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Abstract: We develop a single-index volatility model in this paper. A new method is

proposed to estimate the single-index coefficient and the link function. Unlike most

existing estimation methods for semiparametric models, root-n consistency of the

single-index coefficient can be achieved by our method without under-smoothing the

unknown function. A Lagrange-multiplier type test is employed to determine the

order of the model. Some simulations and applications to real data are included.

Key words and phrases: ARCH, conditional variance, local linear smoother, order

determination.

1. Introduction

Conditional variance models within the context of diffusion models have a
long history in stochastic processes, albeit commonly described in continuous
time series (e.g., Doob (1953)). Recently, much attention has been paid to the
study of diffusion in financial time series. Diffusion may exhibit itself in many
different ways. One commonly adopted approach is to focus on the conditional
variance. Its estimation may be considered either within the parametric frame-
work as, e.g., the ARCH model of Engle (1982) or the nonparametric framework
as, e.g., in Masry and Tjøstheim (1995). Consider the nonparametric model

ξi = µ(xi) + σ(xi)εi, (1.1)

where {(ξi,xi)} is a two dimensional strictly stationary process having the same
marginal distribution as (ξ,x) and {εi} are i.i.d. random variables having the
same distribution as ε with Eε = 0; µ(x) and σ(x) (> 0) are unknown regression
and volatility functions. If we take xi = ξi−1, then (1.1) is a nonparametric gen-
eralization of the ARCH model. There is much literature concerning estimation
of µ(x) and σ(x). See, for example, Müller and Stadtmüller (1987), Ruppert,
Wand, Holst and Hossjer (1997), Masry and Tjøstheim (1995) and Fan and Yao
(1998).

If we extend (1.1) to the multivariate case, we encounter the problem of the
“curse of dimensionality”. Not surprisingly, existing estimation methods perform
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badly except in very low dimension. One approach is to restrict the functional
form of the volatility function. In order to select a suitable form, we first take a
look at the ARCH model of Eugle (1982):

ξi = βT Zi + (c0 + θTXi)1/2εi, (1.2)

where Zi = (ξi−1, . . . , ξi−q)T and Xi = (η2
i−1, . . . , η2

i−p)
T with ηi = ξi − βT Zi.

To extend this model to a more flexible form, we follow the single-indexing idea
(e.g., Ichimura (1993)) and propose a single-index volatility model:

ξi = µ(βT Zi) + σ(θTXi)εi, (1.3)

where {(Xi, Zi, ξi)} is a strictly stationary sequence. If µ(·) is piecewise linear
and σ(θTXi) = (c0 + c1θ

TXi)1/2 with Xi = (ξ2
i−1, . . . , ξ

2
i−q)

T , then (1.3) is the
SETAR-ARCH model (Tong (1990), p.116). Another obvious extension is the
additive model (e.g., Linton and Härdle (1997)), which we do not investigate in
this paper.

In this paper, we pay attention only to the estimation of σ and θ. By simple
transformation to the model, several existing methods can be employed here. The
disadvantages of these estimation methods are in four aspects. (1) Calculation
burden. For example, Härdle, Hall and Ichimura (1993) and Carroll, Fan, Gij-
bels and Wang (1997) did not give an algorithm for their minimization problems.
The problems are hard to implement. Actually, Härdle, Hall and Ichimura (1993)
used the grid search algorithm in their simulations, which is very slow when the
dimension is high. (2) Under-smoothing. See, for example, Weisberg and Welsh
(1994) and Carroll et al. (1997). In order that the estimator of the single-index
coefficient achieve root-n consistency, they had to undersmooth the unknown
link function σ(·). As far as we know, there is no theoretical guidance as to how
to select an appropriate data-driven bandwidth for such a under-smoothing. (3)
Restriction on the design. As an application of the method proposed by Li (1991)
and Duan and Li (1991) to this model, the design of X must be symmetric. This
restriction is unreasonable since Xi is a positive random vector. (4) Inefficiency.
The method proposed by Stoker (1986) uses a multivariate kernel method, which
is not efficient. See also Härdle and Stoker (1989) and Powell, Stock and Stoker
(1989). In this paper, a new method is proposed to estimate the single-index
coefficient θ. Our method does not require under-smoothing the unknown link
function. Therefore, the optimal convergence rates for the unknown link func-
tion and the single-index coefficient can be achieved simultaneously by using the
optimal bandwidth in the sense of mean integrated squared errors (MISE). The
bandwidth can be estimated by, e.g., cross-validation. The algorithm for our
method is easy to implement. An important problem is the selection of the order
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p. A Lagrange-multiplier type test is employed to determine the order. As an
application of the model and estimation method, a financial data set is analyzed.

2. Estimation and Asymptotic Properties

In this section, we consider the estimation of the single-index volatility model
ξi = σ(θT

0 Xi)εi where Xi = (xi1, . . ., xip)T , θ0 is an unknown parameter vector
with ‖θ0‖ = 1 and σ(·) is an unknown link function. It follows that

|ξi|τ = στσ
τ (θT

0 Xi) + στ (θT
0 Xi)(|εi|τ − στ ), (2.1)

where τ > 0 and στ = E|εt|τ . Note that most existing nonparametric estimations
are based on τ = 2. They are known to be sensitive to aberrant observations,
see, Fan and Yao (1998), Masry and Tjøstheim (1995) and Härdle and Tsybakov
(1997). A detailed discussion on how to choose τ can be found in Carroll and
Ruppert (1988) and Mercurio and Spokoiny (2000). In this paper, we only con-
sider the case τ = 1, noting that other cases can be estimated similarly. For ease
of exposition, we assume that E|εt| = 1 and let yi = |ξi| throughout the rest of
the paper. Suppose {(Xi, yi) : i = 1, . . . , n} is a realization from the model and
with the marginal distribution of (X, y).

Note that θ0 satisfies

θ0 = arg inf
‖θ‖=1

E
{y − E(y|θT X)

σ(θT X)

}2
. (2.2)

We have
E

{
σ−1(θTX)[y − E(y|θT X)]

}2
= E

{
σ−2(θTX)E

[
{y − E(y|θT X)}2|θT X

]}
. On

here, E[{y −E(y|θT X = θTx)}2|θTX = θTx] is the conditional variance and can

be estimated by mina,d
∑n

i=1

{
yi−a−dθT (Xi−x)

}2
wi0, where {wi0, i = 1, . . . , n}

is a set of weights centered about x. Therefore the minimization in (2.2) is
equivalent to minimizing with respect to aj, dj and θ,

n−1
n∑

j=1

σ−2(θT Xj)
n∑

i=1

{yi − aj − djθ
T (Xi − Xj)}2wij , (2.3)

where {wij : i = 1, 2, . . . , n} is a set of weights centered about Xj . Note that σ

is still unknown in (2.3). But aj is an estimate of it. We replace σ(θT Xj) by aj.
Based on (2.2) and (2.3), we estimate θ0 by minimizing

n−1
n∑

j=1

a−2
j

n∑
i=1

{yi − aj − djθ
T (Xi − Xj)}2wij , (2.4)

iteratively with respect to (aj , dj) and θ. Let V (·) be a p-dimensional spherical
density function and Vb,i(x) = b−pV {(Xi − x)/b}, where b is the bandwidth.
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At the first stage, we take wij = Vb,i(Xj)/
∑n

i=1 Vb,i(Xj). Suppose that X is
centralized and D is an open convex set about 0 such that infx∈D f(x) > 0,
where f(x) is the density function of X. To avoid the effect of the marginal
points of the kernel estimators, we consider the observations in D as in Härdle,
Hall and Ichimura (1993). Let

∑
j′ denote the summation over {j : Xj ∈ D}.

Based on (2.4), we can estimate an initial value of θ0 as follows: choose a vector
θ with norm 1; find a closed form for aj and dj , j = 1, . . . , n in terms of θ; with
this aj and dj, calculate the optimizing θ; iterate to convergence. Denote the
final value by θ1.

Lemma 1. Suppose (C1)-(C6) in the Appendix hold, nbp+2/ log n → ∞ and
b → 0. If the starting value of θ satisfies θT θ0 �= 0, then θ1 − θ0 = O(b2 + log n

nbp+2 )
almost surely.

A more detailed discussion can be found in Xia, Tong, Li and Zhu (2000). It
is known that the inefficiency of using a high-dimensional kernel cannot be easily
reduced. Note that the optimal bandwidth for the estimation of σ(·) in the sense
of MISE is b ∼ n−1/(p+4). Therefore, we have θ1−θ0 = O(n−2/(p+4) log n) almost
surely. Next, we improve the efficiency by using a single-index kernel.

Let K(·) be a univariate density function, γ be a vector with norm 1,
Kγ,h,i(x) = h−1K{γT (Xi − x)/h} where h is the bandwidth, and

Sγ,n,0(x) = n−1
n∑

i=1

Kγ,h,i(x), Sγ,n,1(x) = n−1
n∑

i=1

Kγ,h,i(x)(Xi − x),

Sγ,n,2(x) = n−1
n∑

i=1

Kγ,h,i(x)(Xi − x)(Xi − x)T .

Let wγ,ij = Kγ,h,i(γT Xj)/
∑n

�=1 Kγ,h,�(Xj), Wγ,n(x) = Sγ,n,2(x)Sγ,n,0(x)−
Sγ,n,1(x)ST

γ,n,1(x) and

wγ,a,i(x) = {γT Sγ,n,2(x)γ}Kγ,h,i(x) − γT Sγ,n,1(x)Kγ,h,i(x)γT (Xi − x),

wγ,d,i(x) = Sγ,n,0(x)Kγ,h,i(x)γT (Xi − x) − γT Sγ,n,1(x)Kγ,h,i(x).

Based on (2.4), we can improve the estimator θ1 as follows. We start with k = 1,

ãj = {nθT
k Wθk,n(Xj)θk}−1

n∑
i=1

wθk ,a,i(Xj)yi, (2.5)

d̃j = {nθT
k Wθk,n(Xj)θk}−1

n∑
i=1

wθk,d,i(Xj)yi, (2.6)

θk+1 =
{ ∑

j′
(d̃j/ãj)2Sθk,n,2(Xj)

}−1 ∑
j′

d̃j/ã
2
j

n∑
i=1

wθk,ij(Xi−Xj)(yi−ãj). (2.7)
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Replace θk in (2.5) and (2.6) by θk+1 in (2.7), iterate to convergence. Denote the
final value by θ̂.

After obtaining θ̂, we can estimate the unknown function by σ̂(v)=
∑n

i=1 wθ̂,n

(Xi, v)yi/
∑n

i=1 wθ̂,n(Xi, v), where

wθ̂,n(Xi, v) =
n∑

j=1

K{(θ̂T Xj − v)/h}(θ̂T Xj − v)2K(θ̂TXi − v)

−
n∑

j=1

K{(θ̂T Xj−v)/h}(θ̂T Xj−v)2K{(θ̂T Xi−v)}(θ̂T Xi−v).

Let µ(x|θ) = E(X|θT X = θTx), σ2 = Eε2 and W0 = (σ2 − 1)−1
∫
D{x −

µ(x|θ0)}{x − µ(x|θ0)}T (σ′(θT
0 x)/σ(θT

0 x))2f(x)dx.

Theorem 1. Suppose that (C1)-(C6) in the Appendix hold. For a bandwidth
h ∼ n−δ with 1/6 < δ < 1/4,

√
n(θ̂ − θ0)

D→ N(0,W−1
0 ). If the density function

fθ0(v) of θT
0 X is positive at v, then

√
nh{σ̂(v)−σ(v)−σ′′(v)h2/2} D−→ N(0, (σ2−

1)f−1
θ0

(v)σ2(v)
∫

K2(u)du).

Remark 1. Note that the optimal bandwidth for estimation of the unknown
volatility function in the sense of MISE is hopt ∼ n−1/5, which satisfies the
condition of Theorem 1. Therefore, our estimators of the single-index coefficients
and the unknown function can achieve optimal convergence rates simultaneously
by using the same bandwidth. Under-smoothing is unnecessary for our method.

Remark 2. In practice we suggest, after iteration (2.5)-(2.7), the standard-
ization θk+1

∆= θk+1/‖θk+1‖. Then root-n consistency also holds, although the
asymptotic distribution is difficult to derive.

Remark 3. Sometimes there is a nonnegative constraint on the parameter θ.
Based on (2.4), the constraint entails a simple quadratic programming problem,
which can be solved easily. Thus we need only replace θk+1 in (2.7) with the
solution of the corresponding quadratic programming.

Remark 4. Note that n−1 ∑
j′(d̃j/ãj)2Sθ̂,n,2(Xj) → W0(σ2 − 1) in probability

as n → ∞. Thus the limiting distribution can be approximated easily. By the
results of Carroll et al. (1997), W0 is the information matrix for model (2.1).
Our estimation method is asymptotically efficient.

Order selection of the single-index volatility model is an important problem.
Here we extend Lagrange-multiplier type testing to the single-index volatility
specification. The basic idea of the procedure is to test the specification of a
statistical model by overfitting: the null hypothesis that the model is correct is
tested against a suitable alternative hypothesis of which the null hypothesis is a
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special case. See, for example, Hosking (1980) and Li and Mak (1994). Consider

ξi = σ(θT
0 Xi)εi, (2.8)

where Xi = (ξ2
i−1, . . ., ξ2

i−p)
T . We investigate an alternative model

ξi = σ(θT
0 Xi + λT X̃i)εi, (2.9)

where λ=(λ1, . . . , λm)T are constant parameters and X̃i =(ξ2
i−p−1, . . . , ξ

2
i−p−m)T .

The alternative is also a single-index volatility model but, for moderate or large
m, is capable of representing a wide variety of volatility features in time series.
Therefore, our problem may be changed to that of testing λk = 0, k = 1, . . . ,m.
See also, for example, Hosking (1980). Let λ̂ = (λ̂1, . . . , λ̂m)T be the correspond-
ing estimators using the proposed method.

Corollary 1. Under the assumptions of Theorem 1, if λk = 0, k = 1, . . . ,m, then
nλ̂T W̃ λ̂→χ2(m), where W̃ is the submatrix corresponding to the last m rows and
columns of the matrix (σ2−1)−1

∫
D̃{x̃−µ(x̃|θ0)}{x̃−µ(x̃|θ0)}T (σ′(θT

0 x)/σ(θT
0 x))2

f̃(x̃)dx̃ with x̃ = (x1, . . . , xp+m)T , f̃(x̃) is the density function of (Xi, X̃i).

3. Simulations and Applications

In this section, we carry out simulations to check our estimation method
for some finite data sets, then we apply the single-index volatility model and
estimation methods to a real data set.

An important problem for the application of the kernel smooth method is
the selection of the bandwidth. As mentioned, the main difference between our
estimation method and others is that our method allows the bandwidth to take
its optimal value in the sense of MISE. Therefore we may use common bandwidth
selection methods. We give the details for the cross-validation bandwidth. Write

Sh,γ,n,0(Xj) = n−1
n∑

i=1,i�=j

Kγ,h,i(Xj),

Sh,γ,n,1(x) = n−1
n∑

i=1,i�=j

Kγ,h,i(x)(Xi − Xj),

Sh,γ,n,2(Xj) = n−1
n∑

i=1,i�=j

Kγ,h,i(Xj)(Xi − Xj)(Xi − Xj)T ,

Wh,γ,n(Xj) = Sh,γ,n,2(Xj)Sh,γ,n,0(Xj) − Sh,γ,n,1(Xj)ST
h,γ,n,1(Xj),

wh,γ,a,i(x) = {γT Sh,γ,n,2(x)γ}Kγ,h,i(x) − γT Sh,γ,n,1(x)Kγ,h,i(x)γT (Xi − x).

We estimate aj with observation (Xj , yj) deleted as

ǎj = {θT
k Wh,θk,n(Xj)θk}−1

n∑
i=1,i�=j

wh,θk,a,i(Xj)yi.
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Then the bandwidth at the (k+1)’th iteration is given by h=arg minh n−1∑n
j=1{yj

−ǎj}2.

Example 1. We simulate 200 random realizations of size n from

ξi =
√

hiεi, hi = 0.1 + 0.5θT
0 Xi, (3.1)

where Xi = (ξ2
i−1,ξ

2
i−2, ξ2

i−3, ξ2
i−4)

T and θ0 = (0.8, 0, 0.6, 0)T , and from

ξi =
√

hiεi, hi = 0.1 + 1.5θT Xi sin2(
5
3
θT Xi), (3.2)

where Xi = (|ξi−1|, |ξi−2|, |ξi−3|, |ξi−4|) and θ = (0.6,0.3,0, 0)T , i.e., θ0 = (0.8944,
0.4472, 0, 0). In both models, ε ∼ N(0, 1). We set n = 400 and 800. To avoid
denominators of estimators aj and dj close to zero, we choose D = D1 × D2 ×
D3×D4 to be the region bounded by the 95% quantile of ξ2

k (or |ξk|). The means
and standard deviations of estimates of θ0 are listed in Table 1, from which we
find that the parameter estimates are quite reasonable. Results from a typical
data set with n = 500 from model (3.2), where σ(v) = {0.1+1.5v sin2(5v/3)}1/2,
are plotted in Figure 1. The volatility function is estimated well.

Table 1. Means and standard deviations (in parentheses) of estimated θ0 for
model (3.1) and (3.2).

Model (3.1) Model (3.2)
n = 400 n = 800 n = 400 n = 800

0.7517 ( 0.1164 ) 0.7765 ( 0.0771 ) 0.8769 ( 0.0630 ) 0.8805 ( 0.0457 )
0.0684 ( 0.1057 ) 0.0558 ( 0.0836 ) 0.4561 ( 0.1132 ) 0.4617 ( 0.0806 )
0.6114 ( 0.1398 ) 0.6166 ( 0.0994 ) 0.0321 ( 0.0499 ) 0.0255 ( 0.0376 )
0.0606 ( 0.0923 ) 0.0484 ( 0.0633 ) 0.0240 ( 0.0466 ) 0.0154 ( 0.0248 )
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Figure 1. Results for model (3.2): the solid lines in (a) and (b) denote the
true volatility function σ(·) and its estimate, respectively; the dots in (a)
and (b) denote |ξi| plotted against θT

0 Xi and θ̂T Xi, respectively.

We make a further comparison between the initial estimates based on the
multidimensional kernel and the refined estimates based on the single-index ker-
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nel in model (3.2). Boxplots are employed for this purpose, as shown in Figure
2. As we expect, the single-index kernel can improve the estimates substantially.
Finally, we use these two models to check our order selection method. We ex-
tend the models to order 10 and 5, respectively, with the structures unchanged.
Table 2 lists the frequencies of lack of fit at the 0.10 significance level out of 500
replications. The simulation results are reasonable. However, our simulations
show that when the link function fluctuates a lot, the proposed method works
less well.
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Figure 2. The Boxplots of the simulation results for model (3.2). In each
panel, the box-plots are for θ01, θ02, θ03 and θ04, respectively, where θ0 =
(θ01, θ02, θ03, θ04)T . Panels 1 and 3 are the initial estimates using multivari-
ate kernel. Panels 2 and 4 are the final estimates using single-index kernels.

Table 2. Frequencies of lack of fit at 0.10 significance level for models (3.1) and (3.2).

order pmodel n 1 2 3 4 5 6 7 8 9
400 421 421 75 76 76 79 78 60 71(3.1) 800 467 469 63 67 65 62 66 48 63
400 490 145 145 100(3.2) 800 500 110 114 70

Example 2. As an application, we investigate the daily closing Hang Seng in-
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dex from 1987 to 1997. To induce approximate stationarity, we take the first
difference of logarithmically transformed Hang Seng indices. The transformed
data (ξt) are plotted in Figure 3(a), which shows three possible ‘outliers’: the
two largest crashes on 26/10/87 and 5/6/89, and the rebound of 29/10/97. With
these outliers removed, no trend in ξi is discernible and the sample autocorre-
lation function is not significantly different from the Kronecker delta function.
Thus, we assume µ(·) = 0 and consider the nonparametric conditional variance
model

ξi = σ(θTXi)εi, (3.3)

0
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Figure 3. Results of Example 2. (a) is the transformed data; the thick
lines in (b)-(e) denote σ̂(·) using the transformed data; the dots in (b) and
(d) are the ξi plotted against θ̂T Xi; the thin lines in (c) and (e) denote
the approximate 95% pointwise confidence intervals for σ(·); (b) and (c) are
based on the parametric ARCH model of order 9; (d) and (e) are based on
the single-index model (3.3).
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where Xi = (ξ2
i−1, . . . , ξ

2
i−p)

T . The order is chosen to be 9 using the proposed
method (the order of alternative model is 15, i.e., 3 weeks). Using the proposed
estimation method and choosing the region D in the same way as in the simu-
lations, we obtained θ̂ = ( 0.618, 0.324, 0.488, 0.152, 0.207, 0.061, 0.242, 0.180,
0.239)T based on model (2.1) with τ = 1. The volatility function σ(·) is shown in
Figures 3(d)-(e). Note that the estimate θ̂ satisfies the non-negativity assump-
tion of θ in Engle (1982). We further fit the data using the parametric ARCH
model ξi = (α0 + α1ξ

2
i−1 + . . . + α9ξ

2
i−9)

1/2εi. Using the method proposed Engle
(1982), we obtain (α̂0, . . . , α̂9) = ϑ10−4(1.860, 0.754, 0.521, 0.392, 0.069, 0.158,
0.051, 0.115, 0.028, 0.224). The estimated volatility function is shown in Figure
3(b)-(c) (after transformation). Compared with the parametric ARCH model,
the single-index model is more informative.

4. Conclusions

In this paper, we use the single-index model to approximate the unknown
conditional variance functions and propose the single-index conditional variance
model. The flexibility of the model allows us to capture more features of volatil-
ity in real data sets. A method is proposed for the estimation of the single-index
parameters, which requires no under-smoothing of the unknown function. The
estimators of both the parameters and the unknown function can achieve their
respective optimal consistency rates by using the optimal bandwidth in the sense
of MISE. Therefore, a data-driven bandwidth can be used. Because of its sim-
plicity, constraints on the parameters can also be imposed as discussed under
Remark 3.
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Appendix. Assumptions and Proofs

To obtain the asymptotic properties of the single-index conditional variance
model in section 2, we need the following assumptions.
(C1) {(Xi, yi)} is a strictly stationary and strongly mixing sequence with mixing

coefficient α(k) = O(ck) for some 0 < c < 1.
(C2) The density function fθ(v) of θTX has bounded continuous second order

derivatives and is bounded away from 0 on {v = θTx : x ∈ D, c0 ≤ ‖θ‖ ≤
c′0} for some 0 < c0 < 1 < c′0.

(C3) M < f(x) < M ′ for some positive constants M and M ′, and has bounded
second derivatives in D. The joint densities of X1 and Xk for all k ≥ 2 are
bounded.
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(C4) For each i, εi is independent of {Xj+1, yj , j < i}, E|εj |l < ∞ and E|yj|l <
∞ for some l > 2.

(C5) σ(v) has bounded rth order derivatives with some r > max(3,(p + 4)/10),
and infv≥0 σ(v) > 0.

(C6) K(v) is a symmetric density function with moments of all orders; V (x) is a
spherical symmetric density function and

∫
uk1

1 . . . u
kp
p V (U)dU < ∞ for all

k1 + · · · + kp > 1, k1 > 0, . . . , kp > 0. The Fourier transforms of K(v) and
V (U) are absolutely integrable. (For ease of exposition, we further assume
that

∫
UUT V (U)dU = I.)

The basic results are Lemmas A.1 and A.2 below, other lemmas can be
derived by simple algebraic calculations. Let δθ = ‖θ− θ0‖, δn = {log n/(nh)}1/2

and δ0n = (log n/n)1/2. Let Θ = {θ : c0 ≤ ‖θ‖ ≤ c′0}, where 0 < c0 < 1 < c′0 are
constants. Suppose An is a matrix. For ease of exposition, An = Oa.s.(an) means
every element in An is Oa.s.(an) almost surely. Let ηi = σ(θT

0 Xi)(|εi| − 1).

Lemma A.1. Suppose that m(X) and m(x, θ) are bounded measurable functions,
m(x, θ) has bounded derivative with respect to θ. Under (C1)-C(6), we have

sup
x∈D,γ∈Θ

∣∣∣n−1
n∑

i=1

[
Kγ,h,i(x)m(Xi) − E{Kγ,h,i(x)m(Xi)}

]∣∣∣ = Oa.s.(δn),

sup
x∈D,γ∈Θ

∣∣∣n−1
n∑

i=1

Kγ,h,i(x)m(Xi)ηi

∣∣∣ = Oa.s.(δn),

sup
‖γ−θ0‖<an

∣∣∣n−1
n∑

i=1

[
m(Xi, θ0) − m(Xi, γ)

]
ηi

∣∣∣ = Oa.s.(anδ0n).

This lemma can be proved following Xia and An (1999), noting that D ⊗ Θ
is a compact set and that Kγ,h,i(x) is continuous in both x and γ.

Lemma A.2. Suppose m(u) is any bounded measurable function. Then

n−2
∑
j′

n∑
i=1

{
Vb,i(Xj)m(Xj) −

∫
Vb,i(x)m(x)f(x)dx

}
ηi = Oa.s.(δ2

pn),

sup
γ∈Θ

∣∣∣n−2
∑
j′

n∑
i=1

{
Kγ,h,i(Xj)m(Xj) −

∫
Kγ,h,i(x)m(x)f(x)dx

}
ηi

∣∣∣ = Oa.s.(δ2
n).

Proof. We only prove the second part. Let δ̄n = δ2
nh and

∆n(γ) = n−2
∑
j′

n∑
i=1

{
Kγ,h,i(Xj)m(Xj) −

∫
Kγ,h,i(x)m(x)f(x)dx

}
ηi.
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By the continuity of Kγ,h,i(x) in γ, there are n1(< cnp+2, where c is a constant)
points γn,1, . . . , γn,n1 in Θ such that ∪n1

k=1{γ : ‖γ − γn,k‖ < δ̄n} ⊃ Θ and

max
1≤k≤n1

sup
‖γ−γn,k‖<δ̄n

∣∣∣∆n(γ) − ∆n(γn,k)
∣∣∣ = Oa.s.(δ2

n). (A.1)

By the Fourier inversion formula, K(v) =
∫

exp(−ısv)φ(s)ds, where ı is the
imaginary unit and φ(s) is the Fourier transformation of K. We have

∆n(γn,k) = n−2h−1
∑
j′

∑
i′

∫ [
exp{−ısγT

n,k(Xi − Xj)/h}m(Xj)

−
∫

exp{−ısγT
n,k(Xi − x)/h}dx

]
φ(s)dsηi

= h−1
∫

n−1
∑
i′

exp(−ısγT
n,kXi/h)ηi · n−1

∑
j′

[
exp(ısγT

n,kXj/h)m(Xj)

−
∫

exp(ısγT
n,kx/h)m(x)f(x)dx

]
φ(s)ds.

Following the steps of Xia and An (1999), we have

max
1≤k≤n1

|n−1
∑
i′

exp(−ısγT
n,kXi/h)ηi| ≤ c1δ0n,

max
1≤k≤n1

∣∣∣n−1
∑
j′

[
exp(ısγT

n,kXj/h)m(Xj) −
∫

exp(ısγT
n,kx/h)m(x)f(x)

]∣∣∣ ≤ c2δ0n

almost surely, where c1 and c2 are constants which do not depend on s. Hence

max
1≤k≤n1

∣∣∣∆n(γn,k)
∣∣∣ ≤ h−1

∫
c1δ0nc2δ0n|φ(s)|ds = Oa.s.(δ2

n). (A.2)

Note that

sup
γ

|∆n(γ)| ≤ max
1≤k≤n1

∣∣∣∆n(γn,k)
∣∣∣ + max

1≤k≤n1

sup
‖γ−γn,k‖<δ̄n

∣∣∣∆n(γ) − ∆n(γn,k)
∣∣∣. (A.3)

Lemma A.2. follows from (A.1), (A.2) and (A.3).

Corresponding to (2.5) and (2.6), let

ã = {nγT Wγ,n(x)γ}−1
n∑

i=1

wγ,a,i(x)yi, d̃ = {nγT Wγ,n(x)γ}−1
n∑

i=1

wγ,d,i(x)yi.

Lemma A.3. Under (C1)-(C6), we have

ã = σ(x) + σ′(θT
0 x){µ(x|γ) − x}T (θ0 − γ) +

1
2
σ′′(θT

0 x)h2
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+f−1
γ (γT x)n−1

n∑
i=1

Kγ,h,i(x)ηi+Oa.s.{δ2
γ +(h2 + h−1δn)δγ +h3+hδn+δ2

n},

d̃ = {γT θ0}σ′(θT
0 x) + {µ′(x|γ)}T (I − γγT )θ0σ

′(θT
0 x)

+{µ(x|γ) − x}T (θ0 − γ)σ′′(θT
0 x) +

1
2
f−1

γ (γT x)f ′
γ(γT x)h2(κ4 − 1)σ′′(θT

0 x)

+Rn(x) + Oa.s.(h−1δr
γ + δ2

γ + h−1δnδγ + h2 + h−1δ2
n),

where κ4 =
∫

K(v)v4dv, µ′(x|γ) = dE(X|γT X = v)/dv|v=γT x and

Rn(x)=n−1
n∑

i=1

Kγ,h,i(x)
{
f−1

γ (γT x)h−2γT (Xi − x) − f−2
γ (γT x)f ′

γ(γT x)
}
ηi.

Let

Cn=n−2
∑
j′

(d̃j/ãj)2
n∑

i=1

Kγ,h,i(Xj)(Xi − Xj)(Xi − Xj)T /Sγ,n,0(Xj),

Bn=n−2
∑
j′

d̃j/ã
2
j

n∑
i=1

Kγ,h,i(Xj)(Xi−Xj)(yi−âj−d̂j(Xi−Xj)T θ0)/Sγ,n,0(Xj),

γ̂=C−1
n n−2

∑
j′

d̃j/ã
2
j

n∑
i=1

Kγ,h,i(Xj)(Xi − x)(yi − âj)/Sγ,n,0(Xj).

Then
γ̂ = θ0 + C−1

n Bn. (A.4)

Lemma A.4. Under assumptions (C1)-(C6), we have

n−2
∑
j′

d̃j/ã
2
j

n∑
i=1

Kγ,h,i(Xj){Xi−Xj}(yi−âj−d̂j(Xi−Xj)T θ0)/Sγ,n,0(Xj)

= W0(γ − θ0) + n−1
n∑

i=1

{σ′(θT
0 Xi)/σ(θT

0 Xi)}{µ(Xi|θ0) − Xi}ηi

+Oa.s.{(h−1δr
γ + δγ + h2 + h−1δn)δγ + h3 + δ2

n + hδn},
Cn = 2W0 + Oa.s.(δγ + h2 + h−1δn).

Lemma A.5. Assume (C1)-(C6). Let γ̂ be the value on the right side of (2.7) with
θ replaced by γ. Then γ̂−θ0 = 1

2(γ−θ0)+ 1
2Nn+Oa.s.{(h−1δr

γ+δγ+h2+h−1δn+δ0)δγ

+δ̃n}, where δ̃n = h3 + hδn + h−1δ2
n and Nn = W−1

0 n−1 ∑
j′{σ′(θT

0 Xj)/σ(θT
0 Xj)}

{µ(Xj |θ0) − Xj}ηj .

Proof of Theorem 1. We only prove the first part, the second part is straight-
forward. By Lemma A.5, for any step k we have

θk+1 − θ0 =
1
2
(θk − θ0) +

1
2
Nn + ∆k, (A.5)
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where |∆k| < M{(h−1δr
θk

+δθk
+h2+h−1δn+δ0)δθk

+δ̃n} a.s., M is a constant. For
ease of exposition, we take M > 1 and h < 1 when n is sufficiently large. From
(A.5), δθk+1

≤ {1
2 +M(h−1δr

θk
+δθk

+h2+h−1δn +δ0)}δθk
+Mδ̃n + 1

2δ0. Note that
δ0h

−1 → 0, h−1δn → 0 and δ̃nh−1 → 0. We can assume that h2 + h−1δn + δ0 ≤
(8M)−1, (Mδ̃n + 1

2δ0)h−1/r < (64M)−1, (Mδ̃n + 1
2δ0) < (64M)−1. If

δr
θk

h−1 ≤ (8M)−1 and δθk
≤ (8M)−1 a.s., (A.6)

we have 1
2 + M(h−1δr

θk
+ δθk

+ h2 + h−1δn + δ0) ≤ 7
8 a.s. Therefore

δθk+1
≤ 7

8
δθk

+ Mδ̃n +
1
2
δ0 ≤ (8M)−1 a.s. (A.7)

and δθk+1
h−1/r ≤ (7

8δθk
+ Mδ̃n + 1

2δ0)h−1/r ≤ 7
8δθk

h−1/r + (64M)−1 ≤ (8M)−1/r

a.s. Therefore
δr
θk+1

h−1 ≤ (8M)−1 a.s. (A.8)

By Lemma 1 and Assumption (C5), (A.6) is true for k = 1. Therefore, (A.7) and
(A.8) hold for all k. It follows that 1

2 +M(h−1δr
θk+1

+δθk+1
+h2 +h−1δn +δ0) ≤ 7

8

a.s. Therefore δθk+1
≤ 7

8δθk
+ Mδ̃n + 1

2δ0 a.s. and

δθk+1
≤

(
7
8

)k

δθ1 + {1 +
7
8

+ · · · +
(

7
8

)k

}(Mδ̃n +
1
2
δ0) a.s. (A.9)

It follows that δθ̂ = Oa.s.(δ̃n +δ0). The first part of Theorem 2 follows from (A.9)
and (A.5).
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