂j, β̂j}B̂
j=1 can

be uniquely computed by least-squares regression. Rissanen (1989, Chap. 3)
demonstrated that if a (conditional) maximum likelihood estimate is estimated
from N data points, then it can be effectively encoded with 1

2 log2 N bits. It is
obvious to see that, for a given j, the corresponding α̂jr’s and β̂jr’s are estimated
from l̂j data points. There are four α̂jr’s and m̂j β̂jr’s, so the code length for
{α̂j , β̂j} is 1

2(4 + m̂j) log2 l̂j , and hence

L
(
{α̂j , β̂j}B̂

j=1|B̂, b̂, m̂, {k̂j}B̂
j=1

)
=

B̂∑
j=1

4 + m̂j

2
log2 l̂j . (11)

Derivation of L(ê|θ̂). Based on Shannon’s classical results in information the-
ory (e.g., Shannon and Weaver (1949)), Rissanen (1989, Chap. 3) showed that
the code length of ê is given by the negative of the log of the likelihood of ê

conditioned on θ̂. For the present problem, it simplifies to

L(ê|θ̂) =
n

2
log

[
1
n

n∑
i=1

{
yi − f̂(xi)

}2
]

+ C, (12)

where C is a constant term. Now by changing log2 to log, combining (8) to (12)
and ignoring the negligible terms log2 d̂jr’s and C, one obtains MDL(f̂).

B. Derivation of RMDL(f̂)

The derivation of RMDL(f̂) is very similar to the derivation of MDL(f̂).
To simplify notation we continue to denote a candidate model for MDL(f̂) as
θ̂, but use θ̂

OUT
for a RMDL(f̂) candidate model. The goal is to derive an

approximation for L(y) = L(θ̂
OUT

) + L(ê|θ̂
OUT

). Since θ̂
OUT

and θ̂ only differ
by ŵ = n̂

OUT
/n, L(θ̂

OUT
) is just L(θ̂) plus the extra code length for n̂

OUT
. This

extra code length is given by log2 n̂OUT , but it can be ignored as n̂OUT is small.
Our numerical investigations also confirm this. So L(θ̂OUT) is given by the first



AUTOMATIC SMOOTHING FOR DISCONTINUOUS FUNCTIONS 841

three terms of (7). Now, similar to L(ê|θ̂), L(ê|θ̂
OUT

) is given by the negative
of the log of the likelihood of ê conditioned on θ̂

OUT
, which simplifies to the last

term of (7).
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