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Abstract: Testing hypotheses on covariance matrices has long been of interest in

statistics. The test of homogeneity is very often a preliminary step in discrim-
inant analysis, cluster analysis, MANOVA, etc. In this article we propose non-

parametric tests which are based on the eigenvalues of the differences among the
sample covariance matrices after a common rescaling. Three resampling techniques

for calculating p-values are shown to be asymptotically valid: bootstrap, random

symmetrization and permutation. Monte Carlo simulations show that the boot-
strap performs less satisfactorily than the others in adhering to the nominal level of

significance. Some theoretic ground for this phenomenon is given. The simulation

results also suggest that the homogeneity tests proposed in this article performs
better than the bootstrap version of Bartlett’s test.
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1. Introduction

Under a multinormality assumption, hypotheses testing for homogeneity in
the k-sample problem can be handled by the likelihood ratio test (LRT). The
exact distribution of the LRT is very complicated. When the sample size is suf-
ficiently large, one usually employs the chi-square distribution, the limiting null
distribution, for the LRT. Box (1949) obtained a correction factor for Bartlett’s
LRT and proposed his M statistic with the same chi-square distribution for test-
ing homogeneity in the k-sample problem.

Without the multinormality assumption, likelihood ratios would be differ-
ent. If one still uses the statistics obtained under normality then, for example,
the asymptotic null distribution for Bartlett’s homogeneity test is no longer chi-
square, but a linear combination of chi-squares as pointed out by Zhang and
Boos (1992). The lack of correct null distribution for traditional statistics forces
researchers to look for other means of implementing the tests. Resampling tech-
niques such as the bootstrap represent one resolution. Beran and Srivastava
(1985) considered bootstrap implementation of tests based on functions of eigen-
values of a covariance matrix in a one-sample problem. Zhang, Pantula and
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Boos (1991) proposed a pooled bootstrap methodology. For the k-sample prob-
lem, Zhang and Boos (1992, 1993) studied bootstrap procedures to obtain the
asymptotic critical values for Bartlett’s statistic for homogeneity without the
multinormality assumption. Among other things, Zhang and Boos (1993) devel-
oped bootstrap theory for quadratic-type statistics and demonstrated the idea
using Bartlett’s test as an example.

An alternative approach to constructing multivariate tests is Roy’s (1953)
union-intersection principle. One uses the fact that a random vector is multi-
variate normal if and only if every non-zero linear function of its elements is
univariate normal. This leads to viewing the multivariate hypothesis as the joint
statement (intersection) of univariate hypotheses of all linear functions of uni-
variate components, and a joint rejection region consisting of the union of all
corresponding univariate rejection regions if they are available. The two-sample
Roy test is in terms of the largest and smallest eigenvalues of one Wishart ma-
trix in the metric of the other. But, so far, there is no Roy test for the problem
of more than two samples. One reason may be the difficulty of extending the
idea of comparison of variances in terms of ratio to more than two samples. We
briefly describe the difficulty. In a two-sample case, we may use either σ2

1/σ
2
2 or

σ2
2/σ

2
1 , as they are the reciprocal. It is not so simple otherwise. If we want an

aggregate statistic of pairwise ratios, one way is to sum up σ2
i /σ

2
j , 1 ≤ i �= j ≤ k.

In case we sum up the ratios over all i < j, as the ratios are not permutation
invariant with i and j, we may obtain conflicting conclusion if we use the sum
of the ratios over j > i as a test statistic. Furthermore if we sum up all ratios
over i �= j, although it will be invariant with i and j,there is some confounding.
This can be demonstrated for k = 2 with the statistic σ2

1/σ
2
2 + σ2

2/σ
2
1 . When the

first ratio is large, the second will be small, the average will be moderate and
vice versa. It is similar in the general case. However, the absolute values of the
differences (σ2

i −σ2
j )/(σ

2
1 + · · ·+ σ2

k), 1 ≤ i �= j ≤ k, are invariant with respect to
i and j. The sum of the absolute values over i < j can be used as a test statistic
without a confounding effect, and so can the maximum of those absolute values.
In this article, we consider both the maximum and the sum (average), and find
in simulations that the sum test statistic works better.

Without multinormality and without reference to the likelihood ratio or
union intersection principle, we obtain homogeneity tests for more than two
samples based on eigenvalues of differences of the sample covariance matrices
subject to a common re-scaling. The asymptotic distributions of the test statis-
tics are identified. We also consider the validity of some resampling techniques,
namely the bootstrap, random symmetrization and permutation procedures, for
calculating the critical values and p-values for these tests. All of the techniques
are asymptotically valid for the problem. There is theory supporting the con-
clusion that permutation procedures and random symmetrization perform better
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than the bootstrap in adhering to the nominal level of significance in some cases.
Our Monte Carlo studies indicate that the permutation test generally has higher
power than the bootstrap test and that random symmetrization is compatible to
the bootstrap in power performance. Random symmetrization, if applicable, is
easy to implement. Simulation results also suggest that the test proposed here is
better than the bootstrapped Bartlett test studied by Zhang and Boos (1992).

The article is organized as follows: the construction of tests is in Section
2 and the resampling approximations are presented in Section 3. Proofs are
postponed to the Appendix.

2. Construction of Tests

Let X
(i)
1 ,X

(i)
2 , . . . ,X(i)

mi
, i = 1, . . . , k, be an iid sample from a d-dimensional

distribution with finite fourth moments, mean µ(i) and covariance matrix Σ(i).
We are interested in the homogeneity hypothesis

H0 : Σ(1) = Σ(2) = · · · = Σ(k) vs H1 : Σ(i) �= Σ(j)for some i �= j . (2.1)

Denote the sample covariance matrix for the ith sample by

Σ̂
(i)

=
1

mi

mi∑
j=1

(X(i)
j − µ̂(i))(X(i)

j − µ̂(i))T , (2.2)

where µ̂(i) is either µ(i) or the sample mean, depending on whether µ(i) is known
or not. The pooled sample covariance matrix is

Σ̂ = 1/N
k∑

i=1

miΣ̂
(i)

, where N =
k∑

i=1

mi . (2.3)

Based on the idea of multiple comparison, (e.g., see Dunnett (1994), O’Brien
(1979, 1981)), we construct tests by combining pairwise comparisons. The pair-
wise comparison between the lth and ith samples is based on

Mli = max
{

absolute eigenvalues of
√

mlmi

N
Σ̂

−1/2
(Σ̂

(l) − Σ̂
(i)

)Σ̂
−1/2

}
,

(2.4)
Ali = average

{
absolute eigenvalues of

√
mlmi

N
Σ̂

−1/2
(Σ̂

(l) − Σ̂
(i)

)Σ̂
−1/2

}
.

We propose using the average of the k(k − 1)/2 pairwise comparisons as the test
statistic,

LM =
2

k(k − 1)

∑
i<l

Mli, (2.5a)

LA =
2

k(k − 1)

∑
i<l

Ali . (2.5b)
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The null hypothesis is rejected if LM (LA) is greater than the critical value
which is to be determined. We first identify the limiting distribution of L in the
following lemma.

To state results, we need some notation for vectorization of a symmetric
matrix. For a symmetric d × d matrix S, let vech(S) be the column vector
obtained by stacking up the d(d + 1)/2 distinct elements of S in the order of the
first column vector, then the second column vector omitting the first element,
etc.

Lemma 2.1. Assume mi/N → λi, 0 < λi < 1, as mi → ∞ for i = 1, . . . , k,
and that the distributions of samples are continuous and have finite fourth mo-
ments. Under (3.1), the asymptotic joint distribution of

√
mlmi/NΣ̂

−1/2
(Σ̂

(l) −
Σ̂

(i)
)Σ̂

−1/2
, 1 ≤ i, l ≤ k, is identical with the asymptotic joint distribution

of
√

λiW l −
√

λlW i, 1 ≤ i, l ≤ k, where W 1, . . . ,W k are independent and
vech(W i) is multivariate normal with zero mean vector and covariance matrix

V i = COV (vech((X (i)
1 − µ(i))(X(i)

1 − µ(i))T )) . (2.6)

Furthermore, the asymptotic distributions of LM and LA are, respectively, the
distributions of the random variables

2
k(k−1)

∑
i<l max {absolute eigenvalues of

√
λiW l −

√
λlW i}, (2.7a)

2
k(k−1)

∑
i<l average {absolute eigenvalues of

√
λiW l −

√
λlW i} . (2.7b)

Under the alternative in (2.1), LM and LA diverge to infinity.

Although the conclusion above does not lend itself to the calculation of p-
values, we may employ resampling techniques for implementation.

3. Resampling Approximation

We consider three sampling techniques in this section, including the boot-
strap, random symmetrization and the permutation test.

3.1. Bootstrap

We follow the pooled re-sampling procedure suggested by Zhang and Boos
(1992) and let

(Z1, . . . ,ZN ) = (X(1)
1 − µ̂(1), . . . ,X(1)

m1
− µ̂(1), . . . ,X

(k)
1 − µ̂(k), . . . ,X(k)

mk
− µ̂(k)) ,

(3.1)
where µ̂(i) is either µ(i) or the sample mean, depending on whether µ(i) is known
or not. Let (Z∗

1, . . . ,Z
∗
N ) be drawn with replacement from the given sample
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(Z1, . . . ,ZN ), and let

Σ̂
∗
i = 1/mi

Ni∑
j=1+Ni−1

(Z∗
j − Z̄i∗) (Z∗

j − Z̄i∗)T , i = 1, . . . , k , (3.2)

where Z̄i∗ is the sample mean of Z∗
j for Ni−1 + 1 ≤ Ni, Ni =

∑i
l=1 ml for

i = 1, . . . , k, and N0 = 0. The bootstrap counterparts of (2.5a) and (2.5b) are
then

LMB =
2

k(k−1)

∑
i<l

max
{
absolute eigenvalues of

√
mlmi

N
Σ̂

−1
2 (Σ̂

∗
l − Σ̂

∗
i )Σ̂

−1
2
}
,

(3.3a)

LAB =
2

k(k−1)

∑
i<l

average
{
absolute eigenvalues of

√
mlmi

N
Σ̂

−1
2 (Σ̂

∗
l −Σ̂

∗
i )Σ̂

−1
2
}
.

(3.3b)

The asymptotic equivalence of LMB and LM and of LAB and LA is estab-
lished in the following theorem.

Theorem 3.1. Assume the conditions in Lemma 2.1. For almost all sequences
(X(1)

1 , . . . ,X(1)
m1

, . . . ;X(2)
1 , . . . ,X(2)

m2
, . . . ; . . . ;X(k)

1 , . . . ,X(k)
mk

, . . . ), of independent

d × 1 random vectors having finite fourth moments with E(X(i)
j ) = µ(i) and

cov(X(i)
j ) = Σ for i = 1, . . . , k, the conditional distribution of LMB (LAB) given

the finite samples (X(1)
1 , . . . ,X(1)

m1
;X(2)

1 , . . . ,X(2)
m2

,. . . ;X(k)
1 , . . . ,X(k)

mk
) converges

to the unconditional asymptotic distribution of LM (LA).

In view of this asymptotic equivalence, the critical value of LM (or LA)
for testing H0 can be calculated by repeated bootstrap sampling from the given
sample data.

3.2. Random symmetrization

When the k samples have the same size, say m, we suggest another condi-
tional test procedure which is much easier to implement. The motivation of the
method is given below. We also give a brief justification for the exact validity of
the random symmetrization test in a special case. The asymptotic validity will
be stated as a theorem.

Consider the two-sample case as an illustration. Suppose that under the null
hypothesis, all variables (X(1)

1 ,X
(1)
2 , . . . ,X(1)

m ) and (X(2)
1 ,X

(2)
2 , . . . ,X(2)

m ) are
i.i.d. from a d-dimensional distribution with a given mean. Without loss of gen-
erality, assume the mean to be zero. Let Yj be [(X(1)

j )(X(1)
j )T − (X(2)

j )(X(2)
j )T ].
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By assumption, Yj has a symmetric distribution. For a random sign ej indepen-
dent of Yj, Yj and ejYj are identical in distribution and ej is independent of ejYj.
The latter assertion can be seen by invoking the independence of ej and Yj and
the symmetry of Yj. Therefore, for any statistic T (Y1, . . . , Ym), its distribution
is the same as that of T (e1Y1, . . . , emYm) where ei’s are i.i.d. random signs. Con-
sequently, generate r sets of random signs (e1, . . . , em), and then obtain r values
of T (e1Y1, . . . , emYm), say T 1, . . . T r. Denote the value of the original T as T 0.
We know that T i, i = 0, 1, . . . , r, are r + 1 i.i.d. variables. Suppose for the mo-
ment the null hypothesis will be rejected for large value of T (for two-sided tests,
modifications are easily done). The p-value can be estimated by the fraction of
values in T 0, T 1, . . . , T r that are larger than or equal to T 0. If the estimated
p-value is smaller than the nominal level α, the null hypothesis will be rejected.
This explains the exact validity of the RAS approximation.

In practice, one cannot assume that variables in different samples are i.i.d.
and the mean is known. In the following we give the detail of constructing
tests and of the consistency of the random symmetrization approximation for
the general case.

Since the random symmetrization is also a conditional test, we can work with
the standardized data as in the bootstrap procedure:

Z
(i)
j = Σ̂

−1/2
(X(i)

j − µ̂(i)) , j = 1, . . . ,m, i = 1, . . . , k . (3.4)

Let {e1, . . . , em} be a set of random signs, the random symmetrization of

Σ̂
−1/2

(Σ̂
(l) − Σ̂

(i)
)Σ̂

−1/2
is, 1 ≤ i < l ≤ k,

W li =
1
m

m∑
j=1

ej [Z
(l)
j (Z(l)

j )T − Z
(i)
j (Z(i)

j )T ]. (3.5)

The RAS counterparts of LM and LA are

LMR =
2

k(k − 1)

∑
i<l

max
{

absolute eigenvalues of

√
m2

N
W li

}
, (3.6a)

LAR =
2

k(k − 1)

∑
i<l

average
{

absolute eigenvalues of

√
m2

N
W li

}
. (3.6b)

We need to verify that LMR (LAR) is asymptotically equivalent to LM (LA).

Theorem 3.2. Under the assumptions of Lemma 2.1, the conditional distribu-
tion of LMR (LAR) given the data converges to the unconditional asymptotic
distribution of LM (LA).

The p-value is estimated as at the end of Section 3.1. Let LM
(1)
R , . . ., LM

(r)
R

be r replications of RAS with r independent sets of random signs and let LM
(0)
R
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be the value of the original test statistic LM . The estimated p-value equals
the fraction of the values which are greater than or equal to LM

(0)
R . The same

procedure can be applied to LAR.

3.3. Permutation test

A drawback of the RAS is its restriction to equal sample size. The permuta-
tion test can be applied to samples of unequal sizes. It also has some advantages
over the bootstrap, but is harder to implement than random symmetrization.
It is easy to see that, similar to RAS, when all variables in samples are i.i.d.,
the exact validity of the permutation tests can be achieved. The justification is
similar to that described for RAS, as follows.

Pool the standardized data

Σ̂
−1/2

(X(i)
j − µ̂(i)) , j = 1, . . . ,mi, i = 1, . . . , k, (3.7)

into a sample of size N , then randomly divide it into k samples such that the ith
sample has size mi. Denote the ith sample by Z

(i)
j , j = 1, . . . ,mi, and let

Σ̂
(i)
P = 1/mi

mi∑
j=1

Z
(i)
j (Z(i)

j )T . (3.8)

The permutation test statistics are

LMP =
2

k(k − 1)

∑
i<l

max
{

absolute eigenvalues of
√

mlmi

N
(Σ̂

(l)
P − Σ̂

(i)
P )
}

,

(3.9a)

LMP =
2

k(k − 1)

∑
i<l

average
{

absolute eigenvalues of
√

mlmi

N
(Σ̂

(l)
P − Σ̂

(i)
P )
}

.

(3.9b)

Analogous to random symmetrization, the exact validity of the permutation
tests for the case of given means can be obtained. In fact, under the null hypothe-
sis, the permutation counterpart has the same distribution as that of the original
test statistic. Therefore, similar to that illustrated for RAS, exact validity can
be expected. As with RAS it is of course restrictive, but simulation studies show
that in unknown mean cases, permutation tests outperform bootstrap tests in
getting closer to the nominal level. The following covers the asymptotic validity
of permutation tests for the general case.

Theorem 3.3. Under the assumptions of Lemma 2.1, the conditional distribu-
tion of LMP (LAP ) given the data converges to the unconditional asymptotic
distribution of LM (LA).
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With r independent random permutations, we have r replications of (3.9),
LM

(1)
P , . . . , LM

(r)
P . The p-value can be estimated as in preceding procedures.

3.4. Monte Carlo simulation

This section reports the results of some Monte Carlo studies. These are car-
ried out to compare the three procedures using three families of multivariate dis-
tributions: multinormal N(0, Id), multivariate t-distribution MT (5;0, Id), and
a contaminated normal distribution NC2(0, Id) whose components are indepen-
dent, each being N(0, 1) with probability 0.9 and a χ2

(2) with probability 0.1. We
consider k = 2 and k = 6, and the dimension of random vector d = 2 and d = 5.
The nominal 5% level of significance is chosen. In each procedure, the number
of replications for calculating a critical value is r = 500. Each actual proportion
of rejections of H0 is based on 1000 simulations. As expected, the tests perform
better when the means are known. Here we only report results relating to the
case of an unknown mean. As one can see from Table 1, most of the time the
actual proportion of rejection by permutation (PERM) is closer to the nominal α

than is the bootstrap(BOOT), and in this aspect random symmetrization (RAS)
is comparable to the bootstrap (BOOT). For different sample sizes, where RAS
is not available, the results are given in Table 2. The table shows that PERM is
better than BOOT in 8 of 12 simulations. Comparing LA with LM , we found
that with equal sample sizes, when k = 2 LA is worse than LM most of the time;
when k = 6, LA is better in all cases. With different sample sizes, LA is better
than LM most of the time.

Table 1. Percentage of times H0 (2.1) was rejected.

k = 2,m1 = m2 = 20

N(0, Id) MT (5;0, Id) NC2(0, Id)
RAS BOOT PERM RAS BOOT PERM RAS BOOT PERM

LM 0.053 0.045 0.048 0.053 0.046 0.054 0.055 0.046 0.056
d = 2

LA 0.059 0.057 0.054 0.062 0.046 0.057 0.063 0.060 0.061
LM 0.055 0.045 0.056 0.050 0.044 0.051 0.057 0.039 0.053

d = 5
LA 0.054 0.047 0.054 0.059 0.031 0.060 0.063 0.041 0.059

k = 6,mi = 20, i = 1, . . . , 6

N(0, Id) MT (5;0, Id) NC2(0, Id)
RAS BOOT PERM RAS BOOT PERM RAS BOOT PERM

LM 0.033 0.062 0.060 0.032 0.064 0.059 0.033 0.061 0.058
d = 2

LA 0.053 0.058 0.057 0.060 0.060 0.056 0.057 0.060 0.055
LM 0.040 0.063 0.059 0.043 0.058 0.056 0.043 0.057 0.063

d = 5
LA 0.056 0.060 0.054 0.049 0.045 0.053 0.055 0.054 0.055
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Table 2. Percentage of times H0 (2.1) was rejected.

k = 2, m1 = 20, m2 = 40

N(0, Id) MT (5;0, Id) NC2(0, Id)
BOOT PERM BOOT PERM BOOT PERM

LM 0.042 0.041 0.046 0.045 0.058 0.055
d = 2

LA 0.054 0.053 0.058 0.056 0.054 0.053
LM 0.047 0.049 0.053 0.055 0.064 0.060

d = 6
LA 0.055 0.052 0.049 0.048 0.053 0.053

k = 6, n1 = n2 = 20, n3 = n4 = 30, n5 = n6 = 40

N(0, Id) MT (5;0, Id) NC

BOOT PERM BOOT PERM BOOT PERM
LM 0.060 0.057 0.045 0.043 0.054 0.052

d = 2
LA 0.056 0.055 0.041 0.045 0.055 0.054
LM 0.066 0.062 0.065 0.063 0.064 0.059

d = 6
LA 0.060 0.057 0.043 0.045 0.045 0.055

The bootstrap results in these Monte Carlo studies also provide some ev-
idence for comparing the test statistics LM and LA of (3.5) with Bartlett’s
statistic. As shown in Zhang and Boos ((1992), p.428), the bootstrap procedure
for Bartlett’s homogeneity test performs worse as dimension d (they used p for
dimension) increases. The bootstrap procedure of our tests is quite stable; see
Table 1. When m1 = m2 = 20, α = 0.05 and d = 2, our proportions of rejections
for three distributions are 0.045, 0.046 and 0.046, against their 0.046, 0.045 and
0.50 respectively. But when dimension increases to d = 5, ours become 0.045,
0.044 and 0.039, against their 0.012, 0.023 and 0.019 respectively.

The power of the tests was also studied for k = 2 samples with sample
size m1 = m2 = 20, for dimension d = 2. Multinormal and multivariate-t
distributions, N(µ,Σ) and MT (5, 0,Σ), were used to generate data. We pair
the identity matrix I2 with C2 and with V 2, respectively, where

C2 =

(
1 0.5

0.5 1

)
, V 2 =

(
2 0
0 4

)
.

The results are given in Table 3. For comparison with Bartlett’s test as studied
by Zhang and Boos (1992), we also calculate the adjusted power. The rows
marked (a − p) are obtained by using as critical values the 5th percentile of the
empirical distribution of p values under H0 obtained in constructing Table 1.
The table shows that the bootstrap has higher power when the distribution is
normal, but lower power than the permutation test and random symmetrization
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in the case of multivariate t. This is also true for simulation results in the three-
dimensional case, not shown here in order to save space. Furthermore, LA has
better performance than LM most of the time.

Table 3. Power study for d = 2, k = 2, m1 = m2 = 20.

N(0, C2) & N(0, I2) N(0, V 2) & N(0, I2)
RAS BOOT PERM RAS BOOT PERM

LM 0.193 0.227 0.193 0.753 0.781 0.762
LM(a− p) 0.229 0.246 0.223 0.815 0.825 0.817

LA 0.256 0.276 0.265 0.784 0.770 0.770
LA(a − p) 0.296 0.299 0.297 0.817 0.818 0.814

MT (5;0, C2) & MT (5;0, I2) MT (5;0, V 2) & Mt(5;0, I2)
RAS BOOT PERM RAS BOOT PERM

LM 0.228 0.231 0.233 0.553 0.521 0.561
LM(a− p) 0.261 0.262 0.265 0.636 0.604 0.823

LA 0.230 0.229 0.234 0.570 0.538 0.589
LA(a − p) 0.274 0.270 0.275 0.640 0.617 0.637

The power studies of the bootstrap are in favor of our tests. Zhang and Boos
(1992) performed power studies of the bootstrapped Bartlett’s test with C2 and
V 2. The corresponding values (BartlettB) in Table 2 of Zhang and Boos (1992)
and in our Table 3 are collated below for easier comparison (α = 0.05, k = 2, d =
2,m1 = m2 = 20), where the first column is for the case of N(0,V 2) against
N(0, I2), the second column for MT (5, 0,V 2) against MT (5, 0, I2), the third
column for N(0,C2) against N(0, I2), and the fourth column for MT (5, 0,C2)
against MT (5, 0, I2). The values in parentheses are the adjusted powers, assum-
ing the population means to be unknown parameters:

BartlettB 0.642(0.657) 0.487(0.525) 0.233(0.243) 0.155(0.177)
BOOT of (2.5b) 0.770(0.818) 0.538(0.617) 0.276(0.299) 0.229(0.270)
RAS of (2.5b) 0.784(0.817) 0.570(0.640) 0.256(0.296) 0.230(0.274)
PERM of (2.5b) 0.770(0.814) 0.589(0.637) 0.265(0.297) 0.234(0.275)

In summary, we have the following recommendations: (1) the average value
test outperforms the maximum value test; (2) the test of (2.5) is prefered over
Bartlett’s test, with or without the bootstrap; (3) if sample sizes are equal, use
the random symmetrization procedure for easier implementation even though its
power performance may be slightly worse; (4) if sample sizes are not equal, the
permutation procedure is a good choice.
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Appendix

To simplify notation we rewrite, in the two-sample case, m1 as m and the
second sample as (Y 1, . . . ,Y n). In this way, N = m + n. It is clear that the
convergence of the test statistics follows the convergence of the random matrices
defined. Hence we deal with convergence of random matrices. Furthermore note
that in the k-sample case the estimate Σ̂ of the covariance matrix based on all
data converges to a constant matrix in probability and will not affect the limiting
behavior of the test statistics. Hence, we simply regard it as an identity matrix
when studying the limit properties of tests.

The proof of Lemma 2.1 is simple and the proof of Theorem 3.1 is a direct
application of Theorem 2.4 in Giné and Zinn (1990).

Proof of Theorem 3.2. We have to first prove the asymptotic normality of
{√miml/NW li, 1 ≤ i < l ≤ k}. We need only prove the asymptotic normal-
ity of all linear combinations of the matrices

√
miml/NW li having asymptoti-

cally the same covariance structure as that of the limiting random matrices in
Theorem 3.1. That is, for any constants bil with at least one being nonzero,∑

1≤i<l≤k bil

√
miml/NW li is asymptotically normal in the sense of Lemma 2.1.

These can be derived by the above with some more calculation, details being
omited. The proof is completed.

Proof of Theorem 3.3. We first prove the convergence of the permutation
empirical process in the two-sample case. Write m1 as m and the second sample
as {Y 1, . . . ,Y n}, N = m + n. Let Fm and FP

m be the empirical distributions
based on {X1, . . . ,Xm} and {Z1, . . . ,Zm} respectively, and Gn and GP

n the
empirical distributions based on {Y 1, . . . ,Y n} and {Zm+1, . . . ,Zm+n}. Further,
let HN (t) = (m/N)Fm(t) + (n/N)Gn(t)) and H(t) = λF (t) + (1 − λ)G(t)).
Applying Theorem 1 of Præstgaard ((1995), p.309), for almost all series {X i}
and {Y i},

{
√

nm/N(FP
m(t) − GP

n (t)) : t ∈ R1} = {
√

mN/n(FP
m(t) − HN (t)) : t ∈ R1}

=⇒ RVH =: {RVH(t) : t ∈ R1}, (A.1)

where RVH is a P -Brownian bridge with H = λF +(1−λ)G. The convergence is
convergence in distribution in l∞(F), consisting of bounded, real-valued functions
defined on F , the class of indicator functions of half spaces {aτ · ≤ t}. As
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usual, (see, e.g., Gine and Zinn, (1984)), the supremum norm on this space is
considered. Note that all sample paths of RVH are contained in C(F ,H), a
sub-collection consisting of all bounded, uniformly continuous functions under
the L2(H)-seminorm d2(f, g) = EH(f − g)2 − (EH(f − g))2. It is known that
C(F ,H) is separable (e.g., see Pollard, (1984), p.169, ex.7). Furthermore, any
point in C(F ,H) can easily be showed to be completely regular (Pollard, (1984,
p.67)). By the representation theory (e.g., Pollard, (1984), p.71), we have, under
uniform norm,

{
√

mN/n(FP
m(t) − HN (t)) : t ∈ R1} −→ {RVH(t) : t ∈ R1} a.s. (A.2)

We now turn to the proof for
√

mn/N{(Σ̂(1)
P−̂Σ

(2)
P ).Consider the upper-left element

on the diagonal of the matrix,
√

mn/N{1/m∑m
i=1[(Z

P
i )2−1/n

∑n
j=1[(Z

P
i+m)2]}.

Write it as√
mn/N

∫
(t2 − σ2)d (FP

m(t)−GP
n (t) =

∫
(t2 − σ2)d {

√
mN/n(FP

m(t)−HN (t))}.

From (4.2), it converges to TP :=
∫
(t2−σ2)dRVH(t) a.s. This stochastic integral

is distributed normally. The work remaining is to check that its variance coincides
with the variance of the upper-left element of W 1, E(x2−σ2)2. Note that under
the condition of Theorem 3.3, H = F . Via some elementary calculations, we
have

E((TP )2) = E(
∫

(t2 − σ2)(t21 − σ2)dRVH(t)dRVH(t1))

=
∫

(t2 − σ2)2E(dRVH(t))2)

=
∫

(t2 − σ2)2dF (t) = E(x2 − σ2)2. (A.3)

The third equation uses
∫
(t2 − σ2)2(dF (t))2 = 0.

For the general case, we start with a lemma. We consider only the 3-sample
case, more samples can be treated with more complicated calculations. Let the
data be {X(1)

1 , . . . ,X(1)
m1

,X
(2)
1 , . . . ,X(2)

m2
,X

(3)
1 , . . . , X(3)

m3
} and let {Z(1)

1 , . . . ,Z(1)
m1

,

Z
(2)
1 , . . . ,Z(2)

m2
, Z

(3)
1 , . . . ,Z(3)

m3
} be the data generated by permutation. Let N =

m1 + m2 + m3. Further, for l = 1, 2, 3, let Fmll and FP
mll

be, respectively, the

empirical distributions based on {X(l)
1 , . . . ,X(l)

ml
}, and {Z(l)

1 , . . . ,Z(l)
ml

}, and let
HN−m1(t) = (m2/(N − m1))Fm22(t) + (m3/N)Fm33(t)).

Lemma. Under the conditions of Theorem 3.3, the conditional empirical pro-
cess {√m2(N − m1)/m3(FP

m22(t) − HN−m1(t)) : t ∈ R1} given {Z(1)
1 , . . . ,Z(1)

m1
}

converges weakly to {RVF (t) : t ∈ R1}, where F is the distribution of the random
variable X.
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Proof. Note that when {Z(1)
1 , . . . ,Z(1)

m1
} is given, the process {√m2(N−m1)/m3

(FP
m22(t)−HN−m1(t)) : t ∈ R1} is almost the same as that in (4.2). Following the

arguments used in the proof of Theorem 1 of Præstgaard (1995), we can derive
the conclusion. Details are omitted.

We now turn to the proof of the theorem and first consider the asymptotic
normality of {(Σ̂i

P − Σ̂
l
P ), 1 ≤ i < l ≤ 3}. We show, for any constants bil

with at least one being nonzero,
∑

1≤i<l≤3 bil

√
miml/N (Σ̂

(i)
P − Σ̂

(l)
P ) is asymptot-

ically normal in the sense of Lemma 2.1. As in the two-sample case, we consider
the empirical permutation process

∑
1≤i<l≤3 bil

√
miml/N(FP

mii
−FP

mll
) first, con-

vergence of {(Σ̂(i)
P − Σ̂

(l)
P ), 1 ≤ i < l ≤ 3} will be a consequence. Invoking

FP
m33 = 1/m3(NFN − m1F

P
m1 − m2F

P
m2), it can be verified that

∑
1≤i<l≤3

bil

√
miml/N(FP

mii − FP
mll

)

=
√

m1(
√

m2/Nb12 + (1 + m2/m3)
√

m3/N(b13 +
√

m1m2/(m3Nb23(FP
m1

−FN )

+
√

m2(
√

m1/Nb12 + (1 + m2/m3)
√

m3/N(b23 +
√

m1m2/(m3Nb13(FP
m2

−FN )

=:
√

m1bn1(FP
m1

− FN ) +
√

m2bn2(FP
m2

− FN ), (A.4)

where bn1 and bn2 go to constants. Further, noting that FN = m1/N(FP
m1 −

FP
N−m1

) + FP
N−m1

,

√
m1bn1(FP

m1
− FN ) +

√
m2bn2(FP

m2
− FN )

=
√

m1(bn1 + bN2
√

m1m2/N)(FP
m1

− FN ) +
√

m2bn2(FP
m2

− FP
N−m1

). (A.5)

Note that (FP
m1

−FN ) is conditionally independent of (FP
m2

−FP
N−m1

). Together
with the proof for the two-sample case and the lemma, the process then converges
weakly to a Gaussian process. The work remaining is to check that the limiting
covariance structure of

∑
1≤i<l≤3 bil

√
miml/N (Fmii − Fmll) coincides with that

of
∑

1≤i<l≤3 bil

√
miml/N(FP

mii
− FP

mll
). As above,

∑
1≤i<l≤3

bil

√
miml/N(Fmii − Fmll)

=
√

m1(bn1 + bN2
√

m1m2/N)(Fm1 − FN ) +
√

m2bn2(Fm2 − FN−m1). (A.6)

It is enough to show that
(1)

√
m1N/(N − m1)(FP

m1
−FN ) and

√
m1(N − m1)/m3(FP

m2
−FP

N−m1
) have

the same limiting covariance structures as those of
√

m1N/(N − m1)(Fm1 −FN )
and

√
m1(N − m1)/m3(Fm2 − FN−m1) respectively, and

(2) Fm1 − FN is uncorrelated with Fm2 − FN−m1 .
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For (1), noting that Fm1 − FN = (N − m1)/N(Fm1 − FN−m1), it is easy to
see that the covariance at (t, t1) is

R(t, t1) =
m1(N − m1)

N
(

1
m1

+
1

(N − m1)
)(F (t ∧ t1) − F (t)Fx(t1))

= F (t ∧ t1) − F (t)F (t1), (A.7)

the covariance structure of a P -Brownian bridge, where “∧” denotes minimum;
similarly for (

√
m1(N − m1)/m3(Fm2 − FN−m1).

For (2), via elementary calculations we have, applying the independence of
the variables having the common distribution F ,

E(Fm1(t) − FN (t))(Fm2(t1) − FN−m1(t1))

= −m3

N
E(FN−m1(t) − F (t))(Fm2(t1) − Fm3(t1))

= − m3

(N(N − m1))
[(F (t ∧ t1) − F (t)F (t1)) − (F (t ∧ t1) − F (t)F (t1))] = 0.

The proof is complete.
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