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Abstract: DNA microarrays are a new and promising biotechnology which allows the
monitoring of expression levels in cells for thousands of genes simultaneously. The
present paper describes statistical methods for the identification of differentially
expressed genes in replicated ¢cDNA microarray experiments. Although it is not
the main focus of the paper, new methods for the important pre-processing steps
of image analysis and normalization are proposed. Given suitably normalized data,
the biological question of differential expression is restated as a problem in multiple
hypothesis testing: the simultaneous test for each gene of the null hypothesis of
no association between the expression levels and responses or covariates of interest.
Differentially expressed genes are identified based on adjusted p-values for a multiple
testing procedure which strongly controls the family-wise Type I error rate and
takes into account the dependence structure between the gene expression levels. No
specific parametric form is assumed for the distribution of the test statistics and a
permutation procedure is used to estimate adjusted p-values. Several data displays
are suggested for the visual identification of differentially expressed genes and of
important features of these genes. The above methods are applied to microarray
data from a study of gene expression in the livers of mice with very low HDL
cholesterol levels. The genes identified using data from multiple slides are compared
to those identified by recently published single-slide methods.
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1. Introduction

DNA microarrays are a new and promising biotechnology which allows the
monitoring of expression levels in cells for thousands of genes simultaneously.
Microarrays are being applied increasingly in biological and medical research
to address a wide range of problems, such as the classification of tumors or the
gene expression response of yeast to different environmental stress conditions (Al-
izadeh et al. (2000), Alon et al. (1999), Gasch et al. (2000), Golub et al. (1999),
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Perou et al. (1999), Pollack et al. (1999), Ross et al. (2000)). An important
and common question in microarray experiments is the identification of differ-
entially expressed genes, i.e., genes whose expression levels are associated with
a response or covariate of interest. The covariates could be either polytomous
(e.g., treatment/control status, cell type, drug type) or continuous (e.g., dose
of a drug, time), and the responses could be, for example, censored survival
times or other clinical outcomes. The types of experiments include single-slide
c¢DNA microarray experiments, in which one compares transcript abundance (i.e.,
gene expression levels) in two mRNA samples, the red and green labeled mRNA
samples hybridized to the same slide, and multiple-slide experiments comparing
transcript abundance in two or more types of mRNA samples hybridized to differ-
ent slides. Time-course experiments, in which transcript abundance is monitored
over time for processes such as the cell cycle, are a special type of multiple-slide
experiment which will not be discussed here.

The present paper describes statistical methods for the analysis of gene ex-
pression data from multiple-slide cDNA microarray experiments. The experi-
ments which motivated the development of these approaches are part of a study
of lipid metabolism aimed at identifying genes with altered expression in the
livers of mice with very low HDL cholesterol levels (treatment group) compared
to inbred control mice (Callow et al. (2000)). Although it is not the main fo-
cus of the paper, new methods for the important pre-processing steps of image
analysis and normalization are proposed. Given suitably normalized data, the
biological question of differential expression is restated as a problem in multiple
hypothesis testing: the simultaneous test for each gene of the null hypothesis
of no association between the expression levels and the treatment/control sta-
tus. As a typical microarray experiment measures expression levels for several
thousands of genes simultaneously, we are faced with an extreme multiple testing
situation. Special problems arising from the multiplicity aspect include defining
an appropriate Type I error rate and devising powerful multiple testing proce-
dures which control this error rate and take into account the joint distribution
of the test statistics. Our basic approach for identifying differentially expressed
genes consists of two steps: (1) computing a test statistic for each gene, and
(2) obtaining adjusted p-values for a multiple testing procedure which strongly
controls the family-wise Type I error rate and takes into account the dependence
structure between the gene expression levels (Westfall and Young (1993)). No
specific parametric form is assumed for the distribution of the test statistics and a
permutation procedure is used to estimate adjusted p-values. In addition, various
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data displays are suggested for the visual identification of differentially expressed
genes and of important features of these genes.

The paper is organized as follows. The remainder of this section contains a
brief introduction to the biology and technology of cDNA microarrays (Section
1.1) and a discussion of recent proposals for the identification of differentially ex-
pressed genes in single- and multiple-slide experiments (Section 1.2). Section 1.3
presents the microarray experiments which motivated the approaches developed
in the paper. After a summary of our proposed image analysis and normalization
methods, Section 2 describes a multiple testing procedure for identifying differen-
tially expressed genes. Section 3 presents the results of the study and compares
the genes identified using multiple slides to those identified by recently published
single-slide methods. Finally, Section 4 discusses our findings and outlines open
questions.

1.1. Background on cDNA microarrays

The ever-increasing rate at which genomes are being sequenced has opened
a new area of genome research, functional genomics, which is concerned with
assigning biological function to DNA sequences. With the complete DNA se-
quences of many genomes already known (e.g., the yeast S. cerevisae, the round
worm C. elegans, the fruit fly D. melanogaster, and numerous bacteria) and the
recent release of the first draft of the human genome, an essential and formidable
task is to define the role of each gene and understand how the genome functions
as a whole. Innovative approaches, such as the cDNA and oligonucleotide mi-
croarray technologies, have been developed to exploit DNA sequence data and
yield information about gene expression levels for entire genomes. Basic genetic
notions useful for understanding microarray experiments are reviewed next.

A gene consists of a segment of DNA which codes for a particular protein, the
ultimate expression of the genetic information. A deoxyribonucleic acid or DNA
molecule is a double-stranded polymer composed of four basic molecular units
called nucleotides. Each nucleotide comprises a phosphate group, a deoxyribose
sugar, and one of four nitrogen bases. The four different bases found in DNA
are adenine (A), cytosine (C), guanine (G), and thymine (T). The two chains of
the DNA molecule are held together by hydrogen bonds between nitrogen bases,
with base-pairing occurring according to the following rule: G pairs with C,
and A pairs with T. While a DNA molecule is built from a four-letter alphabet,
proteins are sequences of twenty different types of amino acids. The expression
of the genetic information stored in the DNA molecule occurs in two stages:
(i) transcription, during which DNA is transcribed into messenger ribonucleic
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acid or mRNA, a single-stranded complementary copy of the base sequence in
the DNA molecule, with the base uracil (U) replacing thymine; (ii) translation,
during which mRNA is translated to produce a protein. The correspondence
between DNA’s four-letter alphabet and a protein’s twenty-letter alphabet is
specified by the genetic code, which relates nucleotide triplets to amino acids.

Different aspects of gene expression can be studied using microarrays, such as
expression at the transcription or translation level, and subcellular localization
of gene products. To date, attention has focused primarily on expression at
the transcription stage, i.e., on mRNA or transcript levels. Microarrays derive
their power and universality from a key property of DNA molecules described
above, complementary base-pairing, and the term hybridization is used to refer
to the annealing of nucleic acid strands from different sources according to the
base-pairing rules. There are several types of microarray systems, including
the ¢cDNA microarrays developed in the Brown and Botstein labs at Stanford
(DeRisi et al. (1997), Hughes et al. (2001)) and the high-density oligonucleotide
chips from the Affymetrix company (Lockhart et al. (1996)); the brief description
below focuses on the former.

cDNA microarrays consist of thousands of individual DNA sequences printed
in a high-density array on a glass microscope slide using a robotic arrayer. The
relative abundance of these spotted DNA sequences in two DNA or RNA samples
may be assessed by monitoring the differential hybridization of the two samples
to the sequences on the array. For mRNA samples, the two samples or targets are
reverse-transcribed into cDNA, labeled using different fluorescent dyes (usually
a red-fluorescent dye, Cyanine 5 or Cy5, and a green-fluorescent dye, Cyanine 3
or Cy3), then mixed in equal proportions and hybridized with the arrayed DNA
sequences or probes (following the definition of probe and target adopted in The
Chipping Forecast (1999)). After this competitive hybridization, the slides are
imaged using a scanner and fluorescence measurements are made separately for
each dye at each spot on the array. The ratio of the red and green fluorescence
intensities for each spot is indicative of the relative abundance of the correspond-
ing DNA probe in the two nucleic acid target samples. The diagram in Figure
1 describes the main steps in a cDNA microarray experiment; see The Chipping
Forecast (1999) for a more detailed introduction to the biology and technology

of cDNA microarrays and oligonucleotide chips.
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Figure 1. ¢cDNA microarray experiment for apo Al knock-out mice. For
each apo Al knock-out mouse, target cDNA is obtained from liver mRNA
by reverse transcription and labeled using a red-fluorescent dye (Cy5). The
reference sample (green-fluorescent dye Cy3) used in all hybridizations is pre-
pared by pooling ¢cDNA from the 8 C57Bl1/6 control mice. The two target
samples are mixed and hybridized to a microarray containing 6,384 spots.
Following the competitive hybridization, the slides are imaged using a scan-
ner and fluorescence intensity measurements are made separately for each
dye at each spot on the array.

1.2. Identification of differentially expressed genes
1.2.1. Single-slide methods

A number of methods have been suggested for the identification of differ-
entially expressed genes in single-slide cDNA microarray experiments. In such



116 S. DUDOIT, Y. H. YANG, M. J. CALLOW AND T. P. SPEED

experiments, the data for each gene (spot) consist of two fluorescence inten-
sity measurements, (R, G), representing the expression level of the gene in the
red (Cyb) and green (Cy3) labeled mRNA samples, respectively (the most com-
monly used dyes are the cyanine dyes, Cy3 and Cy5, however, other dyes such
as fluorescein and X-rhodamine may be used as well). We distinguish two main
types of single-slide methods: those which are based solely on the value of the
intensity ratio R/G and those which also take into account overall transcript
abundance measured by the product RG. Early analyses of microarray data
(DeRisi et al. (1996), Schena et al. (1995), Schena et al. (1996)) relied on fold
increase/decrease cut-offs to identify differentially expressed genes. For exam-
ple, in their study of gene expression in the model plant Arabidopsis thaliana,
Schena et al. (1995) use spiked controls in the mRNA samples to normalize the
signals for the two fluorescent dyes (there, fluorescein and lissamine) and declare
a gene differentially expressed if its expression level differs by more than a factor
of 5 in the two mRNA samples. DeRisi et al. (1996) identify differentially ex-
pressed genes using a +3 cut-off for the log-ratios of the fluorescence intensities,
standardized with respect to the mean and standard deviation of the log-ratios
for a panel of 90 “housekeeping” genes (i.e., genes believed not to be differen-
tially expressed between the two cell types of interest). More recent approaches
are based on probabilistic modeling of the (R, G) pairs and differ mainly in the
distributional assumptions they make for (R, G) in order to derive a rule for de-
ciding whether a particular gene is differentially expressed. Chen, Dougherty and
Bittner (1997) propose a data dependent rule for choosing cut-offs for the red
and green intensity ratio R/G. The rule is based on a number of distributional
assumptions for the intensities (R, G), including normality and constant coeffi-
cient of variation. Sapir and Churchill (2000) suggest identifying differentially
expressed genes using posterior probabilities of change under a mixture model
for the intensity log-ratio log R/G (after a form of background correction, the
orthogonal residuals from the robust regression of log R vs. log G are essentially
normalized log-ratios). A limitation of these two methods is that they both ig-
nore the information contained in the product RG. Recognizing this problem,
Newton, Kendziorski, Richmond, Blattner and Tsui (2001) consider a hierarchi-
cal model (Gamma-Gamma-Bernoulli model) for (R, G) and suggest identifying
differentially expressed genes based on the posterior odds of change under this
hierarchical model. The odds are functions of R 4+ G and RG, and thus produce
a rule which takes into account overall transcript abundance. The approach of
Roberts et al. (2000) is based on assuming that R and G are approximately
independently and normally distributed, with variance depending on the mean,
and also produces a rule which takes into account overall transcript abundance.
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At the end of the day, each of these methods produces a model dependent rule
which amounts to drawing two curves in the (R,G)—plane and calling a gene
differentially expressed if its (R, G) measured intensities fall outside the region
between the two curves. The relative merits of the procedures depend on their
ability to successfully identify differentially expressed genes (i.e., their power or
one minus their Type II error rate), while avoiding to call unchanged genes dif-
ferentially expressed (i.e., their false positive or Type I error rate). For any given
single-slide experiment, thousands of comparisons are made, raising the issue of
multiple testing. Finally, and most importantly, the gene expression data may
be too noisy for successful identification of differentially expressed genes without
replication, no matter how good the rule.

Note that the fluorescence intensity pairs (R, G) are already highly processed
data and the choice of image analysis methods for segmentation and background
correction of the laser scanned images can have a large impact on these quanti-
ties. Before applying any of the above single-slide methods, or for that matter
any inference or cluster analysis method, it is essential to identify and remove
sources of systematic variation (e.g., different labeling efficiencies and scanning
properties of the Cy3 and Cyb5 dyes, print-tip or spatial effects) by an appropriate
normalization method. Until these systematic effects are properly accounted for,
there can be no question of the system being in statistical control and hence no
basis for a statistical model to describe chance variation.

1.2.2. Multiple-slide methods

Until recently, statistical methods for identifying differentially expressed
genes in multiple-slide experiments have received relatively little attention. A
common approach has been to rely on exploratory cluster analysis methods (hi-
erarchical clustering or partitioning methods such as self-organizing maps) to
group genes with correlated expression profiles across experimental conditions
(Alizadeh et al. (2000), Ross et al. (2000)). Groups of differentially expressed
genes are then identified by visual inspection of the resulting clusters, using, for
example, red and green images to display the intensity log-ratios for each gene
in each of the slides (Eisen et al. (1998)). Such methods are “unsupervised”,
in that they ignore the covariates or responses for the samples hybridized to
the slides (e.g., treatment or control status of the mice). A more direct and
appropriate approach to the problem of differential expression is to exploit this
available information by, for example, computing for each gene a test statistic
relating its expression levels to the covariates or responses (e.g., t-statistic) and
ranking the genes according to this statistic (Galitski et al. (1999), Golub et
al. (1999)). Kerr, Martin and Churchill (2000) take this approach and stress
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the importance of replication in order to assess the variability of estimates of
change. They suggest applying techniques from the analysis of variance and as-
sume a fixed effect linear model for the logged intensities, with terms accounting
for dye, slide, treatment, and gene main effects, as well as a few interactions
between these effects. Differentially expressed genes are then identified based on
contrasts for the treatment X gene interactions (these contrasts are related to
averages of intensity log-ratios).

1.3. Apo Al and SR-BI experiments

The goal of the study is to identify genes with altered expression in the
livers of two lines of mice with very low HDL cholesterol levels compared to inbred
control mice (Callow et al. (2000)). The two mouse models are the apolipoprotein
AT (apo AI) knock-out and the scavenger receptor BI (SR-BI) transgenic mice;
apo Al and SR-BI are two genes known to play pivotal roles in HDL metabolism.

In the first experiment, the treatment group consists of eight mice with
the apo AI gene knocked-out and the control group consists of eight “normal”
C57B1/6 mice. For each of these 16 mice, target cDNA is obtained from mRNA by
reverse transcription and labeled using a red-fluorescent dye (Cy5). The reference
sample (green-fluorescent dye Cy3) used in all hybridizations was prepared by
pooling cDNA from the eight control mice. The design for the second experiment
is similar, but with eight SR-BI transgenic mice comprising the treatment group
and eight “normal” FVB mice comprising the control group. In each experiment,
target cDNA is hybridized to microarrays consisting of 6, 384 spots, which include
257 genes thought to be related to lipid metabolism. The microarrays were
printed using 4 x 4 print-tips and are thus partitioned into a 4 x 4 grid matrix.
Each grid contains 19 x 21 spots that were printed with the same print-tip.
(cDNA microarrays are spotted using different printing set-ups, such as 4 x 4 or
4 x 8 print-tip clusters. The arrays are divided into grids (also called sectors) and
the spots on a given grid are printed with the same print-tip or pin. We say that
spots printed using the same print-tip are part of the same print-tip group.) Note
that the spotted cDNA sequences are usually referred to as “genes”, whether they
are actual genes, ESTs (expressed sequence tags), or DNA sequences from other
sources. The raw data from each of these two experiments consist of 16 pairs of
image files, one red and green image pair for each of the slides.

2. Methods
2.1. Image analysis

The red and green fluorescence intensities (R, G), which are inputs to the
methods described in Section 1.2, are already highly processed data. We view
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the image files produced by the scanner as the “raw” data; these are typically
pairs of 16-bit tagged image file format (TIFF) files, one for each fluorescent dye.
Image analysis is required to extract foreground and background fluorescence in-
tensity measurements for each spotted DNA sequence. We have developed new
addressing, segmentation, and background correction methods for extracting in-
formation from microarray scanned images. The addressing method uses the fact
that microarrays are generally produced in batches and that, within a batch, im-
portant characteristics, particularly the print-tip configuration, are very nearly
the same. The segmentation component is based on the seeded region growing
algorithm of Adams and Bischof (1994) and places no restriction on the size or
shape of the spots. The background adjustment method relies on a non-linear
filter known as morphological opening to generate an image of the estimated back-
ground intensity for the entire slide. These new image analysis procedures are
implemented in a software package named Spot, built on the R environment for
statistical computing (Buckley (2000), Thaka and Gentleman (1996)). A detailed
discussion of the proposed image analysis methods and a comparison to popular
alternatives can be found in Yang, Buckley, Dudoit and Speed (2001a). Thus,
starting with two images for each slide, the image processing steps outlined above
produce two main quantities for each spot on the array: the red and green flu-
orescence intensities, R and G, which are measures of transcript abundance for
the red and green labeled mRNA samples, respectively.

2.2. Single-slide data displays

Single-slide expression data are typically displayed by plotting the log inten-
sity logy R in the red channel vs. the log intensity log, G in the green channel
(Newton et al. (2001), Sapir and Churchill (2000), Schena (2000)). (It is prefer-
able to work with logged intensities rather than absolute intensities for a number
of reasons, including the facts that: (i) the variation of logged intensities and
ratios of intensities is less dependent on absolute magnitude; (ii) normalization
is usually additive for logged intensities; (iii) taking logs evens out highly skewed
distributions; and (iv) taking logs gives a more realistic sense of variation. Loga-
rithms base 2 are used instead of natural or decimal logarithms as intensities are
typically integers between 0 and 2'6 — 1.) We find that such logy R vs. logy G
plots give an unrealistic sense of concordance between the red and green inten-
sities and can mask interesting features of the data. We thus prefer to plot the
intensity log-ratio M = logy, R/G vs. the mean log intensity A = log, VRG (a
similar display was used in Roberts et al. (2000)). An M A—plot amounts to a 45°
counterclockwise rotation of the (log, G,log, R)— coordinate system, followed by
scaling of the coordinates, and is thus another representation of the (R, G) data
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in terms of the log-ratios M which are the quantities of interest to most inves-
tigators. We have found M A—plots to be more revealing than their logy R vs.
logy, G' counterparts in terms of identifying spot artifacts and for normalization
purposes. Figure 2 displays a logy R vs. logy G plot and an M A—plot for a sim-
ple self-self microarray experiment in which two identical mRNA samples were
labeled with different dyes and hybridized to the same slide.
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Figure 2. Self-self hybridization. logy R vs. logy, G plot and M A—plot for
self-self hybridization. The M = 0 (solid) and M = median M; (dashed)
lines are drawn for reference.

2.3. Normalization

The purpose of normalization is to identify and remove sources of system-
atic variation, other than differential expression, in the measured fluorescence
intensities (e.g., different labeling efficiencies and scanning properties of the Cy3
and Cyb dyes; different scanning parameters, such as PMT settings; print-tip,
spatial, or plate effects). It is necessary to normalize the fluorescence intensities
before any analysis which involves comparing expression levels within or between
slides (e.g., clustering, discriminant analysis). The need for normalization can
be seen most clearly in self-self experiments (Figure 2). Although there is no
differential expression and one expects the red and green intensities to be equal,
the red intensities often tend to be lower than the green intensities. Furthermore,
the imbalance in the red and green intensities is usually not constant across the
spots within and between arrays, and can vary according to overall spot intensity
A, location on the array, plate origin, and possibly other variables.
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The simplest approach to within-slide normalization is to subtract a constant
from all intensity log-ratios, typically their mean or median. Such global normal-
ization methods are still the most widely used in spite of the evidence of spatial
or intensity dependent dye biases in numerous experiments. We favor more flex-
ible normalization methods which allow the normalization function to depend
on a number of predictor variables, such as spot intensity A, location, and plate
origin. The normalization function can be obtained by robust locally weighted re-
gression of the log-ratios M on the predictor variables. For the apo Al and SR-BI
experiments, the print-tip group was used as a proxy for the location of the spots
on the slide. (Systematic differences may exist between the print-tips, such as
differences in length or in the opening of the tip. There may also be spatial effects
due, for example, to the placement of the cover-slip. Note that it may not always
be possible to separate print-tip effects from spatial effects.) Within print-tip
group intensity dependent normalization was performed using the lowess scatter-
plot smoother implemented in the lowess function from the R software package
(Cleveland (1979), Ihaka and Gentleman (1996)): log, R/G < logy R/G—1(A, j),
where [(A,7) is the lowess fit to the M A—plot for spots printed using the jth
print-tip (i.e., data from the jth grid only), j = 1,...,16. The parameter f, spec-
ifying the fraction of the data used for smoothing at each point, was set between
20 and 40%. For the experiments considered here, only a small proportion of
the genes were expected to vary in expression between the red and green labeled
mRNA samples; normalization was thus performed using all 6,384 probes. In
other circumstances, a subset of control sequences may be spotted on the slide
and used for normalization purposes (see Yang et al. (2001) for greater detail on
normalization).

2.4. Graphical displays for test statistics
2.4.1. Test statistics

For the purpose of identifying differentially expressed genes in the treatment
and control mice, the normalized gene expression data can be summarized by
a matrix X of intensity log-ratios M = logy R/G, with m rows corresponding
to the genes being studied and n = n; + ny columns corresponding to the n;
control hybridizations (C57B1/6 or FVB) and ny treatment hybridizations (apo
Al knock-out or SR-BI transgenic). The fluorescence intensity log-ratio xj; thus
represents the expression response of gene j in either a control or treatment
mouse. In the two experiments considered here ny = ne = 8 and m = 6, 384.

Let H; denote the null hypothesis of no association between the expression
level of gene j and the treatment, 7 = 1,...,m. Only two-sided alternative
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hypotheses are considered here; one-sided alternatives can be handled in a similar
manner. Differentially expressed genes are identified by computing a two-sample
Welch t-statistic for each gene j; the random variable and realization of the
t-statistic for gene j are denoted by T} and t;, respectively. Large absolute ¢-
statistics suggest that the corresponding genes have different expression levels
in the control and treatment groups. Note that replication is essential for such
an analysis, as it is required for assessing the variability of the gene expression
levels in the treatment and control groups. Also note that the ¢-statistics are not
assumed to actually follow a t-distribution; a permutation procedure is used to
estimate their joint distribution (see Section 2.5.2).

2.4.2. Quantile-Quantile plots

Quantile- Quantile plots or Q-0 plots are a useful display of the test statistics
for the thousands of genes being studied in a typical microarray experiment. In
general, Q-Q plots are used to assess whether data have a particular distribution
or whether two datasets have the same distribution. In our application, we are
not so much interested in testing whether the test statistics follow a particular
distribution, but in using the Q-Q plot as a visual aid for identifying genes with
“unusual” test statistics. Q-Q plots informally correct for the large number of
comparisons and the points which deviate markedly from an otherwise linear re-
lationship are likely to correspond to those genes whose expression levels differ
between the control and treatment groups. In a normal Q-Q plot, the ordered
test statistics are plotted against the quantiles of a standard normal distribution.
Alternately, Q-Q plots may be obtained by plotting the ordered test statistics
against quantiles estimated from the permutation distribution of these test statis-
tics. For the microarray datasets we have encountered so far, the normal and
permutation Q-Q plots were virtually identical.

2.4.3. Plots vs. absolute expression levels

Important features of the genes with large absolute t-statistics can be iden-
tified by examining plots of the t-statistics, their numerators and denominators,
against absolute expression levels. The absolute expression level for a particular
gene is measured by A, the average of A = log, vRG over the 16 hybridizations
for the apo Al or SR-BI experiments.

2.5. Multiple hypothesis testing

2.5.1. Adjusted p-values

The Q-Q plots for the t-statistics are useful visual aids for identifying genes
with altered expression in the treatment mice compared to the control mice. A
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more precise assessment of the evidence against the null hypothesis of no differen-
tial expression may be obtained by calculating a p-value, p; = pr(|T;| > |¢;] | H;),
for each gene j, j = 1,..., m. However, with a typical microarray dataset com-
prising thousands of genes, an immediate concern is multiple testing. When many
hypotheses are tested, as is the case here, the probability that at least one Type
I error is committed can increase sharply with the number of hypotheses. Nu-
merous methods have been suggested for controlling the family-wise Type I error
rate (FWER), i.e., the probability of at least one Type I error in the family (see
Shaffer (1995) for a review of such methods). Some procedures provide strong
control of the FWER, i.e., control this error rate for any combination of true
and false hypotheses, while others provide only weak control of the FWER, i.e.,
control the FWER only under the complete null hypothesis H§ = NyL,H; that
all hypotheses in the family are true. The procedures described below provide
strong control of the FWER.

The concept of p-value can be extended to multiple testing procedures. Given
any test procedure, the adjusted p-value corresponding to the test of a single hy-
pothesis H; can be defined as the level of the entire test procedure at which H;
would just be rejected, given the values of all test statistics involved (Shaffer
(1995), Westfall and Young (1993)). If interest is in controlling the FWER, the
adjusted p-value for hypothesis H; is p; = inf {o : H; is rejected at FWER = a},
and hypothesis H; is rejected at FWER « if p; < a. There are several approaches
to p-value adjustment and these vary in the severity of the correction for multi-
plicity.

The Bonferroni procedure is perhaps the best known method for dealing
with multiple testing. The Bonferroni single-step adjusted p-values are given by
pj = min(mp;,1), j =1,...,m. Closely related to the Bonferroni method is the
Sidék procedure which is exact for protecting the FWER when the unadjusted
p-values are independently distributed as U[0, 1] under the complete null. The
Siddk single-step adjusted p-values are given by pj =1 — (1 —p;)™. These two
procedures are called single-step because they perform equivalent multiplicity
adjustments for all hypotheses, regardless of the ordering of the unadjusted p-
values. While single-step adjusted p-values are simple to calculate, they tend
to be conservative. Improvement in power, while preserving strong control of
the FWER, may be achieved by considering step-down procedures which order
p-values and make successively smaller adjustments. Let p,, < pp, <--- < p,
denote the ordered unadjusted p-values. The Holm step-down adjusted p-values
are given by

By = max{min((m = k+1)pry, 1)} (1)
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Holm’s procedure is less conservative than the standard Bonferroni procedure
which would multiply the unadjusted p-values by m at each step. Note that
taking successive maxima of the quantities min((m—k+1)p,,, 1) enforces mono-
tonicity of the adjusted p-values. That is, py, < ppry, < -+ < Dy, and one can
only reject a particular hypothesis provided all hypotheses with smaller unad-
justed p-values were rejected beforehand. However, neither Holm’s method nor
the single-step methods presented above take into account the dependence struc-
ture between the test statistics. In microarray experiments (and many other
situations), the test statistics and hence the p-values are correlated due, for ex-
ample, to co-regulation of the genes. Westfall and Young (1993) propose adjusted
p-values for less conservative multiple testing procedures which take into account
the dependence structure between the test statistics. The Westfall and Young
(1993) step-down minP adjusted p-values are defined by

Py = e el min P pr [ HE) | @)
where HOC denotes the complete null hypothesis and P, the random variable for
the unadjusted p-value of the Ith hypothesis H;. Alternately, one may consider
procedures based on the step-down mazT adjusted p-values which are defined in
terms of the test statistics T; themselves as

pry = e {pr(_ max |Ti| 2 |tn,| | HG) 3)
where [t | > |t,| > -+ > |t | denote the ordered observed test statistics. Note
that computing the quantities in (2) using the upper bound provided by Boole’s
inequality yields Holm’s p-values. Procedures based on the step-down minP ad-
justed p-values are thus less conservative than Holm’s procedure. The maxT
p-values are easier to compute than the minP p-values and are equal to the minP
p-values when the test statistics T); are identically distributed. However, the two
procedures generally produce different adjusted p-values, and considerations of
balance, power, and computational feasibility should dictate the choice between
the two approaches. In the case of non-identically distributed test statistics
Tj (e.g., t-statistics with different degrees of freedom), not all tests contribute
equally to the maxT adjusted p-values and this can lead to unbalanced adjust-
ments (Westfall and Young (1993, p.50)). When adjusted p-values are estimated
by permutation (Section 2.5.2), the minP p-values require more computations
than the maxT p-values, because the unadjusted p-values must be estimated
before considering the distribution of their successive minima.
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2.5.2. Estimation of adjusted p-values by permutation

In many situations, the joint (and marginal) distribution of the test statis-
tics is unknown. Resampling methods (bootstrap or permutation) can be used
to estimate unadjusted and adjusted p-values while avoiding parametric assump-
tions about the joint distribution of the test statistics. In the microarray setting,
the joint distribution under the complete null hypothesis of the test statistics
Ti,...,T, can be estimated by permuting the columns of the gene expression
data matrix X. Permuting entire columns of this matrix creates a situation
in which membership to the control or treatment group is independent of gene
expression, while attempting to preserve the dependence structure between the
genes. When computationally feasible, all possible permutations of the columns
are considered, otherwise, a random subset of B permutations (including the
observed) may be considered. For the knock-out and transgenic mouse datasets,
there are B = (186) = 12,870 possible permutations of the treatment/control
labels and p-values are estimated using the full set of permutations.

Box 1. Permutation algorithm for unadjusted p-values
For the bth permutation, b=1,..., B,

1. Permute the n columns of the data matrix X.
2. Compute test statistics £y, ..., % for each hypothesis.

The permutation distribution of the test statistic T for hypothesis H;, j =
1,...,m, is given by the empirical distribution of ¢;1,...,t; p. For two-sided
alternative hypotheses, the permutation p-value for hypothesis H; is

o _ S (el = 1t5)
pj - B ’

where I(-) is the indicator function, equaling 1 if the condition in parentheses
is true, and 0 otherwise.

Permutation adjusted p-values for the Bonferroni, Siddk, and Holm proce-
dures can be obtained by replacing p; by p}'f in the equations defining p;. However,
for the Westfall and Young minP adjusted p-values, the joint null distribution of
Py, ..., P, needs to be estimated. When the unadjusted p-values themselves are
unknown, additional resampling for estimating these p-values can be computa-
tionally intensive. For ease of computation, a multiple testing procedure based
on the maxT adjusted p-values is used to identify differentially expressed genes
in the apo Al and SR-BI experiments.
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Box 2. Permutation algorithm for step-down maxT adjusted p-values - based
on Algorithms 2.8 and 4.1 in Westfall and Young (1993)

For the bth permutation, b=1,..., B,
1. Permute the n columns of the data matrix X.
2. Compute test statistics ¢, ..., % for each hypothesis.
3. Next, compute successive maxima of the test statistics
Upnb = [tr,, bl
Ujp = max(ujJrLb, |t7~j,b\> forj=m-—1,...,1,

where r; denotes the ordering of the observed test statistics such that
‘tn‘ 2 |tr2‘ =2 |trm‘-

The adjusted p-values are estimated by

B
o e Iugp > [ty])

by, 5 ,

with the monotonicity constraints enforced by setting

Dy, < Drys [3:], — max(ﬁjj,ﬁjj_l) for j =2,...,m.

3. Results
3.1. Normalization

Figure 3 displays the M A—plot for a single slide from the apo Al experiment
before (panel (a)) and after (panel (b)) within print-tip group intensity dependent
normalization. Panel (a) illustrates the non-linear dependence of the log-ratio
M on the overall spot intensity A and suggests that an intensity or A-dependent
normalization method is preferable to a global one. Also, for the apo Al arrays
four print-tip group lowess curves clearly stand out from the remaining twelve
curves, suggesting strong print-tip or spatial effects. The four curves correspond
to the last row in the 4 x 4 print-tip cluster, i.e., to print-tips 13, 14, 15, and
16. This pattern is visible in the images, where the bottom four grids tend to
have high red signal. The normalized log-ratios in the M A—plot of panel (b) are
evenly distributed about zero across the range of intensities. Similar effects were
observed for the other apo Al slides and for the SR-BI experiment (see web sup-
plement http://www.stat.berkeley.edu/users/terry/zarray /Html/index.html).
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3.2.
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Figure 3. Apo AI (a) M A—plot illustrating the need for within print-tip
group intensity dependent normalization. (b) M A—plot after within print-
tip group intensity dependent normalization. Both panels display the lowess
curves (f = 40%) for each of the 16 print-tips (data from apo AI knock-out
mouse #8). Different colors are used to represent lowess curves for print-
tips from different rows and different line types are used to represent lowess
curves for print-tips from different columns.

Identification of differentially expressed genes with replicated slides
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Figure 4. Apo Al Histogram and normal Q-Q plot for two-sample ¢-statistics.
The points corresponding to genes with maxT adjusted p-values less than
0.01 are indicated by filled triangles.

Q-Q plots. For the apo Al experiment, the Q-Q plot in Figure 4 indicates

that eight genes (filled triangles) have t-statistics that deviate markedly from an
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otherwise linear relationship. All eight genes have negative t-statistics, suggesting
down-regulation in the knock-out mice compared to the controls. For the SR-BI
experiment, the deviations from linearity are more subtle and gradual (see web
supplement for figure). There are about a dozen genes with “unusual” positive
and negative t-statistics and these seem like possible candidates for differential
expression. In order to determine whether the extreme t-statistics do indeed
reflect significant differences between the control and transgenic or knock-out
mice we turn to p-value adjustment procedures.

Adjusted p-values. For the apo Al experiment, Figure 5 displays a plot of
the unadjusted p-values and Westfall and Young maxT adjusted p-values for the
50 genes with the largest absolute ¢-statistic. As expected, adjusted p-values are
much larger than the corresponding unadjusted p-values. For this experiment,
eight genes have very small (p* < 0.01) adjusted p-values and the remaining genes
have markedly higher p-values (p* > 0.60). In the SR-B1 experiment, 13 genes
have adjusted p-values lower than 5% and the increase in p-value is much more
gradual than in the apo AI knock-out experiment (see web supplement). Thus,
adjusted p-values reflect the patterns seen in the Q-Q plots, while unadjusted
p-values are, as expected, much too small and lack the specificity of adjusted
p-values.
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Figure 5. Apo AI Westfall and Young maxT adjusted p-values (filled tri-
angles) and unadjusted p-values (crosses) for the 50 genes with the largest
absolute t-statistic.

Features of differentially expressed genes. Important features of the
genes with large absolute t-statistics can be identified by examining plots of the
numerator and denominator of the ¢-statistics against absolute expression levels
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(see Figure 6 and web supplement for SR-BI). For both experiments, the genes
with large absolute t-statistics tended to have high absolute expression levels, as
measured by A. They typically had large differences in their expression levels
between the two groups (numerator) as well as fairly low standard errors (SEs in
denominator).

t vs. average A t denominator vs. average A

—
3
=
g g
o
A g o
o o e
S N = e
o
10 12 14 10 12 14
average A average A
_ |t numerator| vs. average A 5 t denominator vs. |t numerator|
—
o +~
@
g 3 g
) g 0«
E Q o
20" =
=1 — % N . A
- < A A
= _ . o 4
S S
10 12 14 00 05 10 1.5 20 25 3.0
average A |t numerator|

Figure 6. Apo Al Plots of t-statistics, numerator, and denominator, against

overall intensity A. The points corresponding to genes with maxT adjusted
p-values less than 0.01 are highlighted with filled triangle.

Identity of differentially expressed genes. Many of the spotted cDNA
probes with large absolute t-statistics were re-sequenced because of the known
possibility of mixed populations of clones, chimeric clones, or errors in plate
arraying of the bacterial clones. As a result, several of the probes in Tables 1
and 2 were found to correspond to the same gene after re-sequencing.

For the apo Al knock-out experiment, apo Al appeared three times and apo
CIII, a gene physically very close to apo Al and also associated with lipoprotein
metabolism, appeared twice. Sterol C5 desaturase, an enzyme involved in the
later stages of cholesterol synthesis, also appeared twice.

As expected, SR-B1 was the most significantly altered gene in the SR-B1
transgenic experiment, as the two probes with the smallest adjusted p-values
corresponded to this gene. Glutathione s-transferase and Cytochrome p450 2B10
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both appeared twice along with the hemoglobin alpha and beta chains. Although
there is no obvious link between the latter two genes and cholesterol metabolism,
the known functions of these genes may suggest altered oxidative and steroid
metabolism associated with over-expression of SR-B1. SR-B1 is believed to not
only facilitate the uptake of cholesterol by cells but also other molecules such
as phospholipids. Several other genes were identified but have not yet been
confirmed by re-sequencing.

In an alternative method of analysis, expression levels of some of the genes in
Tables 1 and 2 were quantitated by RT-PCR (real-time quantitative polymerase

Table 1. Apo Al Genes with maxT adjusted p-values < 0.01. For each
gene, the table lists the gene name, the permutation adjusted p-value (p*),
the two-sample ¢-statistic (¢), the numerator (Num) and denominator (Den)
of the t-statistic.

Gene name p* t Num Den
Apo Al 0.00 -22.85 -3.19 0.14
Sterol C5 desaturase 0.00 -13.14 -1.06 0.08
Apo Al 0.00 -12.21 -1.90 0.16
Apo CIII 0.00 -11.88 -1.02 0.09
Apo Al 0.00 -11.44 -3.09 0.27
EST AA080005 0.00 -9.11 -1.02 0.11
Apo CIII 0.00 -8.36 -1.04 0.12
Sterol C5 desaturase 0.01 -7.72 -1.04 0.13

Table 2. SR-BI. Genes with maxT adjusted p-values < 0.05. For each gene,
the table lists the gene name, the permutation adjusted p-value (p*), the
two-sample t-statistic (¢), the numerator (Num) and denominator (Den) of
the t-statistic.

Gene name p* t Num Den
SR-BI 0.00 13.70 3.05 0.22
SR-BI 0.00 12.13 3.30 0.27
Glutathione s-transferase 0.00  9.66 1.25 0.13
Un-identified 0.00 9.46 1.22 0.13
Glutathione s-transferase 0.00 &8.79 1.11 0.13
Un-confirmed 0.02 6.97 0.60 0.09
Un-confirmed 0.02 6.96 0.13 0.02

Cytochrome P450 2B10 0.03 -6.90 -0.74 0.11
Hemoglobin alpha chain  0.03 6.85 0.74 0.11
Cytochrome P450 2B10 0.03 -6.83 -1.46 0.21
Un-confirmed 0.03 6.80 0.50 0.07
Un-confirmed 0.03 -6.77 -0.32 0.05
Hemoglobin beta chain 0.04 6.69 0.55 0.08
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chain reaction). In this method, cDNA was first synthesized from the mRNA by
random priming and gene specific DNA primers were then used to amplify DNA
specific for the gene of interest. Production of DNA was quantitated during the
cycles of amplification with SYBR green dye in a 7700 sequence detector (Perkin
Elmer). This alternative method of quantitation confirmed changes observed by
microarray analysis (Callow et al. (2000)).

Note that (Callow et al. (2000)) applied different image analysis and normal-
ization methods than presented here. The scanned images were processed using
the ScanAlyze (Eisen (1999)) software package and a global median normaliza-
tion was performed. For the apo Al experiment, the same eight genes clearly
stood out from the rest, but had slightly larger adjusted p-values than here. The
gap between the eight genes and the other genes was also smaller. For the SR-
BI experiment, our new image analysis and normalization methods produced a
longer list of genes with small adjusted p-values; the identity of all the new genes
has not yet been confirmed.

3.3. Comparison with single-slide methods

The single-slide methods of Chen, Dougherty and Bittner (1997), Newton
et al. (2001), and Sapir and Churchill (2000) were applied to individual slides
from the apo AI and SR-BI experiments. (Note that for the Sapir and Churchill
method we are not performing the orthogonal regression for the log-transformed
intensities (Part I of the poster). The orthogonal residuals are essentially normal-
ized intensity log-ratios. We have simply implemented Part II of the poster and
are applying the mixture model to our already normalized log-ratios.) The above
three methods were used to identify genes with differential expression in mRNA
samples from individual treatment mice compared to pooled mRNA samples from
control mice. Using an M A—plot, Figure 7 shows the contours for the posterior
odds of change in the Newton et al. (2001) method, the upper and lower limits of
the Chen, Dougherty and Bittner (1997) 95% and 99% “confidence intervals” for
M, and the contours for the Sapir and Churchill 90%, 95%, and 99% posterior
probabilities of differential expression. The regions between the contours for the
Newton et al. (2001) method are wider for low and high intensities A; this is a
property of the Gamma distribution which is used in the hierarchical model.

In general, the genes identified as differentially expressed seem to vary more
between methods than within method for different significance thresholds (e.g.,
different posterior probability cut-offs). Furthermore, the gene lists varied from
slide to slide. For the eighth knock-out mouse in the apo Al experiment (Figure
7), the Chen, Dougherty and Bittner (1997) 95% and 99% rules both single out
the eight clones identified using replicated slides (green points). However, the
rule makes a large number of Type I errors, especially in the positive M region.
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The Newton et al. (2001) rule with 1:1 posterior odds identifies all but one of
the eight genes and selects a large number of false positives. With posterior odds
of 100:1, the method now only identifies four out of the eight probe sequences,
with still a fairly large number of false positives, especially in the positive M
region. The Sapir and Churchill method is more conservative than the Chen,
Dougherty and Bittner (1997) method and yields contours similar to the Newton
et al. (2001) method. Similar patterns were observed for the SR-BI experiment
(see web supplement).

A

Figure 7. Apo AL Single-slide methods: M A—plot with contours for the
methods of Newton et al. (orange, odds of change of 1:1, 10:1, and 100:1),
Chen et al. (purple, 95% and 99% “confidence”), and Sapir and Churchill
(cyan, 90%, 95%, and 99% posterior probability of differential expression).
The points corresponding to genes with maxT adjusted p-values less than
0.01 (based on data from 16 slides) are colored in green. The data are from
knock-out mouse # 8.

4. Discussion

We have described statistical methods for the identification of differentially
expressed genes in replicated microarray experiments. Although it is not the
main focus of the paper, we stress the importance of issues such as imaging (e.g.,
effect of laser power and gain), image analysis (segmentation and background
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adjustment), and normalization (Yang et al. (Accepted), Yang et al. (2001)).
Each of these pre-processing steps can have a potentially large impact on the
(R,G) intensity pairs used in further analyses, such as hypothesis testing or
clustering.

Our first recommendation is to examine single-slide intensity data using
M A—plots. In addition to aiding in the identification of spot artifacts and spe-
cific features of the slide (e.g., spatial or print-tip effects), such a representation
is useful for normalization purposes. We are proposing normalization methods
based on robust local regression to deal with spatial and intensity dependent dye
biases observed in numerous experiments. The importance of including the print-
tip group (a proxy for the location of the spots on the slide) in the normalization
function for the apo AI experiment is clearly illustrated by the results from
single-slide methods: without a print-tip dependent normalization, the single-
slide methods are essentially calling genes from only four of the print-tip groups
and are thus making a large number of false positives (Figure 7). “Global”
methods such as mean, median, or ANOVA normalization (Kerr et al. (2000))
do not deal with spatial, plate, or intensity dependent effects. Recently, Sapir
and Churchill (2000) have proposed a normalization method based on orthogonal
linear regression of log intensities logy R vs. logy G (after a type of background
correction of R and (). This is an intensity dependent normalization but, un-
like the lowess based normalization method, it only allows a linear relationship
between the log intensities in the two channels and lacks robustness. We have
worked with a number of datasets from different labs and most exhibit non-linear
relationships between log, R and logy G. We do not claim by any means to have
identified all relevant sources of systematic variation in a cDNA microarray ex-
periment. Rather, we believe that different systematic features could arise in
different types of experiments and that these should be investigated carefully
before proceeding to any inference. Until sources of systematic variation are
identified and properly accounted for, there can be no question of the system
being in statistical control and so no basis for a statistical model to describe
chance variation. With many different users of this technology and a variety
of experimental protocols, a substantial proportion of the variation is likely to
remain systematic and possibly more important than random variation. The
situation should improve with a deeper understanding of how the intensity data
are acquired and processed. However, given our current limited knowledge of
the possible sources of systematic variation, normalization remains an important
and challenging question which cannot always be addressed in a simple generic
manner or by relying on unverified modeling assumptions. Local regression pro-
cedures, such as lowess or loess, are promising tools for devising robust and
flexible normalization methods.
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For suitably normalized data, the proposed approach for the identification
of single differentially expressed genes is to consider a univariate testing problem
for each gene and then correct for multiple testing using adjusted p-values. In
the lipid metabolism study described above, t-statistics were used to test the null
hypothesis of no differential expression between the treatment and control groups.
One could have also used non-parametric rank statistics such as the Wilcoxon
rank sum statistic. Unlike single-slide methods, no specific parametric form is
assumed for the distribution of the (R, ) intensity pairs and a permutation
procedure was used to estimate the joint null distribution of the test statistics.
We found Q-Q plots and plots of different components of the test statistics against
overall intensity A particularly useful for the visual identification of genes with
altered expression and of important features of these genes. There was a close
correspondence between the patterns seen in the Q-Q plots and the adjusted p-
values. For the apo Al experiment, 8 cDNA probes (including three copies of the
knocked-out gene) clearly stood out from the rest and had very small adjusted
p-values (p* < 0.01). In the SR-BI experiment, there was no clear discontinuity
in the t-statistics or their corresponding adjusted p-values. For brevity, we chose
to list only the genes with adjusted p-values less than 5%. However, this cut-off
is somewhat arbitrary and biologists may find a higher FWER acceptable for
their purposes.

A different approach to multiple testing was proposed in 1995 by Benjamini
and Hochberg. These authors argue that in many situations control of the FWER
can lead to unduly conservative procedures and that one may be prepared to tol-
erate some Type I errors, provided their number is small in comparison to the
number of rejected hypotheses. These considerations led to a less conservative
approach which calls for controlling the expected proportion of Type I errors
among the rejected hypotheses — the false discovery rate (FDR). The develop-
ment of FDR controlling procedures is an active area of research. In the microar-
ray setting, where thousands of comparisons are performed simultaneously and a
fairly large number of genes are expected to be differentially expressed, FDR con-
trolling procedures present a promising alternative to more conservative FWER
approaches.

A comparison of the genes identified with replicated slides and confirmed by
RT-PCR to those identified using single-slide methods highlights the importance
of replication and a careful study of systematic effects (Figure 7). The genes
called by single-slide methods varied across replicated slides, and these methods
tended to produce a large number of false positives while missing a few of the
confirmed genes. In general, there is no easy way to tell which genes are dif-
ferentially expressed on the basis of data from a single slide. Recently proposed
methods are based on assumed parametric models (e.g., Gamma or Gaussian) for
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the (R, @) intensity pairs, and we do not know enough at this point about sys-
tematic and random variation in microarray experiments to justify such strong
modeling assumptions. In addition, existing single-slide methods do not as yet
cope with replicated spots within slides or with between slide variation. The
claimed significance levels are thus dubious and it is not clear what progress
has been made over the early fold increase/decrease cut-off rules. For the two
experiments presented here, “eye-balling” would have worked at least as well as
any of the single-slide methods examined in Section 3.3. Most importantly, gene
expression data may be too noisy for successful identification without replication,
no matter how good the rule.

The need for replication was also stressed by Kerr et al. (2000). These
authors assume a linear model for the log intensities, with terms accounting for
dye, slide, treatment, and gene main effects, as well as a few interactions between
these effects. However, such a “global” model tries to do too much in one step
and may lose some of the sensitivity of the experiment: only one main effect for
normalization (the dye main effect D; amounts to a normalization by the mean
of log intensities across genes and arrays), only one error term for all genes.
Furthermore, interactions are included or not included somewhat arbitrarily and
the issue of multiple testing is not addressed. Our approach can also be cast
in an ANOVA setting: instead of having one “big” ANOVA for all genes, we
consider a “small” ANOVA for each gene, with only treatment and slide effects
for already normalized data. The “big” and “small” ANOVAs produce the same
contrast estimates, but different SEs for these estimates. The relative merits of
these two approaches for the calculation of standard errors deserve further study.
For the use of smoothed variance estimators the reader is referred to Lonnstedt
and Speed (2001) ; these smoothed estimators represent intermediate ground
between the “big” and “small” ANOVA SEs.

The design of the apo Al knock-out and SR-BI transgenic experiments has a
number of deficiencies. First, the reference sample used in all 16 hybridizations
(for treatment and control mice) consists of a mix of mRNA from the eight control
mice. This creates an asymmetry between the treatment and control groups,
even in the absence of differential expression. The use of a common reference
sample for all hybridizations is favored by biologists in order to compare gene
expression levels across slides. In that case, it may have been better to use a
more general reference sample, not directly related to the mRNA samples being
probed. Second, the reference mRNA was always labeled with the green dye, and
the treatment and control mRNA with the red dye. It may be more efficient to
have the treatment and control mRNA hybridized to the same slide and reverse
the dye assignments in different slides (dye-swap experiment). Clearly more
research is needed on the design of microarray experiments; preliminary work on
this subject can be found in (Kerr and Churchill (2001) and Lin et al. (2001)).
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A natural question arising with the design of this study is whether there is
any need to make use of hybridizations involving mRNA from individual control
mice and pooled control mRNA. In an obvious sense, using eight treatment mice
and eight control mice leads to a more symmetric experimental design, but is
it necessary? A partial answer to this question can be found by examining the
two datasets, this time using only the eight hybridizations comparing treatment
mouse mRNA to pooled control mouse mRNA. By analogy with the initial anal-
ysis, one can compare the mean relative expression levels to zero by computing
one-sample rather than two-sample ¢-statistics. For the knock-out experiment,
seven out of the eight genes identified with the 16 slides were among the 20 genes
with the largest absolute one-sample ¢-statistic. The remaining gene (apo CIII)
had a large t-numerator, but also a fairly large SE. For the SR-BI experiment,
only four out of the thirteen genes identified with the 16 slides were among the
20 genes with the largest absolute one-sample t-statistic. We do not yet have a
good explanation for this discrepancy and are further exploring the important
design issue.

The present paper considered only two types of mRNA samples (treatment
and control), but three or more types can be handled in a similar fashion with
different test statistics. For factorial experiments, in which several factors such
as time and treatment are being monitored simultaneously (Galitski et al. (1999),
Lin et al. (2001), Lonnstedt, Grant, Begley and Speed (n.d.)), one could perform
an ANOVA for each gene. It is implicit in this approach that there are only a
modest number of differentially expressed genes, rather than a continuum, and
that it is reasonable to attempt to identify them all. While it is perhaps too
early to say in general when this makes sense, there are clearly situations in
which it may not. When comparing gene expression between whole mouse brain
and cerebellum cells, for example, a large proportion of the genes seem to be
differentially expressed, and it seems futile to seek a clear cut-off between the
genes which are and which are not. Also, note that the question addressed in
this paper, as well as in Chen, Dougherty and Bittner (1997), Kerr et al. (2000),
Newton et al. (2001), Sapir and Churchill (2000), is the identification of single
differentially expressed genes, i.e., the null hypothesis of equal expression is tested
for one gene at a time. Having data on many arrays gives us the potential for
learning about the joint behavior of genes and the next step would be to seek
clusters of genes which change in a coordinate manner. However, statistical
methods for doing so are still in their infancy; recent efforts include the work of
Hastie et al. (2000) and Lazzeroni and Owen (2000).

Although the methods described in the present paper were illustrated on data
from a ¢cDNA microarray study, some apply to oligonucleotide arrays (Affymetrix
chips) as well. The diagnostic plots for the test statistics and multiple testing
procedure extend directly. For example, K. Vranizan and B. R. Conklin (private
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communication) have used the method outlined in Section 2.5 above to adjust
p-values for Affymetrix chip data on 6,320 genes from an experiment involving
eight control mice and nine mice expressing Rol at eight weeks (see Redfern
et al. (2000) and the supplemental material at http://www.pnas.org for greater
detail). In this comparison, many hundreds of genes had small unadjusted p-
values, but only 55 had adjusted p-values less than 0.05, 26 involving a relative
over-expression and 29 a relative under-expression at the eight-week timepoint
compared to the control. The normalization method of Section 2.3 is not directly
applicable, however, the general discussion on the identification of systematic
sources of variation is equally relevant to this other type of technology.

Finally, the methods described in this paper are implemented in an R package
(Thaka and Gentleman (1996)), SMA (Statistics for Microarray Analysis), which
may be downloaded from http://www.R-project.org. Supplementary analyses,
figures, and datasets are available at http://www.stat.berkeley.edu/users/terry/
zarray /Html/index.html.
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