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Abstract: This paper establishes central limit theorems and invariance principles
for functionals of one-sided linear processes. These results are applied to long-
range dependent sequences whose covariances are summable but not absolutely
summable. We also consider empirical processes and 0-crossings for linear processes
whose innovations may have infinite variance. Comparisons with earlier results are
indicated.
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1. Introduction

In this paper, we consider central limit theorems for additive functionals of a
moving-average process Xn =

∑∞
i=0 aiεn−i, ai ∈ R, n ∈ Z, where {ε, εi, i ∈ Z} are

i.i.d. random variables. The classical ARMA models with causality are typical
examples of such processes. Consider a univariate function or instantaneous
transformation K : R �→ R satisfying E[K(X0)] = 0, and define the partial sum
Sn(K) =

∑n
i=1 K(Xi). In statistical inference for time series, it is of critical

importance to know the asymptotic behavior of Sn(K). This problem has been
considered by many authors and we only provide a brief account of some of them.
Earlier papers mainly deal with the case where the sequence {Xn} is Gaussian.
A well known one is by Taqqu (1975), in which central and non-central limit
theorems are proved by using the Hermite expansion of the function K(·). For
the case of non-normal innovations εi, prior works focus on some special forms of
K(·). For example, Davydov (1970) considers the special case K(x) = x, which
is also discussed in Phillips and Solo (1992), while Giraitis and Surgailis (1986)
consider Appell polynomials. The recent work of Ho and Hsing (1996, 1997)
represents the first attempt to deal with general univariate functions. Moreover,
in Hsing (1999) the case where the innovations obey stable laws is analyzed.

An important feature of Ho and Hsing’s method is briefly presented next.
The authors discovered an interesting martingale structure for the one-sided lin-
ear process:

K(X0) − E[K(X0)] =
∞∑
i=0

{E[K(X0)|E−i] − E[K(X0)|E−i−1]},
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where Ei = (. . . , εi−1, εi). It is clear that this decomposition induces a martingale
difference sequence which, surprisingly, had not received much attention in the
earlier literature. However, their martingale structure does not seem to work
well for non-instantaneous transformations.

Let the additive functional K(·) be l-variate for some fixed l ∈ N, and
define Sn,l(K) =

∑n
i=1 K(Xi−l+1, . . . ,Xi−1,Xi). For example, the 0-crossings

of {Xk, 1 ≤ k ≤ n} require l = 2, corresponding to the kernel K(x, y) =
1[xy≤0] − P(X0X1 ≤ 0) on the plane, where 1E is the indicator function of event
E. Furthermore, sample covariances involve multivariate K. Ho and Sun (1987)
obtain central limit theorems for Sn,l(K) when {Xn} is stationary Gaussian.

The recent work of Maxwell and Woodroofe (2000) provides new insight
into asymptotic normality for additive functionals of general Markov chains. It
is shown that the sufficient conditions proposed therein are almost necessary
for asymptotic normality with

√
n-norming. We apply their result to handle

Sn,l(K) by taking advantage of the linear structure of moving-average processes.
In the special case l = 1, the results are comparable to those by Ho and Hsing
(1997) when the norming sequence is

√
n. However, we are able to obtain limit

theorems under conditions which appear to be simpler than theirs, although they
have different ranges of applications.

Our general result allows us to consider long-range dependent (LRD) se-
quences with spectral density having multiple singularities away from the ori-
gin, which extends the concept of the so-called cyclic fractionally integrated au-
toregressive moving-average (FARIMA) models (See Robinson (1997) and Gray,
Zhang and Woodward (1989)). In this case, we derive central limit theorems
with a

√
n-norming sequence.

The paper is organized as follows. Notation and main results are given
in Section 2. These results are applied in Section 3 to LRD sequences whose
covariances are summable, but not absolutely summable. Section 4 focuses on
empirical processes and 0-crossings, where asymptotic normality and invariance
principles are derived under some smoothness assumptions on the characteristic
function of ε. The proofs of results in Section 2 are given in Section 5. Section
6 discusses further developments and conjectures.

2. Notation and Main results

Let Xn =
∑∞

i=0 aiεn−i be a one-sided linear process, where {εi, i ∈ Z} are
i.i.d. innovations. We assume throughout the paper that Eε = 0, Eε2 = 1 except
in Section 4, where infinite variance is allowed. By Kolmogorov’s Three Series
Theorem, Xn exists almost surely if and only if the sequence {ai, i = 0, 1, . . .}
satisfies

∑∞
i=0 a2

i < ∞. We denote its tail by At =
∑∞

i=t a2
i . When n ≥ 1, define
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the truncated processes Xn,+ and Xn,− of Xn by

Xn =
n−1∑
i=0

aiεn−i +
∞∑

i=n

aiεn−i =: Xn,+ + Xn,−. (1)

Denote the Lebesgue shift process by En = (. . . , εn−1, εn); then Xn,− = E[Xn|E0].
Let πl, l ∈ N, be the joint distribution of (X1, . . . ,Xl). Furthermore, for k ∈
Z, define the l-dimensional random vectors Wk = (Xk−l+1, . . . ,Xk). The di-
mension l is assumed to be fixed throughout the paper. Next let Wk,+ =
(Xk−l+1,+, . . . ,Xk,+) and Wk,− = (Xk−l+1,−, . . . ,Xk,−) be the corresponding
truncated vectors. In this paper, we are interested in the asymptotic distribu-
tions of Sn(K) = K(W1) + . . . + K(Wn), where K ∈ L2

0(πl) and

L2
0(πl) =

{
K(·) : E[K(W0)] =

∫
Rl

K(w)πl{dw} = 0,
∫

Rl
K2(w)πl{dw} < ∞

}
.

We denote by ‖ · ‖p, p ≥ 1, the norm in Lp, i.e., ‖X‖p = [E(|X|p)]1/p, and
‖ · ‖ = ‖ · ‖2. Let |x − y| be the usual Euclidean distance. Clearly, there exists a
measurable function g on R

M, where M = (. . . ,−1, 0), such that g(En) = K(Wn).
We introduce the transition operator

(Qng)(e) = E[K(Wn)|E0 = e] = E[g(En)|E0 = e], e ∈ R
M, (2)

where {Qi, i = 0, 1, . . .} forms a semi-group due to the Markov property of En.
The partial potential operator Vn is given by

(Vng)(e) =
n−1∑
k=0

(Qkg)(e) = E[Sn(K)|E1 = e]. (3)

When l = 1, similarly to Ho and Hsing (1997) we define Kn(x) = E[K(Xn,++x)],
and then (Qng)(E0) is nothing but Kn(Xn,−). A similar definition exists for the
multivariate case:

Kn(y1, . . . , yl) = E[K(Xn−l+1,+ + y1,Xn−l+2,+ + y2, . . . ,Xn,+ + yl)] (4)

with (Qng)(E0) = Kn(Xn−l+1,−,Xn−l+2,−, . . . ,Xn,−).
Let ∆(F,G) = inf{ε > 0 : G(x − ε)− ε ≤ F (x) ≤ G(x + ε) + ε for all x ∈ R}

be the Lévy distance between two distribution functions. Denote by ρ(·, ·)
the Prokhorov metric between probability measures on the space D[0, 1] (see
Billingsley (1968) for definitions). Let Fn(e; z) be the conditional probability
P[n−1/2Sn(K) ≤ z|E0 = e], and F#

n (e; t), t ∈ [0, 1), be the distribution of the par-
tial sum process IBe

n(t) = n−1/2S�nt�(K) given E0 = e, where IBe
n(1) = IBe

n(1−),
and where 	z
 denotes the smallest integer not less than z. We adopt the standard
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notation IB for a standard Brownian motion on [0, 1] and N(0, σ2) for a normal
random variable with mean zero and variance σ2. Maxwell and Woodroofe (2000)
derive the following theorem, it is a significant improvement over the classical
result by Gordin and Lifsic (1978).

Theorem 1. (Maxwell and Woodroofe). Let {En, n ∈ Z} be a stationary ergodic
Markov chain, and define Sn(g) =

∑n
i=1 g(Ei), where E[g(E1)] = 0, E[g2(E1)] <

∞. If
∞∑

n=1

n− 3
2 ‖(Vng)(E0)‖ < ∞, (5)

then σ2 = limn→∞ n−1
E[S2

n(g)] exists and is finite, and

lim
n→∞E{∆[N(0, σ2), Fn(E0; ·)]} = 0. (6)

Moreover, if there exist p > 2 and κ < 1/2 such that E[|g(E1)|p] < ∞ and
‖(Vng)(E0)‖ = O(nκ), then

lim
n→∞E{ρ[σIB,F#

n (E0)]} = 0. (7)

Theorem 1 in conjunction with (4) readily yields the corollary below. When
l = 1, the corollary and the central limit theorem for a short-range dependent
process {Xn} given in Ho and Hsing (1997) have different ranges of applications.
The latter paper assumes the existence of the derivatives of Kn(·) as well as
the finiteness of the fourth moments of local maxima of |dKn(t)/dt|, while our
corollary requires no differentiability. However only

∑∞
n=1 |an| < ∞ is imposed

in their paper. This condition is weaker than
∑∞

n=1 n−1/2
√

An < ∞ by Lemmas
1 and 2 if Kn(·) satisfies (9) with α = β = 1. The difference between the two
conditions on the summability of an is minor in view of Remark 1 below.

Corollary 1. If
∑∞

n=1 n−1/2‖Kn(Wn,−)‖ < ∞, then we have (6) and hence
Sn(K)/

√
n ⇒ N(0, σ2

K). If in addition E[|Kn(W1)|p] < ∞ and ‖Kn(Wn,−)‖ =
O(nκ−1) for some p > 2 and κ < 1/2, then (7) holds and {n−1/2S�nt�(K), 0 ≤
t ≤ 1} ⇒ {σKIB(t), 0 ≤ t ≤ 1}.
Lemma 1. If an ≥ 0 for all n ∈ N, then

∞∑
n=1

an ≤ 3
∞∑

n=1

n−1/2
√

An. (8)

Remark 1. If an is of the form n−γL(n), γ ≥ 1, for some slowly varying function
L(·), then

∑∞
n=1 |an| < ∞ implies

∑∞
n=1 n−1/2

√
An < ∞. This is obviously true

for γ > 1. For γ = 1, by Karamata’s theorem (see Bingham, Goldie and Teugels
(1987)), An ∼ L2(n)n−1 and then the equivalence is clear again.
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Various sufficient conditions ensuring (5) in Theorem 1 are presented below.
Specifically, Lemma 2 gives bounds for ‖(Qng)(E0)‖, which leads to a central
limit theorem for short-range dependent (SRD) sequences (cf. Corollary 2).
Theorems 2 and 3 provide bounds on ‖(Vng)(E0)‖ with applications to some
special LRD sequences (cf. Section 3). The proofs of Theorems 2 and 3 are
deferred to Section 5. Recall (4) for the definition of Kn.

Lemma 2. Suppose that there exist 0 < α ≤ 1 ≤ β < ∞ with E[|ε|2β ] < ∞.
Further suppose that either (a)

Cn(α, β) := sup
x �=0

|Kn(x) − Kn(0)|
|x|α + |x|β < M < ∞ (9)

holds for all sufficiently large n, or (b)

E[M2
α,β(W1)] < ∞ (10)

holds, where Mα,β(x) = supy �=x |K(x) − K(y)|/(|x − y|α + |x − y|β). Then as

n → ∞, ‖(Qng)(E0)‖ = O(Aα/2
n−l).

Corollary 2. Assume that (9) or (10) holds with α = 1 and E[|ε|2β ] < ∞ for
some β ≥ 1. Let an = n−γL(n) for some γ > 1. Then we have (6), and hence
n−1/2Sn(K) ⇒ N(0, σ2

K) for some σ2
K ∈ [0,∞). If in addition, E[|K(W1)|p] < ∞

for some p > 2, then (7) holds and {n−1/2S�nt�(K), 0 ≤ t ≤ 1} ⇒ {σKIB(t), 0 ≤
t ≤ 1}.

Let {ε′i, i ∈ Z} be another sequence of innovations such that {εi, ε
′
i, i ∈ Z} are

i.i.d., and the coupled version X ′
n = Xn,+ + X ′

n,− :=
∑n−1

i=0 aiεn−i +
∑∞

i=n aiε
′
n−i;

let W ′
k,l = (X ′

k−l+1, . . . ,X
′
k). Then W ′

k,l is independent of E0. Let the gradient
∇K(x1, . . . , xl) = (∂K/∂x1, . . . , ∂K/∂xl)T, T the transpose of a vector. Write
sn =

∑n
i=0 ai.

Theorem 2. Suppose that K has gradient ∇K satisfying

‖K(Wk) − K(W ′
k) − (Wk − W ′

k)∇K(Wk)‖
‖Wk − W ′

k‖2
≤ M < ∞ (11)

for all k ≥ n0. Then

‖(Vng)(E0)‖ = O
[
M

n∑
k=1

Ak

]
+ O[λn|E∇K(W1)|], (12)

λn :=
[ ∞∑

i=0

(sn+i − si)2
] 1

2 . (13)
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Remark 2. If K is linear, then M in (11) is 0 and the first term on the right
side of (12) vanishes. If K is quadratic, then E∇K(W1) in (12) becomes 0.

Theorem 3. Suppose that K has gradient ∇K with

M(x) := sup
y �=x

|∇K(x) −∇K(y)|
|x − y|α + |x − y|β (14)

satisfying E[M2(W1)] < ∞ for some 0 < α ≤ 1 ≤ β < ∞. If E[|ε|2+2β ] < ∞,
then

‖(Vng)(E0)‖ = O
[ n∑

k=1

A
(1+α)/2
k

]
+ O[λn|E∇K(W1)|], (15)

where λn is defined in (13).

3. LRD Processes with Summable Covariances

A particularly interesting case is when the λn defined in (13) satisfies

λ := sup
n∈N

λn < ∞. (16)

Then the second term in (12) or (15) contributes only O(1) to ‖(Vng)(E0)‖.
Proposition 1 provides an equivalent statement of the finiteness of λ defined in
(16). Proposition 2 asserts that (16) implies the summability of the covariances.
Some special sequences are constructed in Propositions 3 and 4 without absolute
summability of the covariances.

Proposition 1. The quantity λ in (16) is finite if and only if the sum
∑∞

i=1 ai

exists and
∞∑
i=1

[ ∞∑
j=i

aj

]2
< ∞. (17)

Remark 3. Condition (17) appears as inequality (3.57) in Hall and Heyde (1980,
page 146) for a one-sided linear process.

Recall that εn are i.i.d. with mean 0 and variance 1. Let at = 0 for t < 0.
Then Γ(k) =

∑∞
t=−∞ atat+k is the covariance function of Xn.

Proposition 2. Suppose that (16) holds. Then limk→∞
∑k

t=−k Γ(k)=(
∑∞

i=0ai)2.

Proposition 3. Let {bn, n ∈ N} be a square summable sequence that converges
non-increasingly to 0 when n ≥ n0 for some n0 ∈ N. Then the sequence an =
bn cos(θ1 + nω1), where ω1 �= 0 (mod 2π), is summable and satisfies (17), hence
λ is finite.
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Proposition 4. Suppose that an = n−γL(n) cos(θ1 + nω1) for n ∈ N, where
1/2 < γ < 1, ω1 �= 0 (mod 2π) and that

∞∑
j=n

|L(j + 1) − L(j)|
jγ

= O
[
L1(n)

nγ

]
(18)

for some slowly varying function L1(n). Then λ defined in (16) is finite.

We call a function L(·) very slowly varying if (18) holds for all 1/2 < γ < 1.
Clearly, if L(·) is monotone, then it is very slowly varying. A simple example for
a not very slowly varying function is given by L(n) = 1 + (−1)n/ log n, n ≥ 2.
Let L(x) be positive for sufficiently large x. Recall that L(x) is normalized or in
the Zygmund Class if for all ε > 0, xεL(x) is ultimately increasing and x−εL(x)
is ultimately decreasing (see Bingham et al (1987, page 24) for a definition and
basic properties). The following lemma shows that a normalized slowly varying
function is very slowly varying.

Lemma 3. If there exists an ε > 0 and an x0 > 0 such that xεL(x) is increasing
and x−εL(x) is decreasing when x > x0, then (18) holds for all 1/2 < γ < 1.

The proof of Lemma 3 is straightforward. Let n > x0 + 1. By the mono-
tonicity of L we get

|L(n + 1) − L(n)| ≤ |L(n)| × max
[(

n + 1
n

)ε

− 1, 1 −
(

n

n + 1

)ε]
= O

[
L(n)

n

]
,

which yields (18) by Karamata’s theorem. Proposition 4 and Theorem 2 together
yield.

Corollary 3. Let an be the sequence defined in Proposition 4 with 3/4 < γ < 1.
Suppose that K satisfies (11). Then we have (6), and hence n−1/2Sn(K) ⇒
N(0, σ2

K) for some σ2
K ∈ [0,∞). If, in addition, E[|K(W1)|p] < ∞ for some

p > 2, then (7) holds and {n−1/2S�nt�(K), 0 ≤ t ≤ 1} ⇒ {σKIB(t), 0 ≤ t ≤ 1}.

3.1. Examples

If ωi �= 0 (mod 2π), 1 ≤ i ≤ I, then the sequence an =
∑I

i=1 bn,i cos(θi +nωi)
satisfies (16) when bn,i is either eventually monotone as in Proposition 3, or is of
the form n−γL(n) with a slowly varying function L(n) satisfying (18).

Let bn,i = n−γi , 1 ≤ i ≤ I, where 1/2 < γi < 1, and an =
∑I

i=1 bn,i cos(θi +
nωi), where ωi �= 0 (mod 2π). Then the associated spectral density function
f(ω) = |∑∞

t=0 at exp(
√−1ωt)|2/(2π) has poles at ω = ωi. This linear process

has multiple singularities away from 0. By Proposition 2, the covariances of such
processes are summable. However, they are not absolutely summable. To see
this, take I = 1 and a0 = 1, an = n−γ cos(nω), 1/2 < γ < 1. Then Γ(k) =
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ckk
1−2γ cos(kω), where ck → c �= 0. Hence the Γ(k) are oscillatory and not

absolutely summable. So Xk is LRD. Theorem 2 can be applied to guarantee the
asymptotic normality of

∑n
t=1 Xt/

√
n by taking K(x) = x.

The spectral density of a cyclic FARIMA (Robinson (1997)) has one pole
away from 0.

4. Empirical Processes and 0-crossings

Let φ(·) be the characteristic function of ε, i.e., φ(t) = E[exp(tε
√−1)], t ∈ R.

In this section, ε is allowed to have infinite variance. Suppose that there ex-
ists 0 < δ ≤ 2 for which E(|ε|δ) < ∞ and Eε = 0 when 1 ≤ δ ≤ 2. Then
by the Kolmogorov Three Series Theorem (see Corollary 5.1.3 in Chow and Te-
icher (1988)), Xn =

∑∞
i=0 aiεn−i exists almost surely if

∑∞
t=0 |at|δ < ∞. Set

Ak(δ) :=
∑∞

t=k |at|δ . For any fixed s1, . . . , sl ∈ R, let Sn(K) =
∑n

t=1 K(Wt),
where Ks1,...,sl

(x1, . . . , xl) := 1[x1≤s1,...,xl≤sl] − P(X1 ≤ s1, . . . ,Xl ≤ sl).
Empirical processes of linear processes have been discussed by several au-

thors. Here we only mention a few recent results. Ho and Hsing (1996) derive
asymptotic expansions of the empirical process of long range dependent linear
processes, while Giraitis, Koul, and Surgailis (1996) obtain functional non-central
limit theorems. Using the martingale difference decomposition presented in Sec-
tion 1, Giraitis and Surgailis (1999) recently establish central limit theorems for
the empirical processes. Hsing (1999) discusses general functionals K and sym-
metric α stable (SαS) innovations. All these papers deal with the univariate case.
The following theorem examines the limiting behavior for multivariate empirical
processes.

Theorem 4. Suppose there exists an r ∈ N such that
∫ ∞
−∞ |φ(t)|rdt < ∞, and

that #{i : ai �= 0} = ∞. Then ‖Kn(Wn,−)‖2 = O[An−l(δ)]. Hence (a) if∑∞
n=1[An(δ)/n]1/2 < ∞, then Sn/n1/2 ⇒ N(0, σ2

K) for some σK = σK(s1, . . . , sl)
≥ 0; (b) if in addition An(δ) = O(n−q) for some q > 1, then {S�nt�/

√
n, 0 ≤ t ≤

1} ⇒ σKIB.

Before proving Theorem 4, let us discuss its conditions.

Remark 4. It is easy to see that
∫ ∞
−∞ |φ(t)|rdt < ∞ for r > 2/δ + 2 if there

exist constants C, δ > 0 such that |φ(t)| ≤ C/(1+ |t|)δ for all t ∈ R, as in Giraitis
et al. (1996) and Giraitis et al. (1999). The aforementioned inequality places a
rather weak restriction on the smoothness of the distribution function of ε.

Remark 5. If #{i : ai �= 0} < ∞, then Xn is an m-dependent sequence (see
Hoeffding and Robbins (1948)). Hence the central limit theorems become a direct
consequence.
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Proof of Theorem 4. Choose i(1) < i(2) < . . . < i(r) such that a∗ =
min{|ai(j)| : 1 ≤ j ≤ r} > 0. Then by the inversion formula, for n > i(r),
the density function fn(x) of Xn,+ satisfies

sup
x∈R

fn(x) ≤ 1
2π

∫
R

n∏
i=0

|φ(ait)|dt ≤ 1
2π

∫
R

r∏
j=1

|φ(ai(j)t)|dt

≤ 1
2π

r∏
j=1

{∫
R

|φ[ai(j)t]|rdt

}1/r

≤ 1
2πa∗

[∫
R

|φ(t)|rdt

]1/r

< ∞.

Take n > i(r) + l and let Fn,l(·) be the joint distribution function of Wn,+

with density function fn,l(·). Then by the form of K(·), we have that

Kn(x1, . . . , xl) = Fn,l(s1 − x1, . . . , sl − xl) − P(X1 ≤ s1, . . . ,Xl ≤ sl).

Define the event Ei(xi) = {Xn−l+i,+ ≤ si − xi}. Then

|Kn(x1, . . . , xl) − Kn(0, . . . , 0)|
≤ E|1E1(x1)∩...El(xl) − 1E1(0)∩...El(0)|

≤
l∑

i=1

E|1Ei(xi) − 1Ei(0)| ≤
l∑

i=1

∫ si+|xi|

si−|xi|
fn−l+i(x)dx = O(|x|)

since Xn−l+i,+ has a density uniformly bounded for all sufficiently large n. Ob-
serve that K is bounded by 1, |Kn(Wn,−) − Kn(0, . . . , 0)| = O[min(1, |Wn,−|)].
Recall that W ′

n,− and Wn,− are i.i.d., and |Kn(Wn,−)−Kn(W ′
n,−)| ≤ |Kn(Wn,−)−

Kn(0, . . . , 0)| + |Kn(W ′
n,−) − Kn(0, . . . , 0)|, then ‖Kn(Wn,−)‖2 = ‖Kn(Wn,−) −

Kn(W ′
n,−)‖2/2 = O(1) E {[min(1, |Wn,−|)]2} = O(1) E [|Wn,−|δ] = O[An−l(δ)],

where the last step is due to the claim E[|Xn,−|δ] = O[An(δ)]. This claim is
obvious when 0 < δ ≤ 1. Now assume 1 < δ ≤ 2. Then by the Burkholder-Davis-
Gundy inequality (cf. Theorem 11.3.1 in Chow and Teicher (1988)), there exists
C > 0 such that E[|Xn,−|δ] ≤ CE{[∑∞

t=n |atεn−t|2]δ/2} ≤ C
∑∞

t=n E[|atεn−t|2]δ/2

= O[An(δ)]. The rest follows from Corollary 1.

The next corollary deals with the 0-crossings of a SRD sequence {Xn}. Let
K(x, y) = 1[xy≤0]−P(X0X1 ≤ 0) and Nn(K) be the number of times the sequence
{Xk, 1 ≤ k ≤ n} crosses 0. Then Sn(K) = Nn(K) − nP(X0X1 ≤ 0). There is a
substantial history of 0-crossings with various applications to signal processing,
biomedical engineering, seismology, etc. For example, Niederjohn and Castelaz
(1978) discuss 0-crossing analysis (ZCA) method for speech sound classification
and show its effectiveness for the characterization of speech sounds. Further ref-
erences to this problem can be found in Slud (1994). Kedem (1994) suggests that
the 0-crossing analysis can provide an alternative approach in time series analy-
sis to the popular time-domain approach based on the auto-covariance function
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and frequency-domain approach based on spectral density. Malevich (1969) and
Cuzick (1976) derive central limit theorems. All these articles deal with station-
ary Gaussian sequences Xn. Corollary 4 may have application to the statistical
inference based on 0-crossing analysis.

Corollary 4. Assume the conditions of Theorem 4 hold. Then there exists
σK ≥ 0 such that {S�nt�/

√
n, 0 ≤ t ≤ 1} ⇒ σKIB.

Proof of Corollary 4. We compute again, for all x, y ∈ R,

Kn(x, y) = E1[(Xn−1,++x)(Xn,++y)≤0] − P(X0X1 ≤ 0)
= Fn−1(−x) + Fn(−y) − 2Fn,2(−x,−y) − P(X0X1 ≤ 0).

Then |Kn(x, y)−Kn(0, 0)| ≤ |Fn−1(−x)−Fn−1(0)|+|Fn(−y)−Fn(0)|+2|Fn,2(−x,
−y) − Fn,2(0, 0)|, which satisfies (9) by the first assertion of Theorem 4.

5. Proofs

This section provides the proofs of results given in Section 2. We first need
the following simple lemma.

Lemma 4. Assume that E[ε] = 0, E[ε2] < ∞, and E[|ε|2p] < ∞, p > 0. Then
E[|Xn,−|2p] = O(Ap

n).

Proof of Lemma 4. If 0 < p ≤ 1, by Hölder’s inequality we have E[|Xn,−|2p] ≤
{E[|Xn,−|2]}p = O(Ap

n). If p > 1, the Marcinkiewicz-Zygmund inequality (see
Corollary 10.3.3, Chow and Teicher (1988)) yields E(|Xn,−|2p) = O{E[

∑∞
i=0

(an+iε−i)2]p}, which is O(Ap
n) via Minkowski’s inequality ‖∑∞

i=0(an+iε−i)2‖p ≤∑∞
i=0 ‖(an+iε−i)2‖p = O(An).

Proof of Lemma 1. We assume without loss of generality that the sequence
an, n ∈ N is non-increasing, since if an0 < an0+1 for some n0 ∈ N, then the right
hand side of (8) will be smaller while the left remains the same by exchanging an0

with an0+1. Now (8) follows immediately from An ≥ na2
2n and

∑∞
n=1 n−1/2

√
An ≥∑∞

n=1 a2n ≥ 1
2

∑∞
n=2 an.

Proof of Lemma 2. We apply coupling to prove this. Assume n > l. (a) First
observe that E[K(W ′

n)|E0] = E[K(W ′
n)] = 0 since W ′

n and E0 are independent.
Then using (a + b)2/2 ≤ a2 + b2 and E(|Z|p) ≤ ‖Z‖p for p ≤ 2, we have

‖(Qng)(E0)‖2 =
1
2

E[|Kn(Wn,−) − Kn(W ′
n,−)|2]

≤ E[|Kn(Wn,−) − Kn(0)|2] + E[|Kn(W ′
n,−) − Kn(0)|2]

≤ 4C2
n(α, β)E[|Wn,−|2α + |Wn,−|2β ]

≤O[‖Wn,−‖2α + E(|Wn,−|2β)]
= O(Aα

n−l) + O(Aβ
n−l) = O(Aα

n−l).



CENTRAL LIMIT THEOREMS 645

The last step is due to Lemma 4. (b) By (10) and Cauchy’s inequality,

|(Qng)(E0)|2
= |E[K(Wn) − K(W ′

n)|E0]|2

≤ {E[Mα,β(W ′
n) × (|Wn,− − W ′

n,−|α + |Wn,− − W ′
n,−|β)|E0]}2

≤ 2{E[M2
α,β(W ′

n)|E0]}{E[|Wn,− − W ′
n,−|2α + |Wn,− − W ′

n,−|2β |E0]}
= 2‖Mα,β‖2[O(‖W ′

n,−‖2) + 22α|Wn,−|2α + 22β |Wn,−|2β]

which, in view of Lemma 4, yields ‖(Qng)(E0)‖2 = O(Aα
n−l).

Proof of Theorem 2. Let Rk = K(Wk) − K(W ′
k) − (Wk,− − W ′

k,−)∇K(W ′
k),

and c = (c1, . . . , cl)T = E[∇K(W1)]. Then for k ≥ l0 = l + n0 + 1,

(Qkg)(E0) = E[Rk|E0] + Wk,−c− E[W ′
k,−∇K(W ′

k)] (19)

since E[K(W ′
k)|E0] = 0. By (11), ‖Rk‖ ≤ M‖Wk − W ′

k‖2 = O(MAk−l) as
k → ∞. So

‖(Vng)(E0)‖ ≤
∥∥∥

l0−1∑
k=0

Qkg
∥∥∥ +

∥∥∥
n−1∑
k=l0

Qkg
∥∥∥

≤O(1) +
∥∥∥

n−1∑
k=l0

{E[Rk|E0] + Wk,−c − E[W ′
k,−∇K(W ′

k)]}
∥∥∥

≤O(1)+
n−1∑
k=l0

Ak−lMO(1) +
∥∥∥

n−1∑
k=l0

Wk,−c
∥∥∥+

n−1∑
k=l0

|E[W ′
k,−∇K(W ′

k)]|.

Therefore (12) follows immediately from the inequality

|E[W ′
k,−∇K(W ′

k)]| =
1
2
|E{(Wk,− − W ′

k,−)[∇K(Wk) −∇K(W ′
k)]}|

≤ 1
2
‖(Wk,− − W ′

k,−)[∇K(Wk) −∇K(W ′
k)]‖

≤ 1
2
[‖K(Wk) − K(W ′

k) − (W ′
k − Wk)∇K(Wk)‖

+‖K(W ′
k) − K(Wk) − (Wk − W ′

k)∇K(W ′
k)‖]

≤ 1
2
× 2M‖Wk − W ′

k‖2 = O(MAk−l)

in view of (11), and from

∥∥∥
n−1∑
k=l0

Wk,−c
∥∥∥ =

∥∥∥
n−1∑
k=l0

l∑
j=1

Xk−l+j,−cj

∥∥∥
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≤
l∑

j=1

|cj | ×
∥∥∥

n−1∑
k=l0

Xk−l+j,−
∥∥∥ = |c| × O[λn + O(1)],

thus proving the theorem.

Proof of Theorem 3. The proof of Theorem 2 can be easily adapted to this
case. Let Rk be defined as in the previous proof. By the Mean Value Theorem,
there exists a ξ with |ξ − W ′

k| ≤ |Wk − W ′
k| = |Wk,− − W ′

k,−| such that Rk =
(Wk,− − W ′

k,−)[∇K(ξ) − ∇K(W ′
k)]. Whence by Cauchy’s inequality and the

independence between W ′
k and E0, we have

E[|Rk||E0] ≤ E[|Wk,− − W ′
k,−|M(W ′

k)(|ξ − W ′
k|α + |ξ − W ′

k|β)|E0]
≤ {E[M2(W ′

k)]}1/2{E[(|Wk,−−W ′
k,−|1+α+|Wk,−−W ′

k,−|1+β)2|E0]}1/2,

which ensures ‖E[|Rk||E0]‖2 = O(A1+α
k−l ) via Lemma 4. Similarly we have

|E[W ′
k,−∇K(W ′

k)]| = |E{W ′
k,−[∇K(Wk) −∇K(W ′

k)]}| = O(A(1+α)/2
k−l )

by the same argument, which completes the proof in view of the proof of Theo-
rem 2.

Proof of Proposition 1. Observe that λ < ∞ is tantamount to

sup
n≥1

∞∑
i=1

[ n+i−1∑
j=i

aj

]2
< ∞. (20)

This is implied by (17) since

[ n+i−1∑
j=i

aj

]2 ≤ 2
[ ∞∑

j=i

aj

]2
+ 2

[ ∞∑
j=n+i

aj

]2
,

and then

λ ≤ 2
∞∑
i=1

[ ∞∑
j=i

aj

]2
+ 2 sup

n≥1

∞∑
i=1

[ ∞∑
j=n+i

aj

]2
< ∞.

Conversely, recalling sn =
∑n

i=0 ai, sup{|sn| : n ∈ N} < ∞ by (20). Hence there
exists a subsequence n′ ⊂ N and a real number s∗ such that sn′ → s∗ as n′ → ∞.
So for each fixed m ∈ N, sn′+m → s∗ since

∑′(sn′+m − sn′)2 < ∞ due to (20),
where

∑′ sums along the subsequence n′. Therefore, for any fixed I ∈ N, again
by (20) we get

λ ≥ sup
n′≥1

I∑
i=1

[sn′+i−1 − si−1]2 ≥
I∑

i=1

[s∗ − si−1]2,
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which entails limn→∞ sn = s∗ and then (17), since I is arbitrarily chosen.

Proof of Proposition 2. By Proposition 1, the tail τk :=
∑∞

t=k at exists.
For fixed k ∈ N,

∑k
t=−k Γ(t) =

∑
|i−j|≤k aiaj is clearly absolutely summable.

So we can rewrite this sum as τ0sk − ηk + ξk, where ηk =
∑∞

t=0 atτk+1+t and
ξk =

∑∞
t=1 ak+tτt. By Cauchy’s inequality and Proposition 1, as k → ∞, we

have |ηk|2 ≤ (
∑∞

t=0 a2
t )(

∑∞
t=0 τ2

k+1+t) → 0 and |ξk|2 ≤ (
∑∞

t=1 a2
k+t)(

∑∞
t=1 τ2

t ) → 0,
which proves the proposition as sk → τ0.

Proof of Proposition 3. This proof is quite similar to the Proof of Proposi-
tion 4. Observe that hn =

∑n
k=1 cos(θ1 + kω1) satisfies M := supn∈N

|hn| < ∞
since ω1 �= 0 (mod 2π). Then for m > n > n0, by the triangle inequality,

∣∣∣
m∑

k=n

ak

∣∣∣ =
∣∣∣ − bnhn−1 + bmhm +

m−1∑
k=n

(bk − bk+1)hk

∣∣∣ ≤ 2Mbn,

where the last step is due to the monotonicity of bn when n > n0. Therefore an

is summable and Proposition 1 completes the proof since
∑∞

n=1 b2
n < ∞.

Proof of Proposition 4. For simplicity, we prove it in the complex do-
main. Without loss of generality, we assume a0 = 1, an = n−γL(n) exp[(θ1 +
nω1)

√−1], n ∈ N, where L(·) satisfies (18) and ω1 �= 0 (mod 2π). Hence
h(n) =

∑n
k=1 exp[(θ1 + kω1)

√−1] is bounded. For i, n ∈ N,
∣∣∣

n∑
k=1

ak+i

∣∣∣ =
∣∣∣

n∑
k=1

L(k + i)
(k + i)γ

× [h(k + i) − h(k + i − 1)]
∣∣∣

≤O
[L(1 + i)
(1 + i)γ +

L(n + i)
(n + i)γ

]
+

n−1∑
k=1

∣∣∣[L(k + i)
(k + i)γ

− L(k + i + 1)
(k + i + 1)γ

]
h(k + i)

∣∣∣

≤O
[L(1 + i)
(1 + i)γ +

L(n + i)
(n + i)γ

]
+ O

[ n−1∑
k=1

|L(k + i) − L(k + i + 1)|
(k + i)γ

]

+O
{ n−1∑

k=1

∣∣∣L(k + i + 1)
[ 1
(k + i)γ

− 1
(k + i + 1)γ

]∣∣∣}

≤O
[L(1 + i)
(1 + i)γ +

L(n + i)
(n + i)γ

]
+ O

[L1(i)
iγ

]
+ O

[L2(i)
iγ

]
,

where L2(·) is another slowly varying function. The last inequality follows from
(18) and elementary properties of slowly varying functions. So the sequence
{an} is summable. Then, letting n → ∞, the proposition follows in view of
Proposition 1 and the fact that γ > 1/2.

6. Discussion and Further Study

It is clear that the finite dimensional convergence holds for the empirical
process discussed in Section 3. The tightness argument could perhaps be made
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possible by computations of the type performed in Doukhan and Surgailis (1998)
in the space D[0, 1].

For the model with a spectral density having multiple singularities presented
in Section 3.1, we have to assume γi > 3/4 as in Corollary 3 to ensure the invari-
ance principle in view of the term O[M

∑n
k=1 Ak] in (12). We conjecture that the

constraint γi > 3/4 cannot be removed in the following sense. If 1/2 < γi < 3/4
for some i, then we could possibly have some non-central limit theorems where
the limiting distribution is expressed in terms of multiple Wiener-Itô integrals
(see, for example, Theorem 3.1 along with Corollary 3.3 in Ho and Hsing (1997)).
See Rosenblatt (1981) for some relevant results for Gaussian processes.

Edgeworth expansions would naturally be the next topic to study, once cen-
tral limit theorems have been established. To derive an Edgeworth expansion,
Götze and Hipp (1994) discuss linear processes where the coefficients an vanish
exponentially fast, which is a consequence of their ARMA model. We believe
that extensions to general ARIMA models are worth pursuing.
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