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1. Introduction

The study of optimal fractional factorial plans is of considerable recent in-
terest; see Dey and Mukerjee (1999a, Chapters 2 and 6) for a review. Most
of these results however, relate to situations where all factorial effects involving
the same number of factors are considered equally important and, as such, the
underlying model involves the general mean and all effects involving up to a
specified number of factors. The presumption of equality in the importance of
all factorial effects involving the same number of factors may not be tenable in
many practical situations. For example, one might be interested in estimating
the general mean, all main effects and only a subset of two-factor interactions.
The issue of estimability and optimality in situations of this kind in the context
of two-level factorials has been addressed by Hedayat and Pesotan (1992, 1997)
and Chiu and John (1998). For some other related work, see Hedayat (1990),
Wu and Chen (1992), Sun and Wu (1994) and, Dey and Mukerjee (1999b).

In this paper, further results on the optimality of fractional factorial plans for
arbitrary factorials are obtained. In Section 2, some preliminaries are introduced.
Generalizing orthogonal arrays, a new class of arrays called quasi-orthogonal
arrays are introduced in Section 3. It is shown that fractional factorial plans
represented by quasi-orthogonal arrays are universally optimal (and hence, in
particular A-, D- and E-optimal) under several alternative models. As such,
fractional factorial plans represented by quasi-orthogonal arrays exhibit a kind
of model robustness in the sense that the same plan remains optimal under two
or more rival models.
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There is also a practical motivation for studying quasi-orthogonal arrays, as
these can lead to useful plans for designing experiments for quality improvement.
In a production line, the quality of a product depends on two types of factors,
called control and noise factors. The control factors are those that can be set at
specified levels during the production process, while the noise factors can be fixed
at selected levels during the experiment but not during the production or, later
use of the product. It is often desired to plan an experiment to study the main
effects of the control and noise factors plus the control versus noise two-factor
interactions (see e.g., Shoemaker, Tsui and Wu (1991)). In such a situation, one
desires an optimal plan under a model that includes the mean, all main effects
and a chosen subset of two-factor interactions, all other factorial effects being
assumed absent. Quasi-orthogonal arrays can provide such optimal plans. Some
methods of construction of quasi-orthogonal arrays are given in Section 4.

2. Preliminaries

Throughout this paper, we closely follow the notations and terminology used
in Dey and Mukerjee (1999a). Consider the set up of an m1 × · · · ×mn factorial
experiment involving n factors F1, . . . , Fn appearing at m1, . . . ,mn (≥ 2) levels
respectively. The v =

n
Π

i=1
mi treatment combinations are represented by ordered

n-tuples j1 . . . jn, 0 ≤ ji ≤ mi − 1, 1 ≤ i ≤ n. Let τ denote the v× 1 vector with
elements τ(j1 . . . jn) arranged in the lexicographic order, where τ(ji . . . jn) is the
fixed effect of the treatment combination j1 . . . jn. Also, let Ω denote the set of
all binary n−tuples. For each x = x1 . . . xn ∈ Ω, define γ(x) = {i : xi = 1}
and α(x) =

n
Π

i=1
(mi − 1)xi . Furthermore, for any subset Ωs of Ω, define αs =∑

x∈Ωs
α(x). Note that

∑
x∈Ω α(x) = v. We denote the a × 1 vector of all ones

by 1a, the identity matrix of order a by Ia and a generalized inverse of a matrix
A by A−. For 1 ≤ i ≤ n, let Pi be an (mi −1)×mi matrix such that the mi×mi

matrix mi
− 1

21mi , Pi
′ is orthogonal. For each x = x1 . . . xn ∈ Ω, let the α(x) × v

matrix Px be defined as

Px = P1
x1 ⊗ · · · ⊗ Pn

xn , (2.1)

where for 1 ≤ i ≤ n,

Pi
xi =

{
mi

− 1
2 1′

mi if xi = 0
Pi if xi = 1,

(2.2)

and ⊗ denotes the Kronecker product. Then for each x = x1 . . . xn ∈ Ω, x �=
00 . . . 0, the elements of Pxτ represent a complete set of orthonormal contrasts
belonging to the factorial effect F1

x1 · · ·Fn
xn ≡ Fx, say; cf. Gupta and Mukerjee

(1989). Also P 00...0τ = v
1
2 τ̄ , where τ̄ is the general mean, and in this sense the

general mean will be represented by F 00...0.
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Let Ωt be a subset of Ω, containing 00 . . . 0. We consider a model which
is such that Fx is included in the model if and only if x ∈ Ωt, the effects not
included in the model being assumed negligible. Then,

Pxτ = 0, for each x ∈ Ω̄t, (2.3)

where Ω̄t = Ω − Ωt and 0 is a null vector. Under (2.3), let

βx = Pxτ , for each x ∈ Ωt, (2.4)

which provides an interpretation for βx (x ∈ Ωt, x �= 00 . . . 0) in terms of
a complete set of orthonormal contrasts belonging to a possibly non-negligible
factorial effect Fx. Also, β00...0 can be interpreted in terms of the general mean.

Under the absence of the factorial effects Fx, x ∈ Ω̄t, suppose that interest
lies in estimating the factorial effects Fx, x ∈ Ωf , where Ωf is a subset of
Ωt containing 00 . . . 0. If Ωf is a proper subset of Ωt, then the factorial effects
included in Ωt −Ωf are treated as nuisance parameters. By (2.4), the objects of
interest are then βx for x ∈ Ωf (⊂ Ωt), namely interest lies in

β(1) = (· · · ,βx
′, · · ·)′x∈Ωf

. (2.5)

Define
P (1) = (· · · , (Px)′, · · ·)′x∈Ωf

(2.6)

and, if Ωf is a proper subset of Ωt, let

β(2) = (· · · ,βx
′, · · ·)′x∈Ωt−Ωf

, P (2) = (· · · , (Px)′, · · ·)′x∈Ωt−Ωf
. (2.7)

Clearly, β(1) and β(2) are column vectors of orders αf and αt − αf respectively;
similarly P (1) and P (2) are matrices of orders αf ×v and (αt−αf )×v respectively.

Consider an N -run fractional factorial plan for an m1 × · · · × mn factorial
and, as before, let the effects included in the model be Fx, x ∈ Ωt , where
Ωt is a fixed subset of Ω containing 00 . . . 0. For given N, 0 < N < v, let DN

be the class of all N -run plans {d} such that, under any d ∈ DN , each of the
factorial effects represented by Fx, x ∈ Ωf (⊂ Ωt) is estimable. Let Rd be a v×v

diagonal matrix with diagonal elements representing, in the lexicographic order,
the replication numbers of the v treatment combinations in d. The parametric
functions of interest are P (1)τ , where P (1) is as defined in (2.6). Assuming that
the observations are homoscedastic and uncorrelated, the information matrix for
P (1)τ , under d, following Dey and Mukerjee (1999a), is given by

Id = P (1)Rd(P (1))′ − P (1)Rd(P (2))′(P (2)Rd(P (2))′)−P (2)Rd(P (1))′, (2.8)

where the second term does not arise if Ωf = Ωt .
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Also, for any d ∈ DN , it can be shown that

tr(Id) ≤ (N/v)αf , (2.9)

where tr(·) denotes trace. Furthermore, if Ωf = Ωt, then for any d ∈ DN ,

tr(Id) = (N/v)αf . (2.10)

3. Quasi-Orthogonal Arrays and Optimality

For an arbitrary subset T of Ω, define T ∗ = {x : x ∈ T, there does not
exist y ∈ T, y �= x, such that x ≤ y}, where x ≤ y means xi ≤ yi, 1 ≤ i ≤ n.
Henceforth, for a T ⊂ Ω, we call T ∗ the reduced set of T . Note that for a given
T ∗, there might exist more than one T giving rise to it. For example, let n = 3,
T1 = {000, 100, 010, 001, 110, 101} and T2 = {000, 010, 110, 101}. For both T1 and
T2, T ∗ = {110, 101}.
Definition. Let T ∗ be the reduced set of a given subset of Ω. A quasi-orthogonal
array QOA(N,n,m1 × · · · × mn, T ∗), having N rows and n(≥ 2) columns, say
A1, A2, . . . , An, is an N×n array with elements in the ith column Ai having mi(≥
2) distinct symbols for i = 1, . . . , n, such that for every x ∈ T ∗, all combinations
of symbols corresponding to the columns {Ai : i ∈ γ(x)} appear equally often
as a row.

Note that an orthogonal array OA(N,n,m1×· · ·×mn, g) is a quasi-orthogonal
array QOA(N,n,m1×· · ·×mn, T ∗) with T ∗ = {x : |γ(x)| = g} where, for a set W,

|W | denotes its cardinality. In this sense, one may regard quasi-orthogonal arrays
as a generalization of orthogonal arrays. For a definition of an OA(N,n,m1×· · ·×
mn, g), see Hedayat, Sloane and Stufken (1999). Following standard terminology,
we denote a symmetric orthogonal array (i.e., when m1 = · · · = mn = m, say)
by OA(N,n,m, g).

Another generalization of orthogonal arrays are the compound orthogonal
arrays considered by Rosenbaum (1994) and Hedayat et al. (1999); for a def-
inition of compound orthogonal arrays, see e.g., Hedayat et al. (1999, p.230).
While all compound orthogonal arrays are necessarily quasi-orthogonal arrays,
every quasi-orthogonal array need not be a compound orthogonal array as seen
in Example 1 below.

Example 1. Let N = 16, n = 7, m1 = 4, m2 = m3 = · · · = m7 =
2. Further, let T ∗ = {A1 ∪ A2}, where A1 = {1000100, 1000010, 1000001}
and A2 = {x : |γ(x)| = 3} − {1000110, 1000101, 1000011, 1100100, 1100010,
1100001, 1010100, 1010010, 1010001, 1001100, 1001010, 1001001}, x denoting a bi-
nary 7-tuple.
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The following array (in transposed form) is a QOA(16, 7, 4 × 26, T ∗), where
T ∗ is as given above: 



0000 1111 2222 3333
0101 1010 1010 0101
0011 1100 1100 0011
0110 1001 1001 0110
1010 0101 1010 0101
1100 0011 1100 0011
1001 0110 1001 0110




′

.

It may be noted that this array is not a compound orthogonal array.

Clearly, the rows of a quasi-orthogonal array QOA(N,n,m1 × · · · ×mn, T ∗)
can be identified with the treatment combinations of an m1 × · · · × mn factorial
set up, and the array itself can be regarded as an N -run fractional factorial plan
for such a factorial. For instance, the array in Example 1 represents a 16-run
plan for a 4 × 26 factorial.

As before, let Ωf ⊂ Ωt ⊂ Ω such that 00 . . . 0 ∈ Ωf . Furthermore, for given
Ωf , Ωt, define S = {xi ∨ xj : xi ∈ Ωf , xj ∈ Ωt} where, for u = u1 . . . un ∈ Ω
and w = w1 . . . wn ∈ Ω, u ∨ w = z1 . . . zn with zt = max(ut, wt), 1 ≤ t ≤ n. Let
S∗ be the reduced set of S.

Let M(Ωf ,Ωt) denote a linear model in which a factorial effect Fx is included
if and only if x ∈ Ωt, and suppose interest lies in estimating all the factorial effects
in Ωf , where Ωf ⊂ Ωt ⊂ Ω. With reference to the chosen Ωf , Ωt, let S be the
set defined above and S∗ the reduced set of S.

Theorem 1. Under the model M(Ωf ,Ωt), let d0 ∈ DN be represented by a
QOA(N,n,m1 × · · · × mn, S∗). Then d0 is a universally optimal plan for esti-
mating complete sets of orthonormal contrasts belonging to the factorial effects
Fx, x ∈ Ωf .

Proof. Let Ωt(⊂ Ω) and Ωf (⊂ Ωt) be as specified by the model M(Ωf ,Ωt).
Then clearly, Ωf ⊂ Ωt ⊂ S and x ∨ y ∈ S for every x ∈ Ωf and y ∈ Ωt. Fol-
lowing the line of proof of Lemma 2.6.1 in Dey and Mukerjee (1999a, p.25)
it can be shown that (a) for each x ∈ S, PxRd0(P

x)′ = (N/v)Iα(x), and
(b) for each x, y ∈ S, such that x ∨ y ∈ S and x �= y, PxRd0(P

y)′ = O,
where O is a null matrix. We thus have PxRd0(P

x)′ = (N/v)Iα(x) for each x ∈
Ωf , and PxRd0(P

y)′ = O for each x ∈ Ωf , y ∈ Ωt,x �= y. It follows that
P (1)Rd0(P

(1))′ = (N/v)Iαf
, P (1)Rd0(P

(2))′ = O, so that by (2.8),

Id0 = (N/v)Iαf
. (3.1)

Now from (2.9) and (3.1), following Kiefer (1975) and Sinha and Mukerjee (1982),
the claimed universal optimality of d0 is established.
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Fractional factorial plans represented by quasi-orthogonal arrays can be op-
timal under two or more rival models, thus exhibiting a kind of model robustness.
The following example illustrates this fact.

Example 2. Consider a 3 × 24 experiment and let the factors be F1 at three
levels and Fi, 2 ≤ i ≤ 5, each at two levels. Suppose we are interested in
estimating the mean, all main effects and all two-factor interactions except the
interactions F2F5, F3F5 and F4F5. The interactions F2F5, F3F5, F4F5 and all
interactions involving three or more factors are assumed to be absent. Then Ωf =
{00000, 10000, 01000, 00100, 00010, 00001, 11000, 10100, 10010, 10001, 01100,
01010, 00110}, Ωt = Ωf , S = Ω − {01111, 11111}, S∗ = {10111, 11011, 11101,
11110}. For this S∗, we have a quasi-orthogonal array QOA(24, 5, 3 × 24, S∗) as
shown (in transposed form) below .




00000000 11111111 22222222
00001111 00001111 00001111
00111001 00111001 00111001
01010101 01010101 01010101
01100011 01100011 01100011




′

.

A 24-run plan represented by this quasi-orthogonal array is therefore uni-
versally optimal for the estimation of all the factorial effects in the considered
model M(Ωf ,Ωf ).

Now suppose that all two and three factor interactions not involving F1 are
absent, along with all interactions involving four or more factors. The three-factor
interactions involving F1 are included in the model, though we are not interested
in estimating them. The factorial effects of interest (that are to be estimated) are
the mean, all main effects and all two-factor interactions among F1 and Fj , 2 ≤
j ≤ 5. Then Ωf = {00000, 10000, 01000, 00100, 00010, 00001, 11000, 10100, 10010,
10001}, Ωt − Ωf = {11100, 11010, 11001, 10110, 10101, 10011}, S = Ω − {00111,
01011, 01101, 01110, 01111, 11111}, S∗ = {10111, 11011, 11101, 11110}. This S∗

is the same as the one given above. Thus a quasi-orthogonal array QOA(24, 5, 3×
24, S∗) as given above represents a 24-run universally optimal plan for the esti-
mation of all the factorial effects in the considered model M(Ωf ,Ωt).

Consider the model M(Ωf ,Ωf ) and, with reference to this model, let S and
S∗ be the sets defined earlier. Then, in analogy with the Rao’s bound for the
number of rows of an orthogonal array (see e.g., Dey and Mukerjee (1999a, p.28),
one can show that a necessary condition for the existence of a QOA(N,n,m1 ×
· · · × mn, S∗) is that

N ≥ αf . (3.2)
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Any N -run plan represented by a quasi-orthogonal array for which the equality
in (3.2) holds is saturated. Recall that orthogonal arrays for which the number
of rows attains the Rao’s bounds are called tight .

4. Construction of Quasi-Orthogonal Arrays

In this section, some methods of construction of quasi-orthogonal arrays are
discussed. Theorems 2 and 3 give methods of constructing 2-symbol symmet-
ric quasi-orthogonal arrays, while Theorem 4 gives a method of construction of
asymmetric quasi-orthogonal arrays. Some comments about the use of such ar-
rays in obtaining universally optimal fractional factorial plans under different
models are also made.

We need the following preliminaries. A positive integer u is called a Hadamard
number if a Hadamard matrix of order u, Hu, exists. Throughout, unless stated
otherwise, the trivial Hadamard number u = 1 will be left out of consideration.
Without loss of generality, the first column of Hu will be taken as 1u. A set of
three distinct columns of Hu, u ≥ 4, will be said to have the Hadamard property
if the Hadamard product of any two columns in the set equals the third, where
the Hadamard product of two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) is
defined as a ∗ b = (a1b1, . . . , anbn).

Theorem 2. If u,w are Hadamard numbers such that 4 ≤ w ≤ u, then there
exists a quasi-orthogonal array QOA(uw,w(u − 1), 2w(u−1), T ∗) with T ∗ a set
whose elements are the rows of the matrix

12
′ ⊗ A(w−1)(2) O

12
′ ⊗ Iw−1 ⊗ 1m 1w−1 ⊗ Im

O A(m)(2)


 ,

where A(s)(t) is an
(s
t

)× s matrix whose rows are all possible binary s-tuples with
exactly t unities, O is a null matrix of appropriate order, and m = w(u− 3) + 2.

Proof. Let Hu = [1u
... a1

... · · · ... au−1], Hw = [1w
... b1

... · · · ... bw−1]. Consider
Huw = Hu ⊗ Hw. It is not hard to see that Huw contains w − 1 disjoint sets
of columns given by {1u ⊗ bi,ai ⊗ 1w,ai ⊗ bi} 1 ≤ i ≤ w − 1, each set having
the Hadamard property. For each 1 ≤ i ≤ w − 1, identify the column 1u ⊗ bi

by a two-level factor Fi, the column ai ⊗ 1w by a two-level factor Fw−1+i and
delete the columns ai ⊗ bi and the column 1u ⊗1w in Huw. Further, identify the
remaining columns of Huw by the two-level factors F2w−1, . . . , Fw(u−1). Then the
uw × w(u − 1) matrix represents the required quasi-orthogonal array.

Consider a two-level factorial experiment involving w(u−1) factors which can
be grouped into three sets of factors : the first group having factors F1, . . . , Fw−1;
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the second group having factors Fw, . . . , F2(w−1); the third group having the
factors Fj , 2w − 1 ≤ j ≤ w(u − 1). Suppose it is desired to estimate the mean,
all main effects and all two-factor interactions of type FiFw−1+i, 1 ≤ i ≤ w − 1.
All other factorial effects are assumed negligible. Then the quasi-orthogonal
array of Theorem 2 provides a universally optimal saturated plan for the above
experiment under the stated model.

Theorem 3. If u,w are Hadamard numbers such that 4 ≤ w ≤ u, then there
exists a quasi-orthogonal array QOA(uw,w(u−w+2)−2, 2w(u−w+2)−2 , T ∗) with
T ∗ a set whose elements are the rows of the matrix


A(w−1)(2) ⊗ 1(w−1

2 ) 1(w−1
2 ) ⊗ A(w−1)(2) O

Iw−1 ⊗ 1w−1 ⊗ 1m 1w−1 ⊗ Iw−1 ⊗ 1m 1w−1 ⊗ 1w−1 ⊗ Im

O O A(m)(2)


 ,

where m = w(u − w).

Proof. Following the proof of Theorem 2, for each 1 ≤ i ≤ w − 1 and 1 ≤ j ≤
w − 1, identify the column 1u ⊗ bi by a two-level factor Fi, the column aj ⊗ 1w

by a two-level factor Fw−1+j and delete the columns aj ⊗bi in Huw. Also, delete
the column 1u ⊗ 1w. Further, identify the remaining columns of Huw by the
two-level factors F2w−1, . . . , Fw(u−w+2)−2. Then the uw×w(u−w+2)−2 matrix
represents the required quasi-orthogonal array.

Consider a two-level factorial experiment involving w(u −w + 2)− 2 factors
which can be grouped into three sets of factors : the first group having factors
F1, . . . , Fw−1; the second group having factors Fw, . . . , F2(w−1); the third group
having the factors Fj , 2w − 1 ≤ j ≤ w(u − w + 2) − 2. Suppose it is desired
to estimate the mean, all main effects and all two-factor interactions of the type
FiFj , 1 ≤ i ≤ w − 1, w ≤ j ≤ 2(w − 1). All other factorial effects are assumed
negligible. Then the quasi-orthogonal array of Theorem 3 provides a universally
optimal saturated plan for the above experiment under the stated model.

Theorem 4. Let there exist orthogonal arrays OA(N,n−r+1,m×mr+1×· · ·×
mn, g1) and OA(m, r,m1 × · · · × mr, g2), where g1 = 2s1 + i and g2 = 2s2 + j,
s1, s2 being positive integers, i, j = 0, 1. Then there exists a quasi-orthogonal
array QOA(N,n,m1 × · · · × mr × mr+1 × · · · × mn, T ∗) with T ∗ a set whose
elements are the rows of the matrix(

1( n−r
g1−1)

⊗ A(r)(g2) A(n−r)(g1−1) ⊗ 1( r
g2

)
O A(n−r)(g1)

)
.

Proof. Replacing the m symbols in the first column of the OA(N,n−r+1,m×
mr+1 × · · ·×mn, g1) by the rows of the array OA(m, r,m1 × · · ·×mr, g2), we get
the required quasi-orthogonal array.
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Fractional factorial plans represented by the quasi-orthogonal arrays of The-
orem 4 involve n factors, say G1, . . . , Gr and F1, . . . , Fn−r, where for 1 ≤ k ≤ r,
Gk appears at mk levels, while for 1 ≤ l ≤ n−r, Fl appears at mr+l levels. These
plans are universally optimal under a model M1, where the model M1 is such
that Ωf contains binary n-tuples corresponding to (i) the mean; (ii) all effects
involving at most s2 (r) factors among the first r factors, if g2 < r (g2 = r);
(iii) all effects involving at most s1 factors among the last (n− r) factors; (iv) all
interactions involving at most s2 factors among the first r factors and at most
(s1 + i−1) factors among the last (n−r) factors for i = 0, 1, if g1 > 2 and g2 < r;
(iv′) all interactions involving at most r factors among the first r factors and at
most (s1 + i− 1) factors among the last (n− r) factors for i = 0, 1, if g1 > 2 and
g2 = r.

Also, if j = 1, the set Ωt − Ωf contains binary n-tuples corresponding to
(v) (s2 + 1)-factor interactions among the first r factors; (vi) all interactions
involving (s2 + 1) factors among first r factors and at most (s1 + i − 1) factors
among the last (n − r) factors, for i = 0, 1, if g1 > 2. If j �= 1, then M1 is such
that Ωt − Ωf is null i.e., M1 ≡ M1(Ωf ,Ωf ).

Under the model M1, the plan represented by the quasi-orthogonal array
of Theorem 4 is universally optimal. In contrast to the model M1, consider an-
other model M2 which is such that Ωf contains binary n-tuples corresponding to
(i) the mean; (ii) all effects involving at most s2 factors among the first r factors;
(iii) all effects involving at most s1 factors among the last (n− r) factors; (iv) all
interactions involving at most s2 factors among the first r factors and at most
(s1 − 1) factors among the last (n − r) factors, if g1 > 3.

Also, if (i, j) �= (0, 0), the set Ωt−Ωf contains binary n-tuples corresponding
to (v) (s2 +1)-factor interactions among the first r factors, if j = 1; (vi) (s1 +1)-
factor interactions among the last (n − r) factors, if i = 1; (vii) all interactions
involving (s2 + 1) factors among first r factors and at most (s1 + i − 1) factors
among the last (n−r) factors (i = 0, 1), if j = 1 and g1 > 2; (viii) all interactions
involving at most s2 factors of the first r factors and s1 factors among the last
(n − r) factors if i = 1.

Then a fractional factorial plan represented by the quasi-orthogonal array of
Theorem 4 is universally optimal under M2 as well.

Example 3. Consider the orthogonal arrays OA(32, 4, 8×23 , 3) and OA(8, 5, 4×
24, 2). Then we have s1 = 1, i = 1 and s2 = 1, j = 0. Replacing the 8 symbols
in the first column of the first array by the rows of the second array, one gets
an array with 32 rows and 8 columns, the first column having four symbols
and the remaining columns having two symbols each. This array is a quasi-
orthogonal array QOA(32, 8, 4 × 27, T ∗), where the elements of T ∗ are the rows



914 KASHINATH CHATTERJEE, ASHISH DAS AND ALOKE DEY

of the following matrix: (
13 ⊗ A(5)(2) A(3)(2) ⊗ 110

O 1′
3

)
.

The 32-run plan represented by this quasi-orthogonal array is universally
optimal under a model M1 that includes the mean, all main effects and all two-
factor interactions involving any one of the first five factors and any one of the
last three factors, assuming that all other factorial effects not included in the
model are absent. Note that this plan is saturated under M1. The plan is also
universally optimal under a model M2 which is such that Ωf contains binary
8-tuples corresponding to the mean and all main effects, and Ωt − Ωf contains
binary 8-tuples corresponding to all two-factor interactions among the last three
factors and all two-factor interactions involving any one of the first five factors
and any one of the last three factors.

As stated earlier, plans represented by quasi-orthogonal arrays can be used
for planning experiments for quality improvement. Thus, from Theorem 4 with
g1 = 3 and g2 = 2, one can obtain optimal plans for an experiment having r

control factors and n− r noise factors. For instance, if there are 5 control factors
and 3 noise factors, then the 32-run saturated plan of Example 3 is optimal for
the estimation of the mean, main effects of the control and noise factors and the
15 control versus noise two-factor interactions.

Remark. Under a model M(Ωf ,Ωf ), fractional factorial plans based on quasi-
orthogonal arrays can be saturated in some cases. Such a saturated plan does not
provide an internal estimate of the error variance and thus precludes the use of
a standard F -test for testing the significance of the relevant factorial effects. In
such a situtation, one might like to add one or more runs to the quasi-orthogonal
array to get an estimate of the error variance. The question that arises then
is how to add the run(s) so that the resulting plan is also optimal in some
sense for estimating the relevant parameters in the model. The optimality of
orthogonal array plus one run plans, when the original orthogonal array is of
even strength (= 2α) and the model includes the mean and all factorial effects
involving α factors or less, has been tackled recently by Mukerjee (1999). The
result of Mukerjee (1999) in the context of quasi-orthogonal arrays, under a
model M(Ωf ,Ωf ) can be extended, following essentially the same arguments as
in Mukerjee (1999). With reference to a model M(Ωf ,Ωf ), giving rise to the set
S, suppose there exists a quasi-orthogonal array QOA(N−1, n,m1×· · ·×mn, S∗),
and let d0 ∈ DN be obtained by adding any one run to the N − 1 runs given by
the array. Then, following Mukerjee (1999), it can be shown that d0 is optimal
in DN with respect to every generalized criterion of type 1 (cf. Cheng (1980))
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if HCF(mi
xi , 1 ≤ i ≤ n, xi �= 0) ≥ 2 for each x = x1 . . . xn ∈ S∗, where HCF

stands for the highest common factor.
Note that the plan obtained by adding just one run to a saturated plan

represented by a quasi-orthogonal array is the smallest plan providing an internal
estimate of the error. This estimate, however, may not be very precise as it is
based on only one degree of freedom. The issue of optimality of plans obtained
by adding two or more runs to a plan represented by quasi-orthogonal arrays
remains open.
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